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Abstract—In this study integral form and new recursive formulas 

for Favard constants and some connected with them numeric and 

Fourier series are obtained. The method is based on preliminary 

integration of Fourier series which allows for establishing finite 

recursive representations for the summation. It is shown that the 

derived recursive representations are numerically more effective than 

known representations of the considered objects.   

 

Keywords—Effective summation of series, Favard constants, 

finite recursive representations, Fourier series.  

I. INTRODUCTION 

T is well known that the Fourier series and Favard constants 

have significant theoretical and practical role in many areas 

[1], [2]. Different methods for their calculations are given, for 

instance, in [2, Ch. 5.2]. In general these methods are based on 

the properties of the well-known special functions and 

constants as gamma function ( )zΓ , generalized Riemann zeta 

function ( , )z aζ , the Bernoulli polynomials ( )nB x  and the 

Bernoulli numbers nB , the Euler polynomials ( )nE x  and the 

Euler numbers 
nE , given by the following expressions [2], 

[3]:  
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Further on there will be investigated some properties and 

obtained applications of the Favard constants 
rK  [1], [4], [5]:  

 

( )( 1) 1

0

(4 / ) ( 1) (2 1) , ( 0,1,2,...)r r

rK rν

ν

π ν
∞

+ − −

=

= − + =∑  (5) 

 

These constants find wide applications in establishing many 

exact and asymptotic results on the approximation of functions 

[1], [5]-[8], including approximation by Euler splines and 

other type of splines [9]-[11]. The Favard constants play also 

an important role in estimating optimal quadrature and 

cubature formulas, calculation of singular integrals, 

differential, integro-differential and integral equations [12]-

[16], and in other areas. 

Nevertheless widely used, as a whole, the Favard constants 

have not been investigated well enough [17], except for some 

particular cases.  

For further theory let us consider the following notations: 
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It is clear that 
rT  is a particular case of (2). 

The main purpose of this study is to establish some new 

integral representations and recursive formulas for the above 

stated objects and some trigonometric series, which can be 

used for various aims.   

II.  FINITE RECURSIVE REPRESENTATIONS FOR FAVARD 

CONSTANTS 
rK   

One of the main results is the following  

Theorem 1. For the Favard constants 
rK  the following 

recursive finite representations hold: 
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0 11, / 2, ( 1,2,3,...)K K sπ= = =  

 

Proof. It is based on the method of induction and 

preliminary integration of appropriate Fourier series. Consider 

the well-known expansion [2, ch. 5]: 
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For / 2x π=  one have 0 1K = . By integration of both sides 

of (10) in [0, ]x  it follows 
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For x π=  from (11) one obtain 1 12 ( )K Dπ π= = , and 

consequently 
1 1( ) / 2 / 2K D π π= = . The same results for 

0K  

and 1K  can be achieved starting from the equality [4] 
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For / 2x π=  we find again 
0 1K = . After integration of the 

both sides of (12)  
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For x π=  it is easy to find 
1 / 2K π= . Next after 

integration of the both sides of (13)  
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which for x π=  gives  
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Now putting / 2x π=  in the same equality (14) and making 

a little processing we obtain 2

2
/ 8K π= .   

On the other hand, after integration of both sides of (11) it 

follows 
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In (16) for / 2x π=  one get 
2 1 2( / 2) ( / 2)K K Dπ π− + =  

and consequently 
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For the constant 3K  the integration of both sides of (14) 

leads to 
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Putting in (18) x π= , or integrating both sides of (16) it 

can be found 
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For x π=  in (19) this gives 
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Going on the indicated procedure on the base of induction 

one arrive at the recursive representations (8), (9) which 

completes the proof.    

Remark. The scheme of this proof is valid for the most of 

the other statements in this study. 

In connection with theorem 1 we would like to note another 

representation of  
rK  (see, for instance, [18]). It can be 

written in terms of Lerch transcendent, or as it is shown in [2, 

ch. 5.1.4] by means of the special functions in (3), (4): 
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( ) 2 1
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For more details see also [5], [2, ch 5.1.4]. 

Calculated values of magnitudes in (8), (9) are shown in 

Table I. Symbolic and numerical calculations are made by 

using Mathematica [19]. 

It is easy to see that the constants 
rK  satisfy the following 

inequalities (see also [1]): 

 

0 2 4 5 3 11 ... 4 / ... / 2K K K K K Kπ π= < < < < < < < < =  (21) 
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and  lim 4 /r
r

K π
→∞

=  

III. RECURSIVE REPRESENTATIONS FOR NUMERICAL SERIES 

,r rT Q   

The equalities (12)–(15) outline a procedure for summing 

up the numerical series rT  and rQ  defined in (7). It leads to 

the assertion 

Corollary 1. The following recursive finite representation 

holds: 
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where 1,2,3,...s =  and for 1s =  by definition 
0 0T = . 

It can be reminded for comparison the well-known formula 

(see [2], 5.1.2) for 
2sT   
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The same procedure applied on the base of the equality 
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leads to 

Corollary 2. The following recursive finite representation 

holds: 
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where 1,2,3,...s =  and for 1s =  by definition 0 0Q = . 

In this connection it can be reminded the explicit formula 

([2], section 5.2.1) 
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Numerical results obtained by finite representations (22) 

and (24) using symbolic and numerical computations carried 

out by means of Mathematica software are shown in Table II. 

IV. RECURSIVE REPRESENTATIONS FOR SOME FOURIER 

SERIES 

The procedure of getting the representations (13), (14) and 

(18) with the help of (12) gives an opportunity to lay down 

Theorem 2. The following recursive representations hold 
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where 1,2,3,...s =  (0 2 )x π≤ ≤ , and for 1s =  by definition 

0 ( ) 1D x = , 
0 0, 0 2T x π= < < . 

 

TABLE I 

EXACT AND APPROXIMATE VALUES OF THE FAVARD CONSTANTS rK , 

CALCULATED BY THE RECURSIVE FORMULAS (8), (9) USING MATHEMATICA 

SOFTWARE PACKAGE 

r Exact values of rK  Approximate values of  rK  

1 / 2π  1.57079632679489661923132169 

2 2 / 8π  1.23370055013616982735431137 

3 3 / 24π  1.29192819501249250731151314 

4 45 / 384π  1.26834753950524006818281683 

5 5 / 240π  1.27508201993867272192808879 

6 661 / 46080π  1.27267232656453061325614987 

7 717 / 40320π  1.27343712480668316338644619 

8 8277 / 2064384π  1.27317548065260581363477697 

9 931 / 725760π  1.27326124247248754638143667 

10 1050521 / 3715891200π  1.27323238272939484950827971 

11 11691 /159667200π  1.27324194587215409677150779 

12 12540553 / 392398110720π  1.27323874715724953041173969 

 
TABLE II 

APPROXIMATE VALUES OF THE NUMERIC SERIES 2 2,s sT Q , CALCULATED BY 

THE RECURSIVE FORMULAS (22), (24) USING MATHEMATICA SOFTWARE 
PACKAGE 

s 2sT  2sQ  

1 1.6449340668482262 -0.8224670334241131 

2 1.082323233711138 -0.9470328294972458 

3 1.017343061984449 -0.9855510912974348 
4 1.0040773561979441 -0.9962330018526475 

5 1.0009945751278175 -0.9990395075982711 

6 1.0002460865533072 -0.9997576851438577 
7 1.0000612481350577 -0.9999391703459792 

8 1.0000152822594075 -0.9999847642149055 

9 1.0000038172932637 -0.9999961878696093 
10 1.0000009539620325 -0.9999990466115808 

11 1.0000002384505013 -0.9999997616132299 

12 1.0000000596081875 -0.9999999403988914 

 

It can be mentioned that the both series in (25), (26)) have 

the well-known representations ([2], 5.4.2) 
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where 1,2,3,...s =  (0 2 )x π≤ ≤ , and 0 2x π< <  for 0s = .   
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The application of the above stated procedure for obtaining 

(25), (26) on the strength of (23) leads to the assertion 

Theorem 3. The following recursive representations hold: 
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where 1,2,3,...s =  ( )xπ π− ≤ ≤ , and for 1s =  by definition 

0 ( ) 1D x = , 0 0,Q xπ π= − < < . 

In the same time the both series (27), (28) have the 

following well-known representations (see [2], 5.4.2) 
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By analogy with the previous the procedure for obtaining 

(11), (16) and (19) with the help of (10) leads to 

Theorem 4. The following recursive representations hold: 
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where 1,2,3,...s =  (0 )x π≤ ≤ , and for 1s =  by definition 

0 ( ) 1D x = , (0 )x π< < . 

Note, that the series (29), (30) have the well-known 

formulas ([2], 5.4.6) 
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The same procedure applied on the base of the equality 
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leads to 

Theorem 5. The following recursive representations hold: 
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where 1,2,3,...s =  ( / 2 / 2)xπ π− ≤ ≤ , and for 1s = : 0K  

declines; 
0 ( ) 1D x = , ( / 2 / 2)xπ π− ≤ ≤ .  

In the same time the both series in (32), (33) have the well-

known representations ([2], 5.4.6) 
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Meanwhile it is important to note that the number of 

addends in recursive representations (8), (9), (25), (26), (29), 

(30), (32), and (33) is two times less than the number of the 

addends in the corresponding cited formulas from [2].  

This way the derived in this study method appears to be 

more economic and effective than the existing ones in the 

literature. 

V.  ADDITIONAL RECURSIVE REPRESENTATIONS 

Using the theorems 2 – 5 it is possible to obtain many other 

representations of the Favard constants 
rK  and numerical 

series 
2 2,s sT Q  putting, in particular, / 2x π=  or x π= . For 

completeness some of the main results are given in this 

section. 

From theorem 2 for / 2x π=  and x π=  immediately 

follows 
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Corollary 3. For the Favard constants 
rK  the following 

recursive representations hold: 
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where 1,2,3,...s = , and for 1s = : 0 ( ) 1D x = , 0 0T = . 

For x π=  one can get (22) too by replacing previously s  

by 1s + . 

For / 2x π=  it is easy to obtain  

Corollary 4. For numbers 2sQ  the following recursive 

representations hold: 

 

( ){ 1

2 2 2 1

1

2 2 2

0

4 ( 1) 1/ 2 ( / 2) ( / 2) ( / 2)

( 1) ( / 2)

s s

s s s

s
p

s p p

p

Q D D

T D

π π π

π

−
−

−

−
=

= − −  


+ − 


∑

 (36) 

 

where 1,2,3,...s = , and for 1s =  
0 ( ) 1D x = . 

Similarly, from theorem 3 for / 2x π=  and x π=  

respectively follows 

Corollary 5. For the Favard constants 
rK  the following 

recursive representations hold: 
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where 1,2,3,...s = , and for 1s = : 
0 ( ) 1D x = , 

0 0Q = . 

For x π=  one can get (24) again by replacing previously s  

by 1s + . 

For / 2x π=  by applying theorem 3 and formula (28) it can 

be analogously obtained  

Corollary 6. For numbers 
2sQ  the following recursive 

representations hold: 
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here 1,2,3,...s = , and for 1s = : 
0 ( ) 1D x = ,

0 ( ) 0Q x = . 

By the same manner from theorem 4 for / 2x π=  and 

x π=  can be obtained respectively the formulas for  different 

rK  from these in theorem 1. 

Corollary 7. For the Favard constants 
2 3sK −  and 2 1sK −   the 

following recursive representations take place: 
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for 2,3,...s = , and for 2s = : 
1 1( )K D π  must be canceled, and 
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where 1,2,3,...s = , and for 1s = : 
1 0 ( / 2)K D π  must be 

canceled. 

The rest cases for / 2x π=   and x π=   immediately lead 

to theorem 1 after replacing s  by 1s + . 

From theorem 5 for / 2x π=  it can get respectively other 

representations for  ( 1,2,3,...)rK r = , different from these in 

theorem 1. 

Corollary 8. For the Favard constants 
rK  the following 

recursive representations hold: 
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where 1,2,3,...s = , for 1s = : 
0 ( / 2) 1D π = − , and for   2s = : 

2 0 ( / 2)K D π  must be canceled. 

In addition it is valid  

Corollary 9. From the difference ( )2 2 2 1/ 2s s sT Q Kπ −− =  

( 1, 2,...)s =  and after replacing s  by 1s +  in the obtained 

expression the following formulae holds 
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This is somewhat better than the corresponding formula in 

Theorem 1, because (2 1)! 2(2 )!s s+ >  for 1, 2,...s =   

VI. NUMERICAL AND COMPUTER IMPLEMENTATION OF THE 

DERIVED THEORETICAL REPRESENTATIONS  

We will consider some aspects of numerical and symbolic 

calculations of the constants 
rK  and summation of series.  
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In Fig.1, we provide a Mathematica code for symbolic and 

numerical calculation of the Favard constants 
rK  for 

1, 2,3,...,r m=  for a given arbitrary integer m>0, based on 

formulas (8) and (9). The obtained results are shown in Table 

I. We have to note that this code is not the most economic. It 

can be seen that the thrifty code will take about 
22 8m m+  or 

2( )O m arithmetic operations in (8), (9). 

 

 

Fig. 1 Mathematica code for exact symbolic and approximate 

computation with optional 30 digits accuracy of the Favard constants 

by (8), (9) 

 

The basic advantage of using formulas (8) and (9) or other 

derived in this study representations is that they contain a 

finite number of terms (i.e., finite number of arithmetic 

operations) in comparison with the initial formula (5), (7) 

which needs the calculation of the slowly convergent infinite 

sums. It must be also mentioned, that in Mathematica, Maple 

and other powerful mathematical software packages, the 

Favard constants are represented by sums of Zeta (see (2)) and 

related functions, which are calculated by the use of Euler-

Maclaurin summation and functional equations. Near the 

critical strip they also use the Riemann-Siegel formula (see, 

for instance, [19], A.9.4). 

It can be concluded, that the derived recursive 

representations of the considered constants and series have 

both theoretical and practical importance. Future work can be 

addressed to obtain more properties and application of the 

Favard constants to numerical integration of singular integrals 

and summation of series.   

REFERENCES  

[1] N. P., Korneichuk, Exact constants in approximation theory, New York: 

Cambrige Univ. Pres, 1991, ch. 3, 4. 
[2] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and 

series: Elementary functions, Boca Raton: CRC Press, 1998, ch. 5. 

[3] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 
with Formulas, Graphs, and Mathematical Tables, New York: Dover, 

9th ed., 1964, ch. 23.  

[4] J. Favard, “Sur les meilleurs precedes d'approximation de certaines 
classes de fonctions par des polynomes trigonometriques,” Bull. Sci. 

Math., vol. 61, pp. 209-224 and 243-256, 1937. 

[5] S. R. Finch, Mathematical constants, New York: Cambridge Univ. 
Press, pp. 255-257, 2003. 

[6] J. Bustamante, Algebraic Approximation: A Guide to Past and Current 

Solutions, Basel: Springer Basel AG, 2012, pp.  4-5, 14-18, 101-111. 
[7] S. Foucart, Y. Kryakin, and A. Shadrin, “On the exact constant in the 

Jackson-Stechkin inequality for the uniform metric,” Constr. Approx., 

vol. 29, pp. 157–179, 2009.  

[8] Yu. N. Subbotin and S. A. Telyakovskii, “On the equality of 

Kolmogorov and relative widths of classes of differentiable functions”, 

Math. Notes, vol. 86, pp. 432-439, 2009.   
[9] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Berlin: 

Springer-Verlag, 1993, pp. 148-157, 212-215.   

[10] V. F. Babenko and V. A. Zontov, “Bernstein-type inequalities for splines 
defined on the real axis,” Ukr. Math. J., vol.  63, pp. 699-708, 2011.  

[11] G. Vainikko, “Error estimates for the cardinal spline interpolation”, Z. 

Anal. Anwend., vol. 28, pp. 205-222, 2009. 
[12] L. A. Apaicheva, “Optimal quadrature and cubature formulas for 

singular integrals with Hilbert kernels,” Russian Math. (Iz. VUZ), vol. 

48, pp. 14-25, 2004.   
[13] F. D. Gakhov and I. Kh. Feschiev, “Approximate calculation of singular 

integrals,” Izv. Akad. Nauk BSSR, Ser. Fiz. Mat. Nauk, vol. 4, pp. 5–12, 

1977.   
[14] F. D. Gakhov and I. Kh. Feschiev, “Interpolation of Singular Integrals 

and an Approximate Solution of the Riemann Problem,” Vestsi Akad. 

Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, pp. 3–13, 1982. 
[15] B. G. Gabdulkhaev, “Finite-dimensional approximations of singular 

integrals and direct methods of solution of singular integral and integro-

differential equations,” Journal of Soviet Mathematics, vol. 18, pp. 593-
627, March 1982. 

[16] H. Brass and K. Petras, Quadrature Theory: The Theory of Numerical 

Integration on a Compact Interval, Providence: Amer. Math. Soc., 2011, 
ch. 4, 5.    

[17] A. V. Mironenko, “On the Jackson–Stechkin inequality for algebraic 

polynomials”, Proc. Inst. Math. Mech., vol. 273, suppl. 1, pp. S116–
S123, 2011.  

[18] E. W. Weisstein, Favard constants, available on-line at: 

http://mathworld.wolfram.com/FavardConstants.html, accessed 27 Dec 
2012. 

[19] S. Wolfram, The Mathematica Book, 5th ed., Champaign: Wolfram 

Media, Inc. 2003.  


