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New exact three-wave solutions for the
(2+1)-dimensional asymmetric
Nizhnik-Novikov-Veselov system

Fadi Awawdeh and O. Alsayyed

Abstract—New exact three-wave solutions including pe-
riodic two-solitary solutions and doubly periodic solitary
solutions for the (2+1)-dimensional asymmetric Nizhnik—
Novikov—Veselov (ANNV) system are obtained using Hirota’s
bilinear form and generalized three-wave type of ansatz ap-
proach. It is shown that the generalized three-wave method,
with the help of symbolic computation, provides an effective
and powerful mathematical tool for solving high dimensional
nonlinear evolution equations in mathematical physics.
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[. INTRODUCTION

N last decades, increasing attention has been paid to the
Istudy of the solution theory in many natural sciences
particularly in almost all branches of physics like the fluid
dynamics, plasma physics, field theory, nonlinear optics and
condensed matter physics.

Integrable models play a prominent role in theoretical
physics. The reason is not only the direct phenomenological
interest of some of them, but also the fact that they often
provide some deep insights into the mathematical structure of
theory in which they arise. Up to now, the (1+1)-dimensional
integrable models are well understood due to many systematic
methods such as the inverse scattering transformation [9],
the Darboux transformation, Hirota’s bilinear method [3],
[10], [11], [12], [13], [15], Bécklund transformation method
[18], Painlevé expansion method [8], tanh function method
[16], homogenous balance method [19], variable separation
approach [6] and the three-wave approach [2], [5]. However,
studies of the (2+1)-dimensional cases are fewer in number
and such systems are being actively investigated from different
viewpoints.

In this paper, we consider the following (2+1)-dimensional
asymmetric Nizhnik—Novikov—Veselov (ANNV) equation:

e+ e +3 {u (/ uzdy)} — 0. )
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Boiti et al. [4] was first derived Eq. (1) by using the weak
Lax pair. It may be considered as a model for an incom-
pressible fluid where v and v are the components of the
(dimensionless) velocity [8]. The spectral transformation for
this system has been investigated in [1], [4]. Moreover, Hu
et al. used the Darboux transformations to find the variable
separation solutions of this equation in [14], Wazwaz used
the Hirota bilinear method to derive N-soliton solutions of
this completely integrable equation [17], Dai and Wang used
the exp-function method for a new general variable separation
solutions [7] and the Bécklund transformation for the ANNV
equation was derived by using the extended homogeneous
balance method by Zhang in [20].

II. ANNV SYSTEM
The ANNV equation can be written as

{ Ut + Ugge +3[uv], =0

Uy = Vy.

@

To solve the ANNYV system (2), we substitute the dependent
variable transformation

u:Q(lnf)Iy7 v=2(Inf),., 3)

where f(x,y,t) is an unknown real function. Substituting (3)
into system (2), we can get

o°f . 9'f of (of 4 &°f
f (ayat + 8y313> ~ oy (E + W) +
3(621’ o°f _ of °f ):0

Oydx Ox2 dx OyOx2

or equivalently in bilinear form
Dy (Dy+D3) f- f=0, 4
where the Hirota D-operator is defined by [10]
DDy f g =
(7% = o) (5 — )" @09 ),

We propose a novel test function of extended three-soliton
method

flz,y,t) = e+ dy cos(&,) + da cosh (&) + dge™ 61 )

where

gi =a;x + bly + C’ita 1= 1a 27 3 (6)

and ay, b;, ¢;, d; are some constants to be determined later.
Substituting (5) into Eq. (4), and equating all the coefficients
of sin(asx +bay+cat), cos(aax +bay +cat), sinh(agz +bsy +
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cst), cosh(azz+bsy+cst) and any product of them to zero, we
get the set of algebraic equations for a;, b;,¢;,d; (i =1,2,3)

Ccoby — blag + bacy + 3b1a2a% — 3b2a1a§ + bga:l” =0,
Clbl — C2b2 - szaza% + bzag — 3b1a1a% + bla‘;’ = 0,
Cgbz + Cgb3 - 3b2a3a§ - bdag + 3b3a2a§ + bzag = 0,
C3b3 - Cgbg - 3b3a3a§ + bQCI,g - 3bga26L§ + bgag = 0,
c1bs + c3by + 3b1a3a% + bga? + 3b3a1a§ + blag =0,
c1by + c3bs + 3b3a3a% + bla? + 361(110% + bgag =0,
4c1b1ds — Czbgd% + 4b2d%0¢§ + Cgbgd%+
16b1d3a‘;’ + 4bga§d% =0
Solving the resulting equations simultaneously with the help
of symbolic computation, we obtain the following:
Case I:

C3 = _a‘§> (7)

where a3, b1, by, c3,d; (1 =1,2,3) are some free constants.
Substituting (5) into Eq. (3) with (7) and (6), we obtain the
periodic two-solitary solution as follows

a1:a2201202263:0,

u(z,y,t) = 2a3ds sinh (agx — agt) X
(d1b2 sin(bay)—2b1V/ds sinh(b1y—0)) ®)
(2\/£cosh(b1y76)+d2 COSh((Lg(L’*(Lgt)+d1 cos(bgy))2

v(z,y,t) = 2a2dsx
da+dy cos(bay) cosh(angagt)qLQ\/dg cosh(biy—0) cosh(agxfagt)
(2\/d3 cosh(biy—0)+d2 cosh(ay,x—a%i)-&-dl cos(bgy))2

)
where 0 = %ln d3 and d3 > 0. Moreover, when 6 =
3In(—ds) and d3 < 0

u(z,y,t) = 2a3ds sinh (agx — agt) X
(d1bs sin(bay)—2b1/—ds cosh(b1y—0) ) (10)
(2\/7113 sinh(b1y—0)+ds COSh(ag(L'*agt)+d1 COS(b2y))2

v(z,y,t) = 2a3dyx
(d2+d1 cos(bay) cosh(angagt)+2\/7d3 sinh(byy—0) cosh(angagt))
(2\/—d3 sinh(byy—0)+d2 cosh(agz—agt)+d1 cos(bzy))2

an

Case 2:

bi=by=c3=a3=0, c¢1=-a}, cx=—a3, (12)

where ay,as,bs,d; (i =1,2,3) are some free constants.
Substituting (5) into Eq. (3) with (12) and (6), we obtain
the periodic two-solitary solution
u(z,y,t) = 2bsds sinh (bgy) x
(a2d1 sin(azm+agt)72a1\/Tgsinh(almfagtfﬂ)) (13)
(2\/@cosh(a1m7{z?t70>+d1 cos(agz+a3t)+d2 Cosh(bgy))2

v(z,y,t) =

. 2(d$a§—4d3a?)+4d1 \/E(ag—a?) cosh(alm—a?t—e) cos(azmﬁ-agt)
(2\/£cosh(alz—a§t—€)+d1 Cos(agz+agt)+d2 cosh(b3y))2
2d2(2af\/@Cosh(almfa?t79)7d1ag cos(azz+agt)) cosh(bsy)

(2\/Ecosh(alzfa§t79)+d1 cos(agz+agt)+dg cosh(bgy))2

8aq a2dl\/£sinh(a1w7ucft79) sin(agw+a%t)
(2\/@cosh(a1x7a?t76)+d1 cos(az:c+a§t)+d2 cosh(bgy))2
14)
where 6 = %ln d3 and d3 > 0. In the case when 6 =
%ln (—ds3) and d3 < 0, we get that

u(z,y,t) = 2bs3ds sinh (bgy) x
(a2d1 sin(agzl:+agt)72a1 v —d3 cosh(alrfa‘;’tfﬁ))
(2\/7113 sinh(a1z7a§t79)+d1 cos(agz+a§'t)+d2 cosh(bgy))2

(15)

+

v(z,y,t) =
. 2(d%a§74d3a§)+4dl V—d3 ((Lgfaf) sinh(alwfaclgth) Cos(angragt) +
(2\/7d3 sinh(ulmfa‘?tfﬁ)erl cos(a2x+agt)+d2 cosh(bgy))2
2d2(2af\/ —d3 sinh(m z—a?t—@)—d1 ag cos(agz-&-a‘gt)) cosh(bsy)
(2\/—d3 sinh(alz—a?t—e)-&-dl cos(a2m+agt)+d2 cosh(b;;y))2
+8ajasdi/—d3 cosh(alzfaﬁtfé’) sin(azeragt)
(2\/—d3 sinh(alz—aﬁt—G)-&-dl cos(azz+agt)+d2 <:osh(b3y))2

Case 3: Using the transformation b3 = iBj3, where B3 is
real, in Eqs. (13)-(14) and Eqgs. (15)-(16), we get the doubly
periodic solitary solutions

u(z,y,t) = 2Bsds sin (Bsy) X
(2@1\/asinh(alwfaist79)fagd1 sin(angragt)) (17)
(2\/£cosh(a1m7a§t79)+d1 cos(a2w+a,gt)+d2 cos(Bgy))2

v(z,y,t) =
2(dfa§74d3a?)+4d1 \/@(agfaf) cosh(alzfagtfe) cos(azeragt)
B (2\/Ecosh(alx—a%t—0)+d1 cos(azz+agt)+d2 cos(Bgy))2 +
2d2(2a§@cosh(alwfa‘;’tfﬂfdlag cos(a2x+agt)) cos(Bsy)
(2\/@cosll(a,1a:fa?t79)+d1 cos(a2x+agt)+d2 cos(Bg;y))2
8ayasdy \/Esinh(al m—a?t—@) sin(a2z+agt)
(2\/£cosh(a1z—a%t—€)+d1 cos(a2w+agt)+d2 COS(B:sy))2 (18)

when d3 > 0 and when d3 < 0

u(z,y,t) = 2Bsds sin (Bsy) X
(2@1 V—ds cosh(aleai‘tfe)f@dl sin(angragt))
(2 —d3 sinh(a,lea,:i‘ffG)nLdl cos(a2w+a§t)+dz cos(Bgy))2

19)
v(z,y,t) =

2(d§a§74d3a?)+4d1 \/ng(agfaf) sinh(almfa?tfﬁ) Cos(aszra,gt)
- (2\/ngsinh(almfa“;’t79)+d1 cos(a2m+agt)+d2 cos(Bgy))2
2d2(20€\/—7d351nh(a1 z—a?t—é’)—d1 ag cos(azz+agt)) cos(Bsy)

(2\/Td3$inh(a1w7a?t79)+d1 Cos(angragt)erg Cos(B3y))2
+8a1a2d1\/—7dgcosh(alz—a?t—9) sin(a2:1:+agt)

(2\/—7d3$inh(a1z—a§t—9)+d1 cos(a21+a%t)+d2 Cos(Bgy))2

To our knowledge, these solutions (8)—(20) have not been
reported in other literatures. All the solutions of the (2+1)-
dimensional ANNV system obtained in this paper include
three independent variables. In these solutions the arbitrary
constants imply that (1) has abundant local physical structures.

III. CONCLUSION

By choosing different ansatz of extended three-soliton type,
we obtain a new type of three-wave solution, periodic type
of three-wave solutions, including periodic two-solitary-wave,
doubly periodic solitary-wave of (2+1)-dimensional ANNV
system. Actually, our present short paper investigates different
mechanical features of these wave solutions. It is worth noting
that this is merely a beginning work, and we can obtain richer
exact solutions by a more general ansatz of extended three-
soliton type.
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