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Abstract—In this paper, the issue of pth moment stability of a class
of stochastic neural networks with mixed delays is investigated. By
establishing two integro-differential inequalities, some new sufficient
conditions ensuring pth moment exponential stability are obtained.
Compared with some previous publications, our results generalize
some earlier works reported in the literature, and remove some
strict constraints of time delays and kernel functions. Two numerical
examples are presented to illustrate the validity of the main results.
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varying delays, distributed delays.

I. INTRODUCTION

DURING the past few decades, recurrent neural networks
(see [1]-[6]), such as Hopfield neural networks, cellular

neural networks and other networks have been extensively
studied, and successfully applied in many areas such as com-
binatorial optimization, signal processing and pattern recogni-
tion. In particular, the stability problem of neural networks
has received much research attention since, when applied,
the neural network is sometimes assumed to have only one
equilibrium that is globally stable. However, because of the
finite switching speed of neurons and amplifiers, time delay
is unavoidable. It may cause undesirable dynamic network
behaviors such as oscillation and instability. Therefore, there
has been a growing research interest on the stability analysis
problems for delayed neural networks, and many excellent
papers and monographs have been available. On the other
hand, a real system is usually affected by external pertur-
bations which in many cases are of great uncertainty and
hence may be treated as random. As Haykin [7] pointed
out that in real nervous systems, synaptic transmission is a
noisy process brought on by random fluctuations form the
release of neurotransmitters and other probabilistic causes,
therefore, stochastic effects should be taken into account. Up
to now, many sufficient conditions, either delay-dependent
or delay-independent, have been proposed to guarantee the
mean square asymptotic or exponential stability for stochastic
delayed neural networks (see [8]-[12]), and the references cited
therein.

As a generalized form of mean square exponential stability,
pth moment exponential stability has been a growing research
interest in recent years (see [13]-[19]). In Ref [15], by using
the method of variation parameter and inequality technique,
Sun and Cao generalized the results derived by Wan and Sun
[9] from mean square exponential stability to pth moment
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exponential stability for a class of stochastic recurrent neural
networks with time-varying delays. For discarding the strict
constraint of time delays [15], Huang and He [16] established
an improved criterion by using Halanay inequality. However,
it is worth noting that some of the constraint conditions for
time delays or kernel functions in previous literature such
as [1], [3], [15] are strict, and few authors have considered
the problem of pth moment exponential stability of stochastic
neural networks with mixed delays.

Motivated by the above discussions, the main aim of this
paper is to study pth moment exponential stability of a class of
stochastic neural networks with mixed delays. By establishing
two new integro-differential inequalities, two new sufficient
conditions ensuring pth moment exponential or asymptotical
stability are obtained, respectively. These results obtained in
our paper extend some earlier results reported in the literature,
and remove some strict constraints of time delays and kernel
functions. Two simulation examples are provided to show the
validity of the main results.

II. PRELIMINARIES

In this paper, we will study the generalized stochastically
perturbed neural network model with mixed delays as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t) = [−cixi(t) +
n∑
j=1

aijfj(xj(t))

+
n∑
j=1

bijfj(xj(t− τ(t)))

+
n∑
j=1

dij

∫ t

−∞
kij(t− s)fj(xj(s))ds]dt

+
n∑
j=1

σij(t, xj(t), xj(t− τ(t)))dωj(t), t > 0

xi(t) = ηi(t), t ≤ 0, i = 1, 2, · · · , n,

(1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector
associated with neurons; ci > 0 represents the rate with
which the ith unit will reset its potential to the resting
state in isolation when disconnected from the network and
the external stochastic perturbations; aij , bij and dij rep-
resent the connection weight and the delayed connection
weight respectively; fi is activation function, f(x(t)) =
(f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T , 0 < τ(t) ≤ τ is trans-
mission delay. Moreover, ωj(t) is a standard Brown motion
defined on a complete probability space (Ω,F , P ) with a
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natural filtration Ft≥0(i.e.,Ft = σ{ω(x(s)) : −∞ < s ≤ t}),
and σij is the diffusion coefficient. Kernel functions kij(t) > 0
for i, j = 1, 2, . . . , n, are real-valued nonnegative continuous
functions defined on [0,∞). The initial conditions for system
(1) are given in the form

x(t) = η(t),−∞ < t ≤ 0, (2)

where η ∈ LpF0
((−∞, 0],Rn), here LpF0

((−∞, 0],Rn) is
the family of all F0 measurable C((−∞, 0],Rn)−valued
random variable satisfying that sup−∞<t≤0E|η(t)|p < ∞,
C((−∞, 0],Rn) denote the family of all continuous
Rn−valued functions φ(t) on (−∞, 0] with the norm
‖η‖pΔ = sup−∞<t≤0 |η(t)|p. Throughout this paper, the
following standard hypothesis are needed
(H1) Function fi(x) satisfies the Lipschitz condition. That
is, for each i = 1, 2, . . . , n, there exists constant li > 0,
such that |fi(x) − fi(y)| ≤ li|x − y|,∀x, y ∈ R, where
li(i = 1, 2, · · · , n) is Lipschitz constant.
(H2) There are nonnegative constants μi, νi(i = 1, 2, · · · , n)
such that trace[σT (t;x, y)σ(t;x, y)] ≤ ∑n

i=1(μix
2
i +

νiy
2
i ) ∀(t;x, y) ∈ R+ × Rn × Rn.

(H3) Assume that f(0) ≡ 0, σ(t, 0, 0) ≡ 0.
(H4)

∫ ∞
0
kij(t)dt = 1, i, j = 1, 2, · · · , n.

(H5) There exists a positive number ε such that∫ ∞
0
eεtkij(t)dt � kij <∞.

Definition 2.1: ([20]). The trivial solution of system (1) is
said to be pth moment exponentially stable if there exists a
pair of positive constants λ and α such that

E‖x(t, t0, η)‖p ≤ αE‖η‖pΔe−λ(t−t0), t ≥ t0

holds for any t0 and η ∈ LpFt0
((−∞, 0],Rn). Especially,

when p = 2, it is called to be exponentially stable in mean
square.

Lemma 2.1: ([21]) Let p ≥ 2 and a > 0, b > 0, then

ap−1b ≤ (p− 1)ap

p
+
bp

p
,

and

ap−2b2 ≤ (p− 2)ap

p
+

2bp

p
.

III. MAIN RESULTS

In this section, we will discuss the global stability of the
trivial solution of system (1). To proceed, we first generalize
two important inequalities as follows.

Lemma 3.1: Assume that positive scalars γ, l, h satisfy
l + h < γ, y(t) is a nonnegative continuous function on
(−∞,+∞) and satisfies the following inequality on interval
[t0,+∞)

D+y(t) ≤ −γy(t)+hy(t− τ(t))+ l

∫ t

−∞
k(t− s)y(s)ds,

where 0 < τ(t) ≤ τ , t0 ≥ 0,
∫ ∞
0
k(s)ds = 1, k(s) > 0, τ is a

constant, then as t ≥ t0,we have

y(t) ≤ sup
−∞<θ≤0

y(t0 + θ) � yt0 , and lim
t→+∞ y(t) = 0.

Proof. We will complete the proof in two steps. In step
1, we will prove that y(t) ≤ yt0 . In step 2, we’ll prove that
limt→+∞ y(t) = 0.

Step 1: we first prove that for any positive constant d > 1,
the following inequality holds

y(t) < dyt0 , t ≥ t0. (3)

Since for any t ∈ (−∞, t0), y(t) ≤ sup−∞<θ≤0 y(t0 + θ) =
yt0 . If yt0 = 0, then we get 0 ≤ y(t) ≤ 0, namely y(t) ≡ 0.
Thus, we always assume that yt0 > 0. When t ≤ t0, we have
y(t) ≤ yt0 < dyt0 . If inequality (3) does not hold, there must
exist t1 > t0 such that

y(t1) = dyt0 , y(t) < dyt0 ,∀t < t1,

which implies that D+y(t1) ≥ 0. On the other hand

D+y(t1) ≤ −γdyt0 + hdyt0 + l

∫ t1

−∞
dk(t1 − s)yt0ds

= [−γ + h+ l

∫ t1

−∞
k(t1 − s)ds]dyt0

= [−γ + h+ l

∫ +∞

0

k(s)ds]dyt0

= [−γ + h+ l]dyt0 < 0.

(4)

This contradicts to D+y(t1) ≥ 0, so inequality (3) holds.
According to the arbitrary property of positive constant d, we
obtain

y(t) ≤ sup
−∞<θ≤0

y(t0 + θ) � yt0 ,∀t ≥ t0. (5)

Step 2: In what follows, we will prove limt→+∞ y(t) = 0.
From inequality (5), we know that y(t) is a bounded con-

tinuous function, thus when t → +∞, the upper limit(noted
by p) of y(t) exists, namely

limt→+∞y(t) = p, p ≥ 0. (6)

The remaining proof is to prove p = 0.
If it’s not true, there must exist arbitrary positive constant

ε > 0, and constant T1 > t0 such that

y(t− τ(t)) < p+ ε, y(t) < p+ ε, ∀t > T1.

On the other hand, since
∫ ∞
0
k(s)ds = 1, there must exist

T2 > t0 such that∫ +∞

t

k(s)ds < ε, ∀t ≥ T2.

Set T = max{T1, T2}, when t ≥ T , we have

D+y(t) ≤ −γy(t) + hy(t− τ(t)) + l

∫ t

−∞
k(t− s)y(s)ds

< −γy(t) + h(p+ ε) + lεyt0 + (p+ ε)l.
(7)

By direct calculation, we get

y(t) ≤ y(t0) exp{−γ(t−t0)}+
1
γ

[(p+ε)h+εlyt0 +pl+εl].

According to inequality (6), we can obtain

p ≤ 1
γ

[hε+ εlyt0 + pl + ph+ εl].
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In views of the arbitrary property of ε, we have p ≤ pl+ph
γ ,

namely γ ≤ h + l, which contradict to the assumption γ >
h+ l, thus limt→+∞ y(t) = 0 holds. The proof is completed.

Lemma 3.2: Assume that positive scalars γ, l, h satisfy
kl + h < γ, y(t) is a nonnegative continuous function on
(−∞,+∞) and satisfies the following inequality on interval
[t0,+∞)

D+y(t) ≤ −γy(t)+hy(t− τ(t))+ l

∫ t

−∞
k(t− s)y(s)ds,

where 0 ≤ τ(t) ≤ τ , t0 ≥ 0, k =
∫ ∞
0
eεsk(s)ds, k(s) > 0, τ

is a constant, then as t ≥ t0, we have

y(t) ≤ yt0e
−ε(t−t0), (8)

where yt0 � sup−∞<θ≤0 y(t0 + θ), ε is the unique positive
solution of the following equation

ε = γ − lk − heετ .

Proof. Set ỹ(t) = d · yt0e−ε(t−t0), d > 1. If inequality (8) is
not true, then we can have y(t) > yt0e

−ε(t−t0). On the other
hand, since y(t0) ≤ yt0 < ỹ(t), thus there must exist t∗ such
that

y(t) < ỹ(t),∀t < t∗; y(t∗) = ỹ(t∗).

Namely

D+y(t∗) −D+ỹ(t∗) ≥ 0,∀t < t∗. (9)

In views of the condition of Lemma 3.2, we get

D+y(t∗) ≤ −γy(t∗) + hy(t∗ − τ(t∗)) + l

∫ t∗

−∞
k(t∗ − s)y(s)ds

< −γỹ(t∗) + hy(t∗ − τ(t∗)) + l

∫ t∗

−∞
k(t∗ − s)ỹ(s)ds

< −γỹ(t∗) + hỹ(t∗ − τ(t∗)) + l

∫ t∗

−∞
k(t∗ − s)ỹ(s)ds

≤ −γyt0e−ε(t∗−t0)

+ hyt0e−ε(t∗−τ−t0) + lyt0e−ε(t∗−t0)

∫
+∞

0

eεsk(s)ds

= [−γ + lk + heετ ]yt0e−ε(t∗−t0)

= −εyt0e−ε(t∗−t0) = D+ỹ(t∗).
(10)

This contradict to inequality (9). From the arbitrary of d,
one can see that inequality (8) holds.

Remark 1. If l = 0 and replacing y(t−τ(t)) as y(t− τ(t)) �
supt−τ≤s≤t y(s), Lemma 3.2 becomes the classical Halanay
inequality, thus, this lemma can be regard as a generalized
form of Halanay inequality.

Theorem 3.1: Under the assumptions (H1) − (H3) and
(H5), the trivial solution of system (1) is pth moment ex-
ponentially stable(p ≥ 2), if there exist positive scalars
λi > 0, i = 1, 2, · · · , n such that

−A1 +A2 + k′A3 < 0, (11)

where

A1 = min
1≤i≤n

{cip−
n∑
j=1

(p− 1)|aij lj | −
n∑
j=1

(p− 1)|bij lj |

−
n∑
j=1

(p− 1)|dij | −
n∑
j=1

μj
(p− 1)(p− 2)

2

−
n∑
j=1

νj
(p− 1)(p− 2)

2
−

n∑
j=1

λj

λ
i

(|ajili| − μi(p− 1))},

A2 = max
1≤i≤n

{
n∑
j=1

λ
j

λ
i

[|bjili| + νi(p− 1)},

A3 = max
1≤i≤n

{
n∑
j=1

λ
j

λi

|dji||li|p}, k′ = max
1≤i,j≤n

{kij}.

Proof. Constructing Lyapunov functional for system (1) by

V (x(t)) =
n∑
i=1

λi|xi(t)|p.

Similar to the disposal route in [1], [16], by Itô’s formula, we
have

L V (x(t))

=
n∑
i=1

λi{p|xi(t)|p−1sgn{xi(t)}[−cixi(t)

+
n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bijfj(xj(t− τ))

+
n∑
j=1

dij

∫ t

−∞
kij(t− s)fj(xj(s))ds]}

+
1
2
p(p− 1)

n∑
i=1

λi|xi(t)|p−2
n∑
j=1

σ2ijsgn{xi(t)}

≤
n∑
i=1

λi{−cip|xi(t)|p +
n∑
j=1

p|aij lj ||xi(t)|p−1|xj(t)|

+
n∑
j=1

p|bij lj ||xi(t)|p−1|xj(t− τ)|

+
n∑
j=1

|dij |
∫ t

−∞
kij(t− s)p|xi(t)|p−1|fj(xj(s))|ds}

+
1
2
p(p− 1)

n∑
i=1

λi|xi(t)|p−2
n∑
j=1

(μjx2j (t) + νjx
2
j (t− τ))
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=
n∑
i=1

λi{−cip|xi(t)|p +
n∑
j=1

p|aij lj ||xi(t)|p−1|xj(t)|

+
n∑
j=1

p|bij lj ||xi(t)|p−1|xj(t− τ)|

+
n∑
j=1

|dij |
∫ t

−∞
kij(t− s)p|xi(t)|p−1|fj(xj(s))|ds

+
p(p− 1)

2

n∑
j=1

μj |xi(t)|p−2x2j (t)

+
p(p− 1)

2

n∑
j=1

νj |xi(t)|p−2x2j (t− τ)}

≤
n∑
i=1

λi{−cip|xi(t)|p +
n∑
j=1

|aij lj |[(p− 1)|xi(t)|p

+ |xj(t)|p] +
n∑
j=1

|bij lj |[(p− 1)|xi(t)|p + |xj(t− τ)|p]

+
n∑
j=1

|dij |
∫ t

−∞
kij(t− s)[(p− 1)|xi(t)|p + |fj(xj(s))|p]ds

+
(p− 1)

2

n∑
j=1

μj [(p− 2)|xi(t)|p + 2|xj(t)|p]

+
(p− 1)

2

n∑
j=1

νj [(p− 2)|xi(t)|p + 2|xj(t− τ)|p]}

=
n∑
i=1

λi{−cip|xi(t)|p +
n∑
j=1

(p− 1)|aij lj ||xi(t)|p

+
n∑
j=1

|aij lj ||xj(t)|p +
n∑
j=1

(p− 1)|bij lj ||xi(t)|p

+
n∑
j=1

|bij lj ||xj(t− τ)|p

+
n∑
j=1

(p− 1)|dij ||xi(t)|p
∫ t

−∞
kij(t− s)ds

+
n∑
j=1

|dij |
∫ t

−∞
kij(t− s)|fj(xj(s))|pds

+
n∑
j=1

μj
(p− 1)(p− 2)

2
|xi(t)|p +

n∑
j=1

μj(p− 1)|xj(t)|p

+
n∑
j=1

νj
(p− 1)(p− 2)

2
|xi(t)|p +

n∑
j=1

νj(p− 1)|xj(t− τ)|p}

=
n∑
i=1

λi{[−cip+
n∑
j=1

(p− 1)|aij lj | +
n∑
j=1

(p− 1)|bij lj |

+
n∑
j=1

(p− 1)|dij | +
n∑
j=1

μj
(p− 1)(p− 2)

2

+
n∑
j=1

νj
(p− 1)(p− 2)

2
] · |xi(t)|p

+
n∑
j=1

[|aij lj | + μj(p− 1)] · |xj(t)|p

+
n∑
j=1

[|bij lj | + νj(p− 1)] · |xj(t− τ)|p

+
n∑
j=1

|dij |
∫ t

−∞
kij(t− s)|fj(xj(s))|pds}

=
n∑
i=1

λi{[−cip+
n∑
j=1

(p− 1)|aij lj |

+
n∑
j=1

(p− 1)|dij | +
n∑
j=1

μj
(p− 1)(p− 2)

2

+
n∑
j=1

νj
(p− 1)(p− 2)

2
+

n∑
j=1

(p− 1)|bij lj |

+
n∑
j=1

λ
j

λi

(|ajili| + μi(p− 1))] · |xi(t)|p

+
n∑
j=1

λ
j

λ
i

[|bjili| + νi(p− 1)] · |xi(t− τ)|p

+
n∑
j=1

λ
j

λ
i

|dji||li|p
∫ t

−∞
kji(t− s)|xi(s)|pds}

≤ −A1V (x(t)) +A2V (x(t− τ))

+A3

∫ t

−∞
k′(t− s)V (x(s))ds,

(12)

where k′(t− s) � max1≤i,j≤n kji(t− s)
On the other hand, by Itô’s formula, for all t > 0, we have

D+V (t, x(t)) = L V (t, x(t))dt

+
∂V (t, x(t))
∂x(t)

σ(t, x(t), x(t− τ))dω(t).
(13)

Taking mathematical expectation of the both side of equation
(13), we have

D+EV (t, x(t)) ≤ −A1EV (x(t)) +A2EV (x(t− τ))

+A3

∫ t

−∞
k′(t− s)EV (x(s))ds.

(14)

In views of Lemma 3.2, we can get

E‖x(t)‖p ≤ λ−1E‖η‖p�e−εt, (15)

where λ = max1≤i≤n{λi}, which complete the proof.

Remark 2. In previous publications such as [1], [3], the
kernel functions are usually assumed to satisfy (H4), (H5)
and

∫ ∞
0
seεsk(s)ds < ∞. Time-variance delays are usually

required to satisfy 0 < τ̇(t) < 1 or 0 < τ̇(t) ≤ μ. In
Theorem 3.1, we only require time delays are bounded, the
derivative of time-variance delays can be unbounded, or
even non-differentiable. Kernel functions only need to satisfy∫ ∞
0
eεtkij(t)dt � kij < ∞. These requirements enlarge the

selections of time delays and kernel functions.
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Remark 3. When l = 0, Theorem 3.1 becomes the Theorem
3.3 and Corollary 3.4 in [16]. Thus, the criteria in [16] can be
regarded as special case of ours.

Theorem 3.2: Under the assumptions (H1) − (H4), the
trivial solution of system (1) is pth moment uniformly and
asymptotically stable(p ≥ 2), if there exist positive scalars
λi > 0, i = 1, 2, · · · , n such that

−A1 +A2 +A3 < 0, (16)

where

A1 = min
1≤i≤n

{cip−
n∑
j=1

(p− 1)|aij lj | −
n∑
j=1

(p− 1)|bij lj |

−
n∑
j=1

(p− 1)|dij | −
n∑
j=1

μj
(p− 1)(p− 2)

2

−
n∑
j=1

νj
(p− 1)(p− 2)

2
−

n∑
j=1

λj

λ
i

(|ajili| − μi(p− 1))},

A2 = max
1≤i≤n

{
n∑
j=1

λ
j

λ
i

[|bjili| + νi(p− 1)},

A3 = max
1≤i≤n

{
n∑
j=1

λ
j

λi

|dji||li|p}.

Proof. In views of inequality (14) and Lemma 3.1, we can
easily obtain this conclusion, which complete the proof.

Remark 4. Theorem 3.1 is invalid, when time-variance delays
are only bounded and the kernel functions only satisfy (H4). In
this case, Theorem 3.2 provides a useful complement criterion.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples will be presented
to show the validity of the main results derived above.

Example 1. Consider the following stochastic neural network
with mixed delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

[
x1(t)
x2(t)

]
= −[

[
2.3 0
0 2.3

] [
x1(t)
x2(t)

]

+
[

0.21 0.1
0.3 0.1

] [
tanh(x1(t))
tanh(x2(t))

]

+
[ −0.31 0.11

0.21 −0.31

] [
f11
f12

]

+
∫ t

−∞

[
a11 a12
a21 a22

] [
tanh(x1(s))
tanh(x2(s))

]
ds]dt

+
[ √

0.2x1(t) b12
b21

√
0.2x2(t)

] [
dω1(t)
dω2(t)

]
, t > 0

x(t) = [1.01,−1.15]T , t ≤ 0.

(17)

where

f11 = tanh(x1(t− (2 + 0.01| sin t|))),
f12 = tanh(x2(t− (2 + 0.01| sin t|))),
a11 = −0.51e−2(t−s), a12 = 0.31e−2(t−s),

0 100 200 300 400 500 600 700
−1.5
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Fig. 1. State trajectories of the stochastic system (17)

a21 = 0.3e−2(t−s), a22 = 0.25e−2(t−s),

b12 =
√

0.3x2(t− (2 + 0.01| sin t|)),
b21 =

√
0.3x1(t− (2 + 0.01| sin t|)).

We can verify that the point (0, 0)T is an equilibrium point
of system (17). By simple calculation, we get that l1, l2 = 1.
Set ε = 0.1, then kij ≈ 2.2, i, j = 1, 2. Let λ1, λ2 = 1, p = 2
then we have

A1 = 4.09, A2 = 0.52, A3 = 0.81,

A2 + kA3 < A1.

In views of Theorem 3.1, the equilibrium point (0, 0)T of the
given stochastic system (17) is mean square exponentially
stable. Fig.1 shows that the trajectories of the stochastic
system (17) converge to zero in mean square exponentially.

Remark 5. From system 17, we can see that kernel function
k(t) = e−2t. It obviously satisfies (H5), but does not satisfy
(H4). However, in previous publications, we always assume
that (H4) is held. Thus, our criteria enlarge the selection of
kernel functions.

Example 2. Consider stochastic neural network with mixed
delays as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

[
x1(t)
x2(t)

]
= [−

[
1.72 0
0 1.72

] [
x1(t)
x2(t)

]

+
[

0.11 0.1
0.3 0.1

] [
arctan(x1(t))
arctan(x2(t))

]

+
[ −0.21 0.11

0.21 −0.11

] [
f11
f12

]

+
∫ t

−∞

[
a11 a12
a21 a22

] [
arctan(x1(s))
arctan(x2(s))

]
ds]dt

+
[ √

0.2x1(t) b12
b21

√
0.2x2(t)

] [
dω1(t)
dω2(t)

]
, t > 0

x(t) = [2.8,−2.3]T , t ≤ 0.

(18)
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Fig. 2. State trajectories of the stochastic system (17)

where

f11 == arctan(x1(t− (2 + 0.01| sin t|))),
f12 = arctan(x2(t− (2 + 0.01| sin t|))),

a11 =
−0.21ε

2
e−

0.11ε
2 (t−s), a12 =

ε

2
e−

ε
2 (t−s),

a21 =
0.2ε
2
e−

0.25ε
2 (t−s), a22 =

ε

2
e−

ε
2 (t−s),

b12 =
√

0.3x2(t− (2 + 0.01| sin t|)),
b21 =

√
0.3x1(t− (2 + 0.01| sin t|)),

ε is the same as defined in (H5). We can verify that the
point (0, 0)T is an equilibrium point of system (18). By
simply calculating, we can get l1, l2 = 1. Set ε = 0.1,
λ1, λ2 = 1, p = 3 then we have

A1 = 5.16, A2 = 0.42, A3 = 0.41,

A2 +A3 < A1.

In views of Theorem 3.2, the equilibrium point (0, 0)T of
the given stochastic system (18) is 3th moment asymptotically
stable. Fig.2 shows that the trajectories of the stochastic system
(18) converge to zero asymptotically.

Remark 6. From system (18), one can see that kernel function
k(t) = ε

2e
− ε

2 t. It obviously satisfies (H4), but does not satisfy
(H5). In this case, Theorem 3.1 lost its validity, but Theorem
3.2 is still valid.

V. CONCLUSIONS

By establishing two new integro-differential inequalities,
some novel sufficient conditions ensuring pth moment stability
for a class of stochastic neural networks are obtained. These
new results discard some strict constraints of time delays and
kernel functions. Simulation examples show that the results
obtained in this paper are valid.
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