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Abstract—Load modeling is one of the central functions in 

power systems operations. Electricity cannot be stored, which means 
that for electric utility, the estimate of the future demand is necessary 
in managing the production and purchasing in an economically 
reasonable way. A majority of the recently reported approaches are 
based on neural network. The attraction of the methods lies in the 
assumption that neural networks are able to learn properties of the 
load. However, the development of the methods is not finished, and 
the lack of comparative results on different model variations is a 
problem. This paper presents a new approach in order to predict the 
Tunisia daily peak load. The proposed method employs a 
computational intelligence scheme based on the Fuzzy neural 
network (FNN) and support vector regression (SVR). Experimental 
results obtained indicate that our proposed FNN-SVR technique gives 
significantly good prediction accuracy compared to some classical 
techniques. 
 
Keywords—Neural network, Load Forecasting, Fuzzy inference, 

Machine learning, Fuzzy modeling and rule extraction, Support 
Vector Regression. 

I. INTRODUCTION 
URING the last four decades, a wide variety of 
techniques have been used for the problem of load 

forecasting [1], [2]. Such a long experience in dealing with the 
load forecasting problem has revealed time series modeling 
approaches based on statistical methods and artificial neural 
networks (ANNs). Statistical models include moving average 
and exponential smoothing methods such as multi-linear 
regression models, stochastic process, data mining approaches, 
autoregressive moving average (ARMA) models, Box-Jenkins' 
methods, and Kalman filtering-based methods [3]-[6]. Since, 
load time series are usually nonlinear functions of exogenous 
variables; therefore, to incorporate non-linearity, ANNs have 
received much attention in solving problems of load 
forecasting [7]-[10]. ANN-based methods have reported fairly 
good performances in forecasting. However, two major risks 
in using ANN models are the possibilities of less or excessive 
training data approximation, i.e., under-fitting and over-fitting, 
which increase the out of-sample forecasting errors. Hence, 
due to the empirical nature of ANNs their application is 
cumbersome and time consuming. 

Recently, new machine learning techniques such as the 
support vector machines (SVMs) have been used for load 
prediction and electricity price forecasting, and have achieved 
good performances [11], [12]. SVM, namely, support vector 
regression (SVR) is a powerful machine learning technique 
used for regression, which is based on recent advances in 
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statistical learning theory [13]. Established on the structural 
risk minimization (SRM) principle (estimate a function by 
minimizing an upper bound of the generalization error), SVMs 
have shown to be very resistant to the under-fitting and over-
fitting problems caused by ANNs as in [11]. 

In this paper, we incorporated the concept of fuzzy set 
theory [14]. Into the SVM regression and Neural networks 
modeling [15], [16]. A novel fuzzy neural network combining 
with support vector learning mechanism called Fuzzy Neural 
Networks based on Support vector Regression (FNN-SVR) is 
proposed. The FNN-SVR combine the capability of 
minimizing the empirical risk (training error) and expected 
risk (testing error) of support vector learning in high 
dimensional data spaces and the efficient human-like 
reasoning of FNN. 

A learning algorithm consisting of three learning phases is 
developed to construct the FNN-SVR and train the parameters. 
In the first phase, the fuzzy rules and membership functions 
are automatically determined by the clustering principle. In the 
second phase, the parameters of FNN are calculated by the 
SVR with the proposed adaptive fuzzy kernel function for 
time series prediction. In the third phase, the relevant fuzzy 
rules are selected by the proposed fuzzy rule reduction 
method. 

For developing the forecasting models, we used the daily 
peak electrical load data provided by the Tunisia Electric and 
Gas Company (STEG) for the years 2002 through 2011. 

The paper is organized as follows: the structure and the 
learning algorithm behavior of the proposed FNN-SVR are 
described in Section II. The proposed model is used to predict 
the Tunisia daily peak load and is compared with some and 
nonparametric techniques such as SVR and BNN in Section 
III. Conclusion is summarized in the last section. 

 

 
Fig. 1 Structure of the FNN-SVR 
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II. METHODOLOGY 

A. Structure of the FNN-SVR 
The proposed FNN-SVR is a four-layered FNN that is 

comprised of the input, membership function, fuzzy rules, and 
the output layer. 
 Layer 1 accepts input variables, whose nodes represent 

input linguistic variables. No computation is done in this 
layer. Each node in this layer, which corresponds to one 
input variable, only transmits input values to the next 
layer directly. That is : 
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where ix , 1, 2, ,i n, ,1 21, 2, n,n,  are the input variables of the network. 
 Layer 2 is to calculate the membership values, whose 

nodes represent the terms of the respective linguistic 
variables. In other words, the membership value which 
specifies the degree to which an input value belongs to a 
fuzzy set is calculated in Layer 2: 
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where (.)e  is a Gaussian membership function 
 Nodes at Layer 3 represent fuzzy rules. The links before 

Layer 3 represent the preconditions of fuzzy rules, and the 
links after Layer 3 represent the consequences of fuzzy 
rules 

Here we use the AND operation for each Layer two nodes: 
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 Layer 4 is the output layer : The single node 4y  in this 

layer is labeled with , which computes the overall 
output and can be computed as: 
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B. The Learning Algorithm 
First the input datasets are partitioned. For each incoming 

pattern b  [ , ]y Tx[ , ]T  the strength a rule is fired. We can use the 
firing strength as this degree measure: 
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We can obtain the following criterion for the generation of a 
new fuzzy rule: 
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where c(t) is the number of existing rules at time .t  The 
optimal parameters of FNN-SVR are trained by using the  
insensitivity loss function SVR based on the fuzzy kernels. 
The dual quadratic optimization of SVR is solved in order to 
obtain an optimal hyperplane for any linear or non linear 
space: 
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Subject to constraints: 
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where K(xi, xj) is the fuzzy kernel,  is a previously chosen 
nonnegative number for insensitive loss function, and C is a 
user-specified positive parameter to control the tradeoff 
between complexity of SVR and the number of non separable 
points. A solution a = 1 2( , ,....., )nsa a a  and *

1 2( , ,....., )nsa a a a )( , ,.1 2( , ,.,1 2  

can be obtained, where ia  and ia  are Lagrange coefficients. 

The corresponding support vectors s= ],...,,...,,[ 21 nsi ssss  

can be obtained, and the constant (threshold) 0w  in (4) is: 
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The coefficients jw  in (4) can be calculated by: 
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In this phase, the number of fuzzy rules learning in Phases 1 

and 2 is reduced by removing some irrelevant fuzzy rules and 
the consequent parameters. The method reduces the number of 
fuzzy rules by minimizing the distance measure between 
original fuzzy rules and reduced fuzzy rules. To achieve this 
goal, we rewrite (4) as: 
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The reduced set is given by: 
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kk  is the consequent parameters of the remaining fuzzy rules. 
The whole learning scheme is iterated until the new rules are 
sufficiently sparse. 

III. EMPIRICAL STUDY 

A. Data Set 
The load and the temperature were obtained from the 

Tunisia Electric and Gas Company (STEG) for the years 2004 
through 2011. The objective is to predict the daily peak 
electricity load using the given historical data. We divide the 
data into two sets: one with 70 percent of the source data, for 
training the models, and one with 30 percent of the source 
data, for testing the models. The peak load over the 2004-2005 
periods is shown in Fig. 2. The seasonal trend on the load can 
be easily seen. Also, the weekly load structure can be seen in 
the form of lower load values on weekends than on working 
days. 

 

 
Fig. 2 Daily peak load 2004-2005 

Observations regarding load data were investigated to 
determine the relationship between the load data and other 
information such as temperature and day types. The following 
observations are concluded for the given data. 

B. Attribute Selection 
Our proposed load forecasting model is based on the past 

daily peak loads (historical consumption data) as one of the 
candidate input variables. The best input features for our 
forecasting model are those which have the highest correlation 
with the output variable (i.e., peak load of the next day) and 
the highest degree of linear independency. Thus, the most 
effective candidate inputs with minimum redundancy are 
selected as the model attributes. 

Through simple analysis of the graphs representing the 
yearly load data, it is observed that the electricity load follows 
seasonal patterns, i.e., high demand of electricity in the winter 
(September through March) while low demand in the summer 
(April through August) as in [11]. This pattern implies the 
relationship between the electricity usage and weather 
conditions in different seasons, as indicated in Fig. 2. 
Secondly, another load pattern is observed, where load 
periodicity exists in the profile of every week, i.e., the load 
demand on the weekend (Saturday and Sunday) is usually 
lower than that on weekdays (Monday through Friday), as 
shown in Fig. 2. In addition, electricity demand on Saturday is 

a little higher than that on Sunday, and the peak load usually 
occurs in the middle of the week, i.e., on Wednesday. 

The tree attributes used in the FNN-SVR modeling process 
are: 
1) Daily peak load: Since, past load demand affects and 

implies the future load demand, therefore, including the 
past daily peak load as a key attribute, will greatly 
influence improvement in the forecasting performance. 

2) Daily temperature: The electricity load and the 
temperature have a causal relationship (high correlation) 
between each other. Therefore, the daily temperature is 
used as an attribute in the forecasting model. 

3) Type of day: Weekly periodicity of the electricity load is 
noticed through load data analysis as shown in Fig. 2. As 
the electricity demand on holidays is observed to be lower 
than on non-holidays, therefore, encoding information of 
the type of day (calendar indicator) into the forecasting 
model will benefit performance of the model. 

There are also many other factors that make the models 
different from each other. 

These differences can be for example in: 
- the use of the weather data 
- the other input variables 
- network architecture 
- training algorithm 
- selection of the training data 

For the input variables, the following symbols are used: 
 Lmax(i)=maximum load of day i 
 Tmax(i)=maximum temperature of day i 
 Tmin(i)=minimum temperature of day i 
 Lavg(i)=average temperature of day i 

To forecast the maximum load of a certain day, at least the 
maximum loads of the previous day and the corresponding day 
from the previous week, can be considered potential input 
variables. Also the temperature data of those days may be 
useful if temperature forecasts for the target day are available. 
Maximum, minimum and average temperatures are considered 
for this purpose. Eight different input structures are tested 
separately for peak load. These are numbered from 1 to 8, and 
are listed in Table I for maximum load forecasting Lmax(i). 

 
TABLE I 

INPUT STRUCTURES 
Input  Structures 

1 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tavg(i), Tavg(i-1), Tavg(i-7), 
Tavg(i-8) 

2 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tavg(i), Tavg(i-1), Tavg(i-7) 
3 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tavg(i), Tavg(i-1) 
4 Lmax(i-1), Lmax(i-7), Tavg(i), Tavg(i-1) 
5 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tmax(i), Tmax(i-1), Tmax(i-7), 

Tmax(i-8) 
6 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tmax(i), Tmax(i-1) 
7 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tmin(i), Tmin(i-1), Tmin(i-7), 

Tmin(i-8) 
8 Lmax(i-1), Lmax(i-7), Lmax(i-8), Tmin(i), Tmin(i-1), 
 
In addition to inputs listed above, each input structure 

contains four extra nodes. These get binary values and inform 
the network of the day type of the target day. The day type 
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classes are: 1) Mondays, 2) Tuesdays-Fridays, 3) Saturdays, 
and 4) Sundays. 

Informing the network about the day type is important, 
because Saturdays and Sundays have much lower peak loads 
than working days. 

C. Performance Criteria 
Although the MSE is a perfectly acceptable measure of 

performance, in practice the ultimate goal of any testing 
strategy is to confirm that the results of models are robust and 
capable of measuring the profitability of a system. It is 
important, therefore, to design a test from the outset. This is 
not always carried out with the level of rigor that it merits, 
partly because of unfamiliarity with the established methods 
or practical difficulties intrinsic to non-linear systems. 
Consequently, we designed test sets to evaluate the effects of 
the models. The prediction performance is evaluated using the 
following statistics: Mean Squared Error (MSE), Normalized 
Mean Squared Error (NMSE), Mean Absolute Error (MAE), 
Mean Absolute Percent Error (MAPE). 

 
TABLE II 
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These criteria are defined in Table II. MSE, RMSE, MAE 
and MAPE measure the correctness of a prediction in terms of 
levels and the deviation between the actual (Lai) and predicted 
values (Lpi). The smaller the values, the closer the predicted 
time-series values will be to the actual values. 

1. Results 
A comparative study of our proposed model with other 

machine learning techniques was performed using the train 
and the test data. Our proposed FNN-SVR method was 
compared with two different prediction techniques: (1) SVR 
and (2) ML-BPNN. The eight different input structures were 
tested in all cases. The input structure 4 gives the best results 
in all the cases. The prediction accuracy of our proposed 
model compared with the different prediction techniques for 
predicting the peak load of train and test data are shown in 
Tables III and IV. Figs. 3 and 4 show the comparison plot of 
the predicted peak load of train and test data using the FNN-
SVR, SVR and ML-BPNN techniques. 

 
 
 
 
 
 

TABLE III 
COMPARISON OF THE FORECASTING ACCURACY USING DIFFERENT 

PREDICTION TECHNIQUES (TRAINING SET) 
Models MSE NMSE MAE MAPE 
BPNN 2399.9 0.054 32.10 2.126% 
SVR 958.278 0.0216 26.05 1.394% 

FNN-SVR 931.281 0.0209 25.71 1.085% 
 

TABLE IV 
COMPARISON OF THE FORECASTING ACCURACY USING DIFFERENT 

PREDICTION TECHNIQUES (TEST SET) 
Models MSE NMSE MAE MAPE 
BPNN 981.741 31.333 13.457 0.882% 
SVR 725.432 26.934 11.582 0.767% 

FNN-SVR 709.707 26.640 11.519 0.762% 
 

 
Fig. 3 Comparison plot of predicted peak load using FNN-SVR, 

SVR, and ML-BPNN techniques- 30 days train data 
 

 
Fig. 4 Comparison plot of predicted peak load using FNN-SVR, 

SVR, and ML-BPNN techniques- 30 days test data 
 

Results obtained in Tables III and IV indicates that the 
prediction accuracy of the ML-BPNN is not satisfactory. This 
is due to the problems of local minima and over-fitting 
associated with ANNs, which tends to decrease the 
generalization performance for unseen data. Our proposed 
FNN-SVR model proves to be superior in terms of the all 
performance criteria compared to the SVR and ML-BPNN 
models. This is due to the presence of the Fuzzy component in 
our model, which fits the clustered training data into the 
appropriate SVRs based on the Euclidean distance. 

 

IV. CONCLUSION 
In this paper a computational intelligence scheme based the 

FNN and SVR is applied to reconstruct the dynamics of 
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electricity load forecasting using a time series approach. The 
proposed FNN-SVR technique is applied on the Tunisia load 
data to predict the peak load, which demonstrates the 
effectiveness and efficiency of the prediction technique in 
contrast to others. 

Results obtained indicated that the proposed FNN-SVR 
model outperforms the other two approaches in terms of all 
evaluation criteria used in this research. This can be explained 
by the formulation of the FNN-SVR, SVM and BPNN 
networks. FNN-SVR and SVM methods use a quadratic 
programming problem which is convex and has a global 
optimum solution. BPNN networks use the backpropagation 
algorithm to minimize the network error, the problem is non 
convex and it is hard to find the global optimum. 
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