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Abstract—The neural network's performance can be measured 

by efficiency and accuracy. The major disadvantages of neural 
network approach are that the generalization capability of neural 
networks is often significantly low, and it may take a very long time 
to tune the weights in the net to generate an accurate model for a 
highly complex and nonlinear systems. This paper presents a novel 
Neuro-fuzzy architecture based on Extended Kalman filter. To test 
the performance and applicability of the proposed neuro-fuzzy 
model, simulation study of nonlinear complex dynamic system is 
carried out. The proposed method can be applied to an on-line 
incremental adaptive learning for the prediction of financial time 
series. A benchmark case studie is used to demonstrate that the 
proposed model is a superior neuro-fuzzy modeling technique. 
 

Keywords—Neuro-fuzzy, Extended Kalman filter, nonlinear 
systems, financial time series.  

I. INTRODUCTION 
UZZY rule-based systems and artificial neural networks 
originated from different philosophies and were originally 

considered independent of each other. Later studies revealed 
that they actually have a close relation. Buckley et al. [1] 
discussed the functional equivalence between neural networks 
and fuzzy expert systems. The integration of fuzzy logic and 
neural networks has given birth to an emerging technology 
field, fuzzy neural networks. The theory of fuzzy logic 
provides a mathematical strength to capture the uncertainties 
associated with human cognitive processes, such as thinking 
and reasoning, also it provides a mathematical morphology to 
emulate certain perceptual and linguistic attributes associated 
with human cognition. While fuzzy theory provides an 
inference mechanism under cognitive uncertainty, 
computational neural networks offer exciting advantages such 
as learning, adaptation, fault-tolerance, parallelism and 
generalization. The computational neural networks are capable 
of coping with computational complexity, nonlinearity and 
uncertainty. It is interesting to note that fuzzy logic is another 
powerful tool for modeling uncertainties associated with 
human cognition, thinking and perception [2,3]. 
 Many authors have proposed various neuro-fuzzy models as 
well as complex training algorithms. Of these, Jang [4] 
proposed the famous neuro-fuzzy model ANFIS (adaptive 
network-based fuzzy inference system), which has been 
successfully applied in various fields. In ANFIS, the hybrid                         
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learning algorithm is adopted that integrates the BP 
successfully applied in various fields. In ANFIS, the hybrid 
learning algorithm is adopted that integrates the BP 
(Backward Propagation) algorithm with the recursive least 
squares algorithm to adjust parameters. ANFIS was later 
extended to the coactive ANFIS in [5] and to the generalized 
ANFIS in [6]. Horikawa et al. [7] proposed a neuro-fuzzy 
model using sigmoid functions to generate the bell-shape 
input membership functions and trained it with the BP 
algorithm. However, some practical difficulties associated 
with gradient descent are slow convergence and 
ineffectiveness at finding a good solution [8]. 
 Kalman filtering estimation is a topic that has received very 
little attention in the field of fuzzy neural networks There have 
been a few papers published recently on fuzzy observer 
design; however, these papers usually deal with the noise-free 
case. That is, fuzzy observers are designed for systems that are 
not affected by noise. In our paper entitled "Neural Network 
for Modeling Nonlinear Time Series: A New Approach", [2], 
we have developed a Neural network based on Extended 
Kalman Filter. In this paper we extended this work to derive a 
neuro- fuzzy network based on Extended Kalman filter (EFK) 
to predict and estimate state of non linear dynamic systems. 
We demonstrate its performance, and compare it with ANFIS 
system and classical neural networks using gradient descent 
on some non linear dynamic systems. 

This paper is organized as follows. In Section 2, we briefly 
review some fundamental notions of fuzzy system and the 
neuro-fuzzy models. In Section 3, we first precisely formulate 
the proposed model, and then fuzzify the system model. The 
EKF algorithm is then derived in this section. In Section 4, 
computer simulation is shown to compare the new model with 
classical neural network trained by the BP algorithm and the 
ANFIS scheme. In section 5, The proposed model can be 
applied to an on-line incremental adaptive learning for the 
prediction of financial time series. Finally, section 5 contains 
some concluding remarks and suggestions for further research. 

II. BACKGROUND 

A. Fuzzy Logic 
 Since its introduction in 1965 by Zadeh [9], fuzzy set 
theory has found applications in a wide variety of disciplines. 
Modeling and control of dynamic systems belong to the fields 
in which fuzzy set techniques have received considerable 
attention, not only from the scientific community but also 
from industry. 
 The purpose of fuzzy logic is to map one space (input) to 
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another (output) with relative precision (normally through if-
then rules). It is a better tool for simulating human thinking 
and allows the computer to understand and compute like a 
human. There are several advantages of fuzzy logic. 

  
• It is easy to understand. 
• It has the tolerance of imprecise data. 
• It can bring human knowledge to the system directly. 
• It can be integrated with other systems smoothly, for 
example, Neural Network and Control System. 
• It has stronger power when solving difficult nonlinear 
problems. 
• It has great flexibility.  
 
The implementation of fuzzy logic has four steps: 

  
1. Fuzzification: Mapping the input to the degree of 
membership using membership function. Define the surfaces 
(fuzzification): Each variable is decomposed into a set of 
fuzzy regions (or states) called the "fuzzy sets". These fuzzy 
sets are assigned certain names from the set N  that span the 
variables domains. They do not have crisp, clearly defined 
boundaries. In the end each fuzzy set is represented by its 
membership function. A membership function is a curve 
which defines how the points in the input space (elements of 
N ) are mapped to a membership value (or degree of 
membership), a real number between 0 and 1. Mathematically, 
a fuzzy set f is defined by a set of ordered pairs.  

ƒ { }0,1])(,))/(,(= εμεμ xNxxx              (1) 

where )(xμ  denotes a membership function.  

Membership functions can be of various types: triangular, 
trapezoidal, Gaussian, sigmoidal, polynomial, etc. 
 
2. If the antecedent includes more than one part, the fuzzy 
operators are applied to them to get the single number: To 
define a link between the input and output variables a rule 
base is created. Linguistic rules are of the form: 
 

IF <x is A> THEN <y is B> 
 

where x and y are scalar variables and A and B are linguistic 
values defined by fuzzy sets. The phrase " x is  A" is called 
the antecedent or premise, while "y is  B" is called the 
consequent or conclusion. Fuzzy rules form a fuzzy rule base. 
The number of rules varies with the number of the variables. 
The idea is to try to identify all the possible combinations of 
inputs. Thus, if there are three input variables, each described 
by five fuzzy sets, the required number of rules would be 5 3  
=125. Fuzzified inputs cause some rules to be activated and to 
contribute to an overall output which is calculated using the so 
called " Mamdani inference" [10]. Mamdani inference applies 
min and max operators for fuzzy AND (intersection) and OR 
(union) operators. It also requires that the output membership 
function is a fuzzy set (unlike " Sugeno inference" where the 
output is either constant or linear). 
 

3. To get the membership function of output using the result 
of step 2 (or step 1 if the antecedent only includes one part). 
The implementation method in this step can be min function 
or prod function. 
 
4. Defuzzifying. The result of step 4 is a membership function 
to the whole range of output and it has to be defuzzified to get 
a specific number. The common method used to defuzzify is 
centroid calculation. 

B. Neuro-Fuzzy 
Since both the fuzzy logic and Neural Network can 

simulate the thinking of a human being, it is intuitive to 
combine them in order to take advantage of both of their 
strengths. There are three different approaches for combining 
neural networks and fuzzy systems :  
 
• Concurrent Neural-Fuzzy Models: In this model, the fuzzy 
system and Neural. Network are used concurrently to the same 
task. The fuzzy system is used either before or after the 
processing of Neural Network. They are not related tightly. 
The Neural Network does not change any parameters in the 
fuzzy system. 
 
• Cooperative Neuro-Fuzzy Models : In this model a neural 
network or just a simple neural learning algorithm is used to 
learn certain parameters of fuzzy sets, fuzzy rules, or weights 
of the fuzzy system. After learning the Neural Network it no 
longer exists. The result is a pure fuzzy system. 
 
• Hybrid Neuro-Fuzzy Inference System: This is new model 
which can be interpreted either as a Neural Network or as a 
fuzzy system. The Neural Network and fuzzy system are no 
longer separated. Modern Neuro-Fuzzy approaches come 
from this type.  
 

The research in this study uses a hybrid Neuro-Fuzzy 
model. It uses the type of fuzzy rules with certainty factors, in 
which a two phase learning scheme is developed. In neuro-
fuzzy models, two major types of learning are required: 
structure learning algorithms to find appropriate FL rules; and 
parameter learning algorithms to fine-tune the membership 
functions and other parameters. There are several ways that 
structure learning and parameter learning can be combined in 
a neuro-fuzzy system. They can be performed sequentially: 
structure learning is used first to find the appropriate structure 
of a neuro-fuzzy system; and parameter learning is then used 
to fine-tune the parameters. In some situations, only parameter 
learning or structure learning is necessary when structure 
(fuzzy rules) or parameters (membership functions) are 
provided by experts, and the structure in some neuro-fuzzy 
systems [11] is fixed. Identification of fuzzy rules has been 
one of the most important aspects in the design of Fuzzy 
Inference Sysyem. Identified rules and concise rules can 
provide an initial structure of networks so that learning 
processes can be fast, reliable and highly intuitive.  
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III. DESCRIPTION OF THE METHODOLOGIE 

A. The Proposed Neuro-Fuzzy Model 
 The proposed neuro-fuzzy model is a multilayer neural 
network-based fuzzy system and the system has a total of five 
layers. In this connectionist structure, the input and output 
nodes represent the input states and output reponse, 
respectively, and in the hidden layers, there are nodes 
functioning as membership functions (MFs) and rules. This 
eliminates the disadvantage of a normal feedforward multi-
layer network, which is difficult for an observer to understand 
or to modify. 

Throughout the simulation examples presented in this 
paper, all the MFs used are bell-shaped (Gaussian) functions 
defined in (2): 

)/)((exp=)( 22 σμ cxxA −−       (2) 
 

A Gaussian membership function is determined by c  and σ : 
c  represents the centre of the MF; and σ  determines the 
width of the MF. A detailed description of the components of 
the model's structure and functionalities, and the philosophy 
behind this architecture are given below. 
  

1. Input Layer 
Nodes in this layer are input nodes that represent input 

linguistic variables as crisp values. The nodes in this layer 
only transmit input values to the next layer, the membership 
function layer. Each node is connected to only those nodes of 
layer 2, which represent the linguistic values of corresponding 
linguistic variables. 
 

2. Fuzzy Input Layer 
Nodes in this layer act as membership functions to 

represent the terms of the respective linguistic variables. The 
input values are fed to fuzzy input layer that calculates the 
membership degrees. This is implemented using Gaussian 
membership functions with two parameters, mean (or 
centre, c ) and variance (or width, σ ).This layer implements 
fuzzification for the inputs. It represents fuzzy quantisation of 
input variables. 
 

)/)(((exp= 22)()( σcxy I
t

FI
t −−      (3) 

 
3. Rule Nodes Layer 
The third layer contains rule nodes that evolve through 

learning. Evolving means all nodes on the third layer are 
created during learning. The rule nodes represent prototypes 
of input-output data associations that can be graphically 
represented as associations of hyper-spheres from the fuzzy 
input and the fuzzy output space. Hence, the functions of the 
layer are 
 

)()( min= F
i

tIi

R
t yy

ε
                             (4) 

where tI  is the set of indices of the nodes in fuzzy layer that 

are connected to node t in Rule layer and )(F
iy  is the output of 

node i  in Fuzzy input layer. 
 

4. Fuzzy Output Layer 
The fourth layer is fuzzy output layer where each node 

represents fuzzy quantisation of the output variables. The 
activation of the node represents the degree to which this 
membership function is supported by all fuzzy rules together. 
The connection weights kjw  of the links connecting nodes k  

in fuzzy output layer to nodes j  in rule nodes layer represent 
conceptually the CFs of the corresponding fuzzy rules when 
inferring fuzzy output values. 
 

)(max= )()()( F
ki
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i

kIi
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t wyy

ε
                   (5) 

where kI  is the set of indices of the nodes in Rule layer that 

are connected to the node k  in Fuzzy output layer. 
 

5. Output Layer 
This represents the output variables of the system. These 

nodes and the links attached to them act as a defuzzifier. A 
node in this layer computes a crisp output signal. The output 
variable layer makes the defuzzification for fuzzy output 
variables. 

The input--output relationship of the units in each layer are 
defined by the following equations: 
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Where lI  is the set of indices of the nodes in Fuzzy output 

layer which are connected to the node l  in output layer and 

lkc  and lkσ  are respectively, the centroid and width of the 
membership function of the output linguistic value 
represented by k  in Fuzzy output layer.  
 

B. The Extended Kalman Filter 
Having identified the system model using the above Fuzzy 

neural network model, it is useful to recast this model in the 
state-space form to perform state estimation the non linear 
state space of the neuro-fuzzy network is given by: 

)(=
=1

tt

tt

hY Θ
ΘΘ +                                     (7) 

The state of the nonlinear system can then be represented 
as: 
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Where )( th Θ  is the fuzzy system's nonlinear mapping 
between the membership function parameters and the output 
of the fuzzy system. In order to execute a stable Kalman filter 
algorithm, we need to add some artifcial process noise and 
measurement noise to the system model. 
 

ttt

ttt

hY ξ
ω
+Θ
+ΘΘ +

)(=
=1                           (8) 

 
Equations given by (8) represents respectively the transition 

equation and the observation equation [13], with tΘ  is the 

state vector of the system at time t and tY  is the observation 

vector at time t. the tω  is the process noise or the vector of 

innovations, with zero mean and variance tQ , tξ  is additive 

measurement noise is withe zero mean and variance tR . We 
assume that the noise vectors are uncorreleted with 
covariances:  
 

P
Qt 0

0 Rt  
 

The Kalman filter [12] addresses the general problem of 
trying to estimate the state of a discrete-time controlled 
process that is governed by a linear stochastic difference 
equation. But what happens if the process to be estimated and 
(or) the measurement relationship to the process is non-linear? 
Some of the most interesting and successful applications of 
Kalman filtering have been such situations. A Kalman filter 
that linearizes about the current mean and covariance is 
referred to as an extended Kalman filter or EKF [14]. In 
something akin to a Taylor series, we can linearize the 
estimation around the current estimate using the partial 
derivatives of the process and measurement functions to 
compute estimates even in the face of non-linear relationships. 

The complete set of EKF equations is shown below. 
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IV. SIMULATION STUDY 
 Time series prediction is a very important practical problem 
with a diverse range of applications from economic and 
business planning to signal processing and control. The time 
series used in this work was generated by the chaotic Mackey-
Glass differential equation [13] defined by Eq. (10) below. 
This equation demonstrates chaotic behaviour when 17>s ; 
and higher values of s  yield higher dimensional chaos. In this 
work a value of 18=s  was employed and illustrates figure 1 
the first 1000 points of this series using an initial condition of 

0y  = 0.7 and the paremeters are : 0.9=0.2,= ba  and 

10.=c  

.
1

= 1 c
st

st
tt y

yabyy
−

−
− +
+                       (10) 
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Fig. 1 The chaotic behaviour of the Mackey-Glass time 

 series at s = 18 
 

The prediction of future values of this series is a benchmark 
problem which has been considered by a number of 
researchers [2-4,7,9]. The problem can be formulated as given 
values mty −  , 11,..., −+− tmt yy  ; determine nty +−1 , where m  
and n  are fixed positive integers and t  is the series index. In 
this work we choose 1=n  and m  6= . 

The simulation for a 6-input single-output problem for 
single or multi-step prediction can be implemented on the 
fuzzy neural network illustrated in Figure 2 when each input 
domain is partitioned into 3 fuzzy sets. The number of distinct 
fuzzy sets in each input domain, resulting in 18 nodes (i.e. 6 
inputs and 3 fuzzy sets per input). The initial values of the 
weights between the input and hidden layers was determined 
by choosing a partitioning strategy for the fuzzy  

 
TABLE I 

COMPARATIVE RESULTS FOR MACKEY--GLASS CHAOTIC TIME SERIES  

Method Training RMSE Test RMSE 

Classical NN 0.014 0.010 
ANFIS 0.012 0.007 
New model 0.010 0.006 

 
sets across each input domain. As each input domain is 
identical the problem reduces to selecting fuzzy sets across the 
range of the time series points. The proposed fuzzy neural 
network was readily implemented on the MATLAB software 
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trained with extended kalman filter discussed in section. To 
compare the performance of the fuzzy neural network similar 
sized classical neural networks were also implemented. A 
summary of the implementation results obtained are presented 
in Table I. 

All the simulations used 700 points from the series as 
training data (from 1=t  to 700=t ) and used a further 300 
points as test data (from 701=t  to 1000=t ). The results 
are presented in terms of the accuracy of the prediction using 
the root-mean-square error metric (RMSE). 

V. EMPIRICAL STUDY :TUNINDEX FORECASTING 
In order To illustrate the application potential of the 

proposed model on real data set we applied it to forecast the 
Tunisian Stock price index TUNINDEX. The data set were 
daily closed values from Jan . 05, 1998 to Dec. 31, 2002. Fig. 
2 shows a temporal plot of the TUNINDEX . 
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Fig. 2 Tunisian Stock Price Index (TUNNDEX) 

 
The predictions are based on previous daily closed values 

of the TUNINDEX. Because the TUNINDEX time series has 
an irregular cycle it is very difficult to predict with linear 
methods. We used the daily values from Jan 05, 1998 to Dec 
31, 2000 as training data and the the daily values from Jan 02, 
2001 to Dec 31, 2001 as test data. Because the algorithm uses 
the test data to evaluate the performance of the networks, we 
used an additional data set from Jan 02, 2002 to Dec 31, 2002 
for validation. We compare the proposed neuro-fuzzy network 
to classical neural network and ANFIS model. 
 

 
TABLE II 

COMPARATIVE RESULTS FOR MACKEY TUNINDEX  

Method Training RMSE Test RMSE  Val RMSE 

Classical NN 0.018 0.016 0.011 
ANFIS 0.015 0.012 0.010 
New model 0.012 0.010 0.009 

 
As can be seen from Table II, the proposed neuro-fuzzy 

network trained by the EKF outperformed the classical and 
the ANFIS networks. The predicted (proposed neuro-fuzzy 
networks) and the measured TUNINDEX are displayed in Fig. 
3. 
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Fig. 3 Comparison of measured output and predicted (proposed 

network output) of the TUNINDEX 
 
 

The solid line corresponds to the measured variable and the 
dashed line to the predicted TUNINDEX. From this figure, it 
is seen that the prediction values are satisfactory. 

Fig. 4 present the predicted errors given by the proposed 
network and the ANFIS network. We can see clearly that the 
predicted values given by the proposed neuro-fuzzy network 
are better than given by the ANFIS network.  

 

 
Fig. 4 Comparison of predicted errors given by the proposed network 

and the ANFIS network 
 

VI. CONCLUSION 
The previous section clearly demonstrated the effectiveness 

of the proposed model for the prediction of the Mackey-Glass 
time series and the Tunisian Stock price index TUNINDEX . 
In particular, the prediction results compare favourably with a 
conventional neural network technique and the neur-fuzzy 
ANFIS approach. Such results emphasise the benefits of the 
fusion of fuzzy and neural network technologies as it 
facilitates an accurate initialisation of the network in terms of 
the parameters of the fuzzy reasoning system. This increase in 
transparency of the neurofuzzy approach overcomes the 
drawback of a black-box description associated with 
conventional neural networks providing an improvement in 
prediction accuracy. 

We believe that the encouraging results obtained herein 
with respect to the neural design in combination with existing 
non linear dynamic techniques, has a great potential for the 
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forecasting of financial, economic and other time series 
generated by complex market driven systems.  

ACKNOWLEDGMENT 
The author wishes to thank the anonymous referees for their 

careful reading of the manuscript and their fruitful comments 
and suggestions. 

REFERENCES   
[1] J.J. Buckley, Y. Hayashi, Fuzzy neural networks: a survey, Fuzzy Sets 

and Systems 66 pp 1-13 1994 
[2] S.Chokri, T Abdelwahed, Neural Network for Modeling Nonlinear Time 

Series: A New Approach. Springer-Verlag Berlin Lecture Note in 
Computing Science. 2659 pp 159-168 2003. 

[3] H. Takagi, Fusion techniques of fuzzy systems and neural networks, and 
fuzzy systems and genetic algorithms, SPIE 2061 pp 402-413 1995. 

[4] J.-S.Jang,ANFIS: adaptive-network-based fuzzy inference system, IEEE 
Trans.Systems,Man, Cybernet.23 pp 665—685 1993. 

[5] Eiji Mizutani,J.-S.Jang,Coactive neural fuzzy modeling, in:Proc.of IEEE 
Internat.Conf. on Neural Networks, Vol.2,Perth,Australia, 760 –765 
1995. 

[6] M.F.Azeem,et al., Generalization of adaptive neuro-fuzzy inference 
systems, IEEE Trans.Neural Networks 11 pp 1332 –1346 2000. 

[7] Shin-ichi Horikawa,et al., On fuzzy modeling using fuzzy neural 
networks with the back-propagation algorithm, IEEE Trans.Neural 
Networks 3 pp 801 –806 1992. 

[8] G. Puskorius, L. Feldkamp, Neurocontrol of nonlinear dynamical 
systems with Kalman filter trained recurrent networks, IEEE Trans. 
Neural Networks 5 pp 279—297 1994. 

[9] L. Zadeh. Fuzzy Sets, Inf. Control, vol 8 pp 338-353 1965. 
[10] Mamdani, E. H. and S. Assilian. ,"An experiment in linguistic synthesis 

with a fuzzy logic controller." Int. J. Man-Machine Studies 7 1975. 
[11] S. Shah, F. Palmieri, M. Datum, Optimal ltering algorithms for fast 

learning in feedforward neural Networks, Neural Networks 5 pp 779—
787 1992. 

[12] Kalman, R. E., " A New Approach to linear Filtering and Prediction 
Problems," Transaction of ASME-Journal of basic Engineering, pp 35-
45 1960. 

[13] Aoki, M. , State-Space Modeling of Time Series, Berlin: Springer-
Verlag, 1987. 

[14] S. Singhal, L. Wu, Training multilayer perceptrons with the extended 
Kalman algorithm, in: D. Touretzky Ed.,Advances in Neural 
Information Processing Systems, Vol. 1. Morgan Kaufmann, San Mateo, 
CA, pp 133-140 1989. 


