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Abstract—This paper presents the applicability of artificial 

neural networks for 24 hour ahead solar power generation forecasting 

of a 20 kW photovoltaic system, the developed forecasting is suitable 

for a reliable Microgrid energy management. In total four neural 

networks were proposed, namely: multi-layred perceptron, radial 

basis function, recurrent and a neural network ensemble consisting in 

ensemble of bagged networks. Forecasting reliability of the proposed 

neural networks was carried out in terms forecasting error 

performance basing on statistical and graphical methods. The 

experimental results showed that all the proposed networks achieved 

an acceptable forecasting accuracy. In term of comparison the neural 

network ensemble gives the highest precision forecasting comparing 

to the conventional networks. In fact, each network of the ensemble 

over-fits to some extent and leads to a diversity which enhances the 

noise tolerance and the forecasting generalization performance 

comparing to the conventional networks. 

 
Keywords—Neural network ensemble, Solar power generation, 

24 hour forecasting, Comparative study. 

I. INTRODUCTION 

HE need for more flexible electric systems, changing 

regularity and economic scenarios, energy saving and 

environmental impacts are providing impetus to the 

development of new power system perception. In this regard, 

Microgrid (MG) can be considered as one of the most 

promising concepts; a MG is defined as an integrated power 

delivery system consisting of interconnected loads, storages 

facilities and distributed generation mainly composed of 

Renewable Sources (RS) such as solar and wind energy. As an 

integrated system, a MG can operate in grid-connected or 

autonomous mode (island mode). The optimization of the 

operation cost is an important challenge for MG development 

and competition, that is greatly depending on the management 

of the power generation from renewable sources where the 

generation capacity varies largely with weather conditions, 

hence the usefulness of the RS power generation forecasting. 
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This study focuses on the power generation forecasting of a 

photovoltaic system, recently Artificial Neural Network 

(ANN) has been applied for such purpose regarding to its 

approximation capability of any continuous nonlinear function 

with arbitrary accuracy that offer an effective alternative to 

more traditional statistical techniques proposed so far [1]-[5]. 

Maher and Mohsen (2007) [6] proposed a neuro-fuzy 

network associated to Kalman Filter for both medium-term 

and short-term irradiance forecasting. The neuro-fuzzy 

estimator presents daily time distribution of meteorological 

parameters relying on climatic behavior of the previous day. 

Auto-Regressive Moving Average (ARMA) model of the 

medium-term forecasting is associated to Kalman filter for 

short-term forecasting. J.C. Cao and SH.Cao (2006) [7] 

proposed a Recurrent Back-Propagation Neural Network 

(RBPNN) combined to wavelet analysis to forecast solar 

irradiance that was beforehand sampled into time-frequency 

domain using wavelet transformation, each domain was 

associated to a RBPNN. K.S.Reddy and Manish Ranjan 

(2003) [1] compared a Multi-layred Perceptron Neural 

Network (MLPNN) to other correlation models to estimate 

monthly and hourly values of global radiation. Yingni Jiang 

(2008) [8] proposed a MLPNN to predict actual values of 

monthly mean daily diffuse solar radiation in Zhengzhou 

(China), solar radiation data was collected from nine stations 

in different cities. Eight stations were used for the training 

process while the remaining one was used to test and validate 

the proposed neural network. Mohandes et al [2]  proposed a 

Radial Basis Function Neural Network (RBFNN) to estimate 

the  monthly mean daily values of solar radiation on horizontal 

surfaces, the obtained results was compared with classical 

regression model.  

As mentioned above, several solar radiation parameters has 

been estimated or forecasted in the literature such as: global 

solar radiation, irradiance, irradiation and clearness index. 

Some authors reported that their results can be extended to 

predict solar energy conversion for a photovoltaic system. 

Nevertheless, the prediction error would logically increase 

regarding to the incertitude of the solar system model and the 

deviation between the provided forecasting and the local solar 

radiation level associated to the photovoltaic dispositive. The 

objective of this study is to validate several ANN models that 

supplies an immediate and reliable 24 hour ahead of Solar 

Power Generation (SPG) forecasting for a 20 kW photovoltaic 

system located in Tokyo University of Agriculture and 

Technology (TUAT). In total four ANN’s has been developed, 

consisting on a MLPNN, RBFNN, Recurrent Neural Network 
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(RNN) and Neural Network Ensemble (NNE). Each neural 

network will be evaluated for different ranges of climatic 

conditions basing on error forecasting performance by the 

mean of statistical and graphical methods. 

II. PROPOSED ARTIFICIAL NEURAL NETWORKS 

A. Multi Layred Perceptron Neural Network 

 

Fig. 1. Architecture graph of a MLPNN with two hidden layers 

 

Multi-layred Perceptrons has been applied successfully to 

solve some difficult and diverse problems basing on a 

preliminary supervised training with error back propagation 

algorithm using an error correction learning rule. Basically, 

error back learning consists in two pass through the different 

layers of the network, a forward pass and backward pass. In 

the forward pass an activity pattern (input vector) is applied to 

the sensory nodes of the network, its effect propagates through 

the network layer by layer to produce an output as actual 

response. During the backward pass synaptic weights are 

adjusted in accordance to an error correction-rule. The error 

signal (subtracted from a desired value) is then propagated 

backward through the network against the direction of the 

synaptic connections [9]. In general MLPNN’s can have 

several hidden layers (Fig.1), however according to 

K.M.Hornik [10] a neural network with single hidden layer is 

able to approximate a function of any complexity. If we 

consider a MLPNN with one hidden layer, tanh as an 

activation function and a linear output unit, the equation 

describing the network structure can be expressed as: 

 

1 1

tanh( )
q p

k ok jk oj ij i
j i

o v v w w x
= =

= +∑ ∑                   (1) 

 

Where ok is the output of the k
th

 output unit, vjk and woj  are the 

network weights, p is the number of network inputs, and q is 

the number of hidden units. During the training process, 

weights are adjusted in such a way that the difference between 

the obtained outputs ok and the desired outputs dk is 

minimized, which is usually done by minimizing the following 

error function: 

 

( )
2

1 1
, ,

r n

k e

E d oe k e k
= =

= −∑ ∑                             (2) 

Where r is the number of network outputs and n is the number 

of training examples. The minimization of the error function is 

usually done by gradient descent methods, which have been 

extensively studied in the field of optimization theory [11]. 

B. Radial Basis Function Neural Network 
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Fig. 2.  Architecture graph of a RBFNN 

 

RBFNN’s have been successfully employed in many real 

world tasks in which they have proved to be a valuable 

alternative to MLPNN’s since it requires less computing 

power and time. These tasks include chaotic time-series 

prediction, speech recognition, and data classification [12]. 

Furthermore, given a sufficient number of hidden units a 

RBFNN is considered as a universal approximator for any 

continuous functions. [13]. The construction of a RBFNN in 

its most basic structure (Fig.2) involves three layers with 

entirely different roles. The input Layer is made up of a source 

node that connects the network to its external environment, the 

second layer which is the only hidden layer in the network, 

applies a non linear transformation from the input space to the 

hidden space. In most applications the hidden space is of high 

dimensionality, which is directly related to the network 

capacity to approximate a smooth input-output mapping. The 

output layer is linear, supplying the response of the network to 

the pattern applied to the input layer [9]. 

If we consider a RBFNN with a single output node that 

computes a linear combination of the hidden units outputs, 

parameterized by the weights w between hidden and output 

layers, the function computed by the network is therefore 

expressed as: 

 

1

( , )
k

b b
b

f w W Sξ
=

= ∑                                         (3) 

 

Where ξ is the vector applied to the input units and Sb denotes 

the basis function b, each of the N components of the input 

vector  ξ feeds forward to K basis functions whose outputs are 

linearly combined with weights { }
1

k
W b b=

 into the network 

output ),( wf ξ . The most common choice for the basis 

functions is the Gaussian, in this case the function computed 

becomes: 
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Where each hidden node is parameterized by two quantities: 

the center m in input space, that corresponds to the vector 
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defined by the weights between the node and the input nodes, 

and the width σB. 

 

C. Recurrent Neural Network 

 

 
 

 
Fig. 3. Architecture graph of the proposed RNN 

 

Recurrent networks are neural networks with one or more 

feedback loops, the feedback could be of a local or global 

type. Starting from a MLPNN as a basic building structure, the 

global feedback can take various forms: like a feedback from 

the output neurons to the input layer or from the hidden 

neurons of the network to the input layers or even booth (when 

the MLPNN has two or more hidden layers, the possible forms 

of feedback are expanded). The application of feedback 

enables RNN to acquire state representations, which make it a 

suitable device for nonlinear prediction and modeling [9]. 

In this study, a nonlinear autoregressive with exogenous 

inputs (NARX) RNN is developed (Fig.3). The network has 

input applied to a tapped-delay-line memory of q units, with a 

single output that is fed back to the input via another similar 

tapped-delay-line memory, the content of these two memories 

are used to feed the input layer of the MLPNN. The present 

input is denoted by u(n), and the corresponding output is 

denoted by y(n+1). Thus, the signal vector applied to the input 

layer of the MLPNN consists of: 

 

 

• Present and past values of input, namely u(n), u(n-1)….., 

u(n-q+1), which represent exogenous inputs originating 

from outside the network. 

 

• Delayed values of the output, namely, y(n), y(n-1),…., 

y(n-q+1), which the model output is regressed. 

 

The recurrent network of the Fig.3 is referred to as a 

nonlinear autoregressive with exogenous input, this model is 

described by the following relation: 

 

( 1) ( ( ),..., ( 1),..., ( 1))y n F u n y n q u n q+ = − + − +                   (5) 

 

 

where F is a nonlinear function of its arguments. 

 

D. Neural Network Ensemble 
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Fig. 4. Framework of a Bagged Neural Network Ensemble 

 

Although an ANN is providing a relevant methodology for 

solving several types of nonlinear problems, it is still 

considered as an unstable learning model [14]. In fact, the 

changes on training data and the architecture of the network 

which incorporate: the number of hidden layer, the number of 

neurons and the initial connections weights has an effect on 

the network training and predicting performance. Moreover 

the use of a single neural network in case of noise presence in 

training data set can constraint to over-fitting problems so that 

the training process always fail into a local optimum unstable 

solution with low forecasting accuracy. On the other hand, 

there are no systematic investigation for those issues, mostly 

researchers has adopted trial and error methodology to deal 

with these inconsistencies [15]. In this study a neural 

ensemble is proposed to improve the learning model 

performance effectively. In fact, when building bagged neural 

network ensemble (Fig.4), each network ψb(x) is associated to 

a training set Db that belongs to the original training set D, so 

that a networks ensemble { }
1

( )
B

b
x

=
Ψ is obtained. Each network 

among the ensemble will constitute a base predictor, the 

forecasting result of each network is aggregated basing on 

their average values to get the grand total predictor ensemble 

ψBag(x). Indeed, as the noise is varying among the ensemble 

networks, the averaging ensemble tends to mitigate the noise 

parts by retraining the fitting to the regularities of the data. 

 

In the present study, an ensemble of bagged neural networks 

consisting in: MLPNN, RBFNN and RNN is proposed. The 

NNE provides a forecasting based on the average of the 

MLPNN, RNN and RBFNN outputs (Fig.5). The NNE could 

be also composed of similar types of neural networks, where 

the framework and training data set related to each network 

would be coherently differs from network to another. 
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Fig. 5. Architecture of the proposed neural network ensemble 

III. METHODOLOGY 

Input training data are composed of hourly and daily 

weather parameters recorded during 2007 and 2008. Vapor 

pressure, humidity, cloud coverage and sunshine duration was 

collected by Japan Meteorological Agency in the local area of 

TUAT, while the maximum, minimum and average 

temperature, irradiation and the SPG output was recorded in 

TUAT University (Fig.6). Validation samples were used to 

avoid over fitting problems by setting up stopping points for 

the training process. In order to evaluate the reliability of the 

developed ANN’s for different ranges of climatic conditions, 

the testing data set were split into 4 seasons namely: Winter 

(December, January and February), Spring (March, April, 

May), Summer (June, July and August) and Fall (September, 

October and November) where five days from each month 

were selected randomly for the testing of each ANN. 

 

 
 

Fig. 6. Inputs and outputs for the proposed ANN’s 

The rescaling (normalization) of the input training data is 

important to improve the training convergence of an ANN 

[16]-[18], mean 0 and standard deviation 1 based Across 

Chanel Normalization [19] was used for the input training set 

rescaling basing on the following relations: 
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where  

N
mean

N

i
ix∑

−= 1
 

Xi is the raw input variable X in the i
th 

training case 

Si is the standardized value corresponding to Xi 

N is the number of training case 

 

The target variables were linearly normalized in order to 

force the network values to be within the range of output 

activation functions using upper (Ymax) and lower bounds 

(Ymin) for the values: 

max min

max min

2

2

i

i

Y Y
Y

Z
Y Y

−
−

=
−

                            (7) 

where     

               Yi  is the raw target variable Y for the i
th 

training case 

Zi  is the standardized value corresponding to Yi 

 

The network framework of the MLPNN, RNN and RBFNN 

was set out basing on trial and error approach. In fact, the 

networks were trained for a fixed number of epochs, 

performance of the MLPNN and the RNN was evaluated by 

changing the number of the hidden nodes, while no significant 

decrease of the error was noticed above 27 hidden nodes and 

as referred previously, only one single hidden layer was 

sufficient for the proposed forecasting task. On the other hand, 

RBFNN was evolved to get round over fitting problem in 

relation to the choice of the network framework, the proposed 

RBFNN was build up of 300 hidden neurons. 

IV. RESULTS AND DISCUSSION 

Several performance criteria are reported in the ANN 

literature as: the training time, the modeling time and the 

forecasting error. In the present study, as the training process 

is in offline mode, the first two criteria are not considered to 

be relevant. Thereby, the forecasting performance will be 

evaluated only in term of forecasting error, defined as the 

difference between the actual and the forecasted values basing 

on statistical and graphical approaches. 

Mean Average Deviation (MAD) and Mean Absolute 

Percentage Error (MAPE) defined respectively in (8) and (9), 

were applied as statistical error test criteria. While a 

correlation graph between the forecasted and the actual values 

(Fig.7), a 2-D error prediction form (Fig.8), and 24 hour SPG 

comparative forecasting (Fig.9) are presented as graphical 

error performance criteria. 
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  where  

Sd,i  is the i
th

 desired value (actual),  

Sf,i  is the i
th

 forecasted value, 

N is the total number of observations. 
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Fig. 7. Correlation between the actual and the forecasted SPG 

 

Figure 7 presents a correlation analysis for the testing data 

set, so as to the four ANN’s. It is clear that the proposed NNE 

gives the best forecasting matching with the actual data along 

the diagonal axis. In fact, the SPG forecasting error 

performance differs from network to network in relation to the 

current meteorological conditions (power generation). The 

RBFNN seems to have a narrower scatter along the matching 

diagonal axis then the MLPNN or RNN for low SPG levels.  

However for higher SPG levels, the RNN have the best 

accuracy. Thereby, for a larger interval of SPG level, the NNE 

combination based on the average forecasting provided by the  
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                  Fig. 9. Prediction error for testing data set 
 

conventional ANN’s. Indeed, the scatter along the whole 

matching diagonal line of the NNE correlation curve is the 

narrowest and the most stable comparing to the other ANN’s. 

Figure8 represents a daily 2-D prediction error graph in kWh 

for the proposed ANN’s during sixty days, where it can be 

observed that the NNE has the highest prediction success with 

the smallest forecasting error. Figure 9 shows 24 hour SPG 

forecasting projected by the four developed ANN’s, the 

forecasted days were selected randomly among each season 

data sample, comparing to the actual SPG, the NNE have the 

most accurate forecasting. 
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The same conclusion was also carried out basing on 

statistical error forecasting performances shown in Table 1. In 

fact, referring to the MAD and MAPE criteria, we can observe 

that the proposed NNE has the lowest forecasting error 

including different testing data sets of winter, spring, summer 

and fall. On the other hand RBFNN, RNN and MLPNN 

achieved also a reasonable forecasting accuracy, among the 

previous conventional neural networks the RBFNN presented 

the best overall results, while the MLPNN achieved the lowest 

forecasting accuracy. In fact the RBFNN can overcome 

several limitations of MLPNN and RNN such as a highly non-

linear weights update and the slow convergence rate. 

 
TABLE I 

STATISTICAL ERROR FOR DIFFERENT ANN’S 

 RNN RBFNN MLPNN NNE 

Winter 
MAPE 3.9832 3.5127 3.9344 2.7867 

MAD 0.2127 0.1844 0.2485 0.1680 

Spring 
MAPE 6.2676 5.1788 5.2498 4.1313 

MAD 0.3840 0.4557 0.4273 0.3055 

Summer 
MAPE 7.2161 5.7643 6.6321 4.6816 

MAD 0.4011 0.3705 0.4473 0.2870 

Fall 
MAPE 5.8278 4.0373 5.9481 3.6387 

MAD 0.2395 0.1730 0.2694 0.1572 

 

V. CONCLUSION 

In this study, four neural networks were developed and 

applied to a 24 hour ahead forecasting of solar power 

generation for a 20 kW photovoltaic field. The forecasting 

reliability was evaluated in term of forecasting error basing on 

graphical and statistical approaches. The experimental results 

showed that the NNE achieved a higher forecasting accuracy 

than conventional MLPNN, RBFNN and RNN. In fact, the 

NNE can improve the generalization and noise tolerance of 

learning systems effectively through aggregating numbers of 

neural networks with different models and diverse training 

data from the original source data set. The conventional neural 

networks fulfilled also an acceptable forecasting accuracy: in 

comparison, the RBFNN performed better than MLPNN and 

RNN while the MLPNN achieved the lowest forecasting 

accuracy. 

Further application of the proposed ensemble will include 

distributed intelligent management system for the cost 

optimization of a MG. In fact, the knowledge of future 

available SPG let the system to store energy in advance or 

inject into the main grid, offering more flexibility to take 

advantage of real time electricity pricing. 

REFERENCES   

[1] Reddy K.S. and Manish R, ‘‘Solar resource estimation using artificial 

neural networks and comparison with other correlation models,’’ Energy 

Conversion and Management, 2003, Vol. 44, pp.2519–2530. 

[2] Mohandes M, Balghonaim A, Kassas M, Rehman S, Halawani. ‘‘Use of 

radial basis functions for estimating monthly mean daily solar 

radiation;’’ Sol Energy, 2000;68(2):161–8. 

[3] Mellit, A. and Kalogirou, S.A. ‘‘Artificial intelligence techniques for 

photovoltaic applications: a review,’’ Progress in Energy and 

Combustion Science, 2008, Vol. 34, pp.574–632. 

[4] A. Mellit ‘‘Artificial Intelligence technique for modeling and forecasting 

of solar radiation data: a review,’’ International Journal of Artificial 

Intelligence and Soft Computing, 2008, Volume 1 , Issue 1, pp 52-76 

[5] SA. Kalogirou, ‘‘Artificial Neural Networks in Renewable Energy 

Systems: A Review,’’ Renewable & Sustainable Energy Reviews, 2001, 

Vol. 5, No. 4, pp. 373-401. 

[6] CHAABENE Maher, BEN AMMAR Mohsen, ‘‘Neuro-Fuzzy Dynamic 

Model with Kalman Filter to Forecast Irradiance and Temperature for 

Solar Energy Systems,’’ Renew Energy, 2008, pages 1435-1443. 

[7] J.C Cao,. and, S.H. Cao ‘‘Study of forecasting solar irradiance using 

neural networks with preprocessing sample data by wavelet analysis’, 

Energy, 2006, Vol. 3, pp.13435–13445. 

[8] YINGNI JIANG, ‘‘Prediction of monthly mean daily diffuse solar 

radiation using artificial neural networks and comparison with other 

empirical models,’’ Energy policy, 2008, vol.36,n10,pp.3833-3837.  

[9] Simon Haykin, Neural Networks. A Comprehensive Foundation, 2nd 

Edition, Prentice Hall, 1999. 
[10] K.M.Hornik, M. Stinchcombe, H.White, ‘‘Multilayer Feedforward 

Networks are Universal Approximators,’’ Neural Networks, 1989, 

2(2):pp. 359-366. 

[11] R. Fletcher. Practical ‘‘Methods of Optimization,’’ 2nd ed. Wiley, 

Chichester, 1990. 

[12] Cornelius T.Leondes, Neural Network Systems Techniques and 

Applications, Volume 1 ofNeural Network Systems architecture and 

applications, Academic Press, 1998. 

[13] E. J. Hartman, J. D. Keeler, and J. M. Kowalski, ‘‘Layered neural 

networks with gaussian hidden units as universal approximators,’’ 

Neural Comput, 1990, 2:210-215. 

[14]  ZHANG Gao, FAN Ming, ZHAO Hongling, ‘‘Bagging Neural 

Networks for Predicting Water Consumption,’’ Journal of 

Communication and Computer, 2005, Volume 2, No.3 (Serial No.4). 

[15] Hansen LK, Salamon P ‘‘Neural network ensembles,’’ IEEE Trans 

Pattern Anal, 1990; 12(10):993-1001. 

[16] D., Liew, A.C. and Chang, C.S., ‘‘A neural network short-term load 

forecaster,’’ Electric Power Systems Research, 1994 , 28, pp. 227–234  

[17] J. Sola and J. Sevilla, ‘‘Importance of data normalization for the 

application of neural networks to complex industrial problems,’’ IEEE 

Transactions on Nuclear Science, 1997, 44(3) 1464–1468. 

[18] Guoqiang Zhang, B. Eddy Patuwo and Michael Y. Hu, ‘‘Forecasting 

with artificial neural networks:The state of the art,’’ International 

Journal of Forecasting, 1998, Volume 14, Issue 1, Pages 35-62. 

[19] Azoff, E.M., ‘‘Neural Network Time Series Forecasting of Financial 

Markets,’’ John Wiley and Sons, Chichester, 1994. 

 


