
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

390

New exact solutions for the (3+1)-dimensional
breaking soliton equation
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Abstract—In this work, we obtain some analytic solutions for
the (3+1)-dimensional breaking soliton after obtaining its Hirota’s
bilinear form. Our calculations show that, three-wave method is
very easy and straightforward to solve nonlinear partial differential
equations.
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I. INTRODUCTION

IN recent years, many kinds of powerful methods have been
proposed to find solutions of nonlinear partial differential

equations, numerically and/or analytically, e.g., the variational
iteration method [1], [2], [3], the homotopy perturbation
method [4], [5], [6], [7], [8], parameter expansion method [9],
[10], [11], spectral collocation method [12], [13], [14], [15],
[16], homotopy analysis method [17], [18], [19], [20], [21],
[22], and the Exp-function method [23], [24], [25], [26], [27],
[28].

The (2+1)-dimensional nonlinear breaking soliton equation
has the following form

uxt − 4uxyux − 2uxxuy − uxxxy = 0, (1)

this equation describes the (2+1)-dimensional interaction of
the Riemann wave propagated along the y-axis with a long
wave propagated along the x-axis [29]. Wazwaz [30] intro-
duced an extension to equation (1) by adding the last three
terms with y replaced by z. His work, enables us to establish
the following (3+1)-dimensional breaking soliton equation

uxt − 4ux (uxy + uxz)− 2uxx (uy + uz)−
(uxxxy + uxxxz) = 0, (2)

where u = u(x, y, z, t) : Rx × Ry × Rz × Rt → R.
Recently, Dai et al. [31], suggested the three-wave method for
nonlinear evolution equations. The basic idea of this method
applies the Painlevé analysis to make a transformation as

u = T (f) (3)

for some new and unknown function f . Then we use this
transformation in a high dimensional nonlinear equation of
the general form

F (u, ut, ux, uy, uz, uxx, uyy, uzz, · · · ) = 0, (4)
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where u = u(x, y, z, t) and F is a polynomial of u and its
derivatives. By substituting (3) in (4), the first one converts
into the Hirota’s bilinear form, which it will solve by taking
a special form for f and assuming that the obtained Hirota’s
bilinear form has three-wave solutions, then we can specify
the unknown function f . For more details see [31], [32]. In
this paper we solve equation (1) by the three-wave method
and obtain some exact and new solutions for it.

II. THE (3+1)-DIMENSIONAL BREAKING SOLITON

EQUATION

In this section, we investigate explicit formula of solutions
of the following (3+1)-dimensional breaking soliton equation

uxt − 4ux (uxy + uxz)− 2uxx (uy + uz)−
(uxxxy + uxxxz) = 0. (5)

To solve this equation we suppose that

θ = y + k z (6)

then equation (5) reduces to

uxt − 4 (k + 1)uxuxθ − 2 (k + 1)uxxuθ − (k + 1)uxxxθ = 0.
(7)

To solve equation (7), we introduce a new dependent variable
u by

u = 2(ln f)x (8)

where f is an unknown real function which will be determined.
Substituting equation (8) into equation (7), we have

[2(ln f)x]xt − 4 (k + 1) [2(ln f)x]x [2(ln f)x]xθ−
2 (k + 1) [2(ln f)x]xx [2(ln f)x]θ
− (k + 1) [2(ln f)x]xxxθ = 0,

(9)

which can be integrated once with respect to x to give

[2(ln f)]xt − 3 (k + 1) [2(ln f)]xx [2(ln f)]xθ−

(k + 1)[2(ln f)]xxxθ + 2∂−1
x ((ln f)xxx (ln f)xθ−

(ln f)xx (ln f)xxθ) = C,

(10)

where ∂−1
x ∂x = 1. Taking C = 0, therefore, equation (10) can

be written as

(DxDt +D3
xDθ)f · f + 2 f2 ∂−1

x (Dx(ln f)xx · (ln f)xθ) = 0,
(11)
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where the D-operator is defined by

Dm
x D

k
yD

p
zD

n
t f(x, y, z, t) · g(x, y, z, t) =

( ∂
∂x1
− ∂

∂x2
)m( ∂

∂y1
− ∂

∂y2
)k( ∂

∂z1
− ∂

∂z2
)p( ∂

∂t1
− ∂

∂t2
)n

[f(x1, y1, z1, t1)g(x2, y2, z2, t2)],

and the right hand side is computed in

x1 = x2 = x, y1 = y2 = y, z1 = z2 = z, t1 = t2 = t.

We suppose that

∂−1
x (Dx(ln f)xx · (ln f)xθ) = 0, (12)

note that to have a correct solution for equation (5) we must
consider (12) in our algebraic systems of equations, which
that will be our modification from the three-wave method.
Therefore, by our assumption, equation (11) reduces to

(DxDt +D3
xDθ)f · f = 0. (13)

Now we suppose that the solution of equation (11) as

f (x, ξ, t) = e−ξ1 + δ1 cos (ξ2) + δ2 eξ1 (14)

where

ξi = aix+ biθ + cit, i = 1, 2 (15)

and ai, bi, ci, δi are some constants to be determined later.
Substituting equation (14) into equation (13) and equating all
coefficients of sin(ξ2), cos(ξ2), exp(ξ1) and exp(−ξ1) to zero,
we get the following set of algebraic equation for ai,bi,ci,
δi, (i = 1, 2)

3 a2
2a1b1 + 3 a1

2b2a2 − kb2a2
3 + 3 ka1

2b2a2 + c1a1

−ka1
3b1 − a1

3b1 − b2a2
3 − a2c2 + 3 ka2

2a1b1 = 0,

ka2
3b1 + 3 b2a2

2a1 − 3 a1
2b1a2 − ka1

3b2 + c2a1

−3 ka1
2b1a2 + 3 kb2a2

2a1 − a1
3b2 + a2

3b1 + c1a2 = 0, ,

−4 kδ12a2
3b2 − 4 δ12a2

3b2 − δ12a2c2 − 16 ka1
3δ3b1

−16 a1
3δ3b1 + 4 c1a1δ3 = 0,

(16)
and from our assumption, that is, from equation (12) we have

a2
4b1 − a1

3a2b2 − a2
3a1b2 + a2

2b1a1
2 = 0,

−4 a1
2a2

2b2 + 4 a1
3a2b1 + 4 a2

3b1a1 − 4 a1
4b2 = 0.

(17)
Solving the system of equations (16) and (17) with the aid of
Maple, yields the following cases:

A. Case 1:

b1 = b2a1
a2

, c1 =
b2a1(a1

2−3 a2
2)(k+1)

a2
,

c2 = b2
(
a1

2 − ka2
2 + 3 ka1

2 − a2
2
)
, δ2 = − δ1

2a2
2

4 a12

(18)

for some arbitrary real constants a1, a2, b2, k and δ1. Substi-
tute equations (18) into equation (8) with equation (14), we
obtain the solution as

f (x, y, z, t) = e−ξ1 + δ1 cos (ξ2) + δ2eξ1

and

u (x, y, z, t) = 2
−a1e−ξ1 − δ1 sin (ξ2) a2 + δ2a1eξ1

e−ξ1 + δ1 cos (ξ2) + δ2eξ1
(19)

for

ξ1 = a1x+ b2a1(y+kz)
a2

+
b2a1(−3 a2

2+ka1
2−3 ka2

2+a1
2)t

a2
,

and

ξ2 =
a2x+ b2 (y + kz) +

(
3 a1

2b2 − kb2a2
2 + 3 ka1

2b2 − b2a2
2
)
t,

and
δ2 = − δ1

2a2
2

4 a12 .

If δ2 > 0, then we obtain the exact breather cross-kink solution

u (x, y, z, t) = 2
−2 a1

√
δ2 sinh(ξ1 − β)− δ1 sin (ξ2) a2

2
√
δ2 cosh(ξ1 − β) + δ1 cos (ξ2)

for
β =

1
2

ln(δ2).

If δ2 < 0, then we obtain the exact breather cross-kink solution

u (x, y, z, t) = 2
−2 a1

√−δ2 cosh(ξ1 − β)− δ1 sin (ξ2) a2

2
√−δ2 sinh(ξ1 − β) + δ1 cos (ξ2)

for
β =

1
2

ln(−δ2).

B. Case 2:

a1 = ia2, c2 = 0, b2 = 0, c1 = −4 a2
2b1 (k + 1) (20)

for some arbitrary real constants a2, b1, k, δ1 and δ2. Substitute
equation (20) into equation (8) with equation (14), we obtain
the solution as

f (x, y, z, t) = e−ξ1 + δ1 cos (ξ2) + δ2eξ1

and

u (x, y, z, t) = 2
−ia2e−ξ1 − δ1 sin (ξ2) a2 + iδ2a2eξ1

e−ξ1 + δ1 cos (ξ2) + δ2eξ1
(21)

for

ξ1 = ia2x+ b1 (y + kz)− 4 a2
2b1 (k + 1) t

ξ2 = a2x.
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We make the dependent variable transformation in equation
(21) as follows

a2 = −i A2, (22)

where A2 is real. We obtain new form for equation (21) as
follows

u (x, y, z, t) = 2
−A2e−ξ∗

1 + iδ1 sin (ξ∗2)A2 + δ2A2eξ∗
1

e−ξ1 + δ1 cos (ξ2) + δ2eξ∗
1

(23)
for

ξ∗1 = A2 x+ b1 (y + kz) + 4A2
2b1 (k + 1) t

ξ∗2 = −i A2 x.

If δ2 > 0 then we obtain the exact breather cross-kink solution

u (x, y, z, t) = 2
−2A2

√
δ2 sinh(ξ∗1 − β) + iδ1 sin (ξ∗2)A2

2
√
δ2 cosh(ξ∗1 − β) + δ1 cos (ξ∗2)

for
θ =

1
2

ln(δ2).

If δ2 < 0 then we obtain the exact breather cross-kink solution

u (x, y, z, t) = 2
−2A2

√−δ2 cosh(ξ∗1 − β) + iδ1 sin (ξ∗2)A2

2
√−δ2 sinh(ξ∗1 − β) + δ1 cos (ξ∗2)

for
θ =

1
2

ln(−δ2).

C. Case 3:

a1 = ia2, b1 = ib2,

c1 = −i (8 kb2a2
2 + 8 b2a2

2 + c2
)
, δ2 = δ1

2

4

(24)

for some arbitrary real constants a2, b2, c2, k and δ1. Substitute
equation (24) into equation (8) with equation (14), we obtain
the solution as follows

f (x, y, z, t) = e−ξ1 + δ1 cos (ξ2) + δ2eξ1

and

u (x, y, z, t) = 2
−ia2e−ξ1 − δ1 sin (ξ2) a2 + iδ2a2eξ1

e−ξ1 + δ1 cos (ξ2) + δ2eξ1
(25)

for

ξ1 = ia2x+ ib2 (y + kz)− i (8 kb2a2
2 + 8 b2a2

2 + c2
)
t

ξ2 = a2x+ b2 (y + kz) + c2t

and

δ2 =
δ1

2

4
. (26)

We make the dependent variable transformation in equation
(25) as follows

a2 = i A2,

b2 = i B2,

c2 = i C2,

(27)

where A2, B2 and C2 are real. We obtain new form for
equation (25) as

u (x, y, z, t) = −2
A2

(
e−ξ∗

1 − δ1 sinh (ξ∗2)− δ2eξ∗
1
)

e−ξ∗
1 + δ1 cosh (ξ∗2) + δ2eξ∗

1
(28)

for

ξ∗1 = A2x+B2y +B2kz +
(
8B2kA2

2 + 8B2A2
2 − C2

)
t

ξ∗2 = A2x+B2y +B2kz + C2t.

If δ2 > 0 then we obtain the exact breather cross-kink solution

u (x, y, z, t) = −2
A2

(
2
√
δ2 sinh(ξ∗1 − β)− δ1 sinh (ξ∗2)

)

2
√
δ2 cosh(ξ∗1 − β) + δ1 cosh (ξ∗2)

for

β =
1
2

ln(δ2) , δ2 =
δ1

2

4
.

If δ2 < 0 then we obtain the exact breather cross-kink solution

u (x, y, z, t) = −2
A2

(
2
√−δ2 cosh(ξ∗1 − β)− δ1 sinh (ξ∗2)

)

2
√−δ2 sinh(ξ∗1 − β) + δ1 cosh (ξ∗2)

for

θ =
1
2

ln(−δ2) , δ2 =
δ1

2

4
.

III. CONCLUSIONS

In this paper, we introduced a modification of three-wave
method, and we obtained some analytic solutions for the
(3+1)-dimensional breaking soliton equation in its bilinear
form. We can apply this modification when a PDE does not
have a bilinear closed form. By comparison of three-wave
method and another analytic methods, like HAM, HTA and
EHTA methods, we can see that the new idea is very easy
and straightforward which can be applied on another nonlinear
partial differential equations.
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