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Abstract—In this paper the neural network-based controller is 

designed for motion control of a mobile robot. This paper treats the 
problems of trajectory following and posture stabilization of the 
mobile robot with nonholonomic constraints. For this purpose the 
recurrent neural network with one hidden layer is used. It learns 
relationship between linear velocities and error positions of the 
mobile robot. This neural network is trained on-line using the 
backpropagation optimization algorithm with an adaptive learning 
rate. The optimization algorithm is performed at each sample time to 
compute the optimal control inputs. The performance of the proposed 
system is investigated using a kinematic model of the mobile robot.  
 

Keywords—Mobile robot, kinematic model, neural network, 
motion control, adaptive learning rate.  
 

I. INTRODUCTION 
EURAL NETWORKS are recommended for intelligent 
control as a part of well known structures with adaptive 

critic [1], [2], [3]. Recently, much research has been done on 
applications of neural networks for control of nonlinear 
dynamic processes [4], [5]. These works are supported by two 
of the most important capabilities of neural networks; their 
ability to learn and their good performance for the 
approximation of nonlinear functions [6]. At present, most of 
the works on system control using neural networks are based 
on multilayer feedforward neural networks with 
backpropogation learning or more efficient variations of this 
algorithm [4]. It has been shown [6] that a neural network 
with one hidden layer with an arbitrarily large number of 
neurons in the hidden layer can be approximate any 
continuous functions over a compact subnet of nℜ . 

The neural network-based control of mobile robots has 
recently been the subject of intense research [7]. It is usual to 
work with kinematic models of mobile robot to obtain stable 
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motion control laws for  trajectory following or goal reaching 
[8], [9]. The most authors solved the problem of mobile robot 
motion control and stability using nonlinear backstepping 
algorithm [10], [11]. Fierro and Lewis [12] developed a neural 
network based model by combining the backstepping tracking 
technique and a torque controller, using a multi-layer 
feedforward neural network, where the neural network can 
learn the dynamics of the mobile robot by its on-line learning. 
But the control algorithm and the neural network learning 
algorithm are very complicated and it is computationally 
expensive. In [13] a single-layer neural network based 
controller for robot is proposed. This approach does not 
include any nonholonomic kinematics therefore it can not be 
used for robot with kinematic constraints. However, the 
problem of control of mobile robots has attracted the interest 
of researchers in view of its theoretical challenges. In fact, 
these systems are a typical example of nonholonomic 
mechanisms due to the perfect rolling constraints (no 
longitudinal or lateral slipping of the wheels). 

In this paper we used a recurrent neural network for 
controlling the mobile robot with nonholonomic constraints. 
This network is trained on-line using the backpropagation 
optimization algorithm with an adaptive learning rate [14], 
[15]. The optimization algorithm is performed at each sample 
time to compute the optimal control inputs. This is a simple 
control system and computationally very effective for real-
time requirements.   

II. CONTROL SYSTEM OF MOBILE ROBOT 
The proposed neural network control system is shown in 

Fig. 1.  
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Fig. 1 Mobile robot motion control system 
 

The control system consists of the neural network 
controller, the kinematic model of mobile robot, a reference 
trajectory generator and an encoder which provides odometric 
information. In this section the kinematic model of mobile 
robot with differential drive and convergence conditions of 
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overall control structures are described. Design of neural 
network controller will be presented in the next section. 

A. Kinematic Model of Mobile Robot 
In this paper the mobile robot with differential drive is used 

(Fig. 2). The robot has two driving wheels mounted on the 
same axis and a free front wheel. The two driving wheels are 
independently driven by two actuators to achieve both the 
transition and orientation. The position of the mobile robot in 
the global frame {X,O,Y} can be defined by the position of the 
mass center of the mobile robot system, denoted by C, or 
alternatively by position A, which is the center of mobile robot 
gear, and the angle between robot local frame {xm,C,ym} and 
global frame. 
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Fig. 2 The representation of a nonholonomic mobile robot 
 
Kinematic equations of the two-wheeled mobile robot are:  
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where x and y are coordinates of the center of mobile robot 
gear, θ is the angle that represents the orientation of the 
vehicle, v and ω are linear and angular velocities of the 
vehicle, vR and vL are velocities of right and left wheels, r is a 
wheel diameter and D is the mobile robot base length.    

Combining equations (1) and (2) yields: 
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Inputs of kinematic model of mobile robot are velocities of 
right and left wheels vR and vL.  

The constraint that the wheel cannot slip in the lateral 
direction is: 
 
 0cossin =−+ θθθ &&& dyx . (4) 
 

The stability conditions of mobile robot system with PI 
controller will be investigated in the next subsection.  

B. Convergence Condition of Control System 
The feedback control system of mobile robot is shown in 

Fig. 3.  
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Fig. 3 Mobile robot control system 
 
The time derivation of mobile robot output yields: 
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or 
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The equation (6) can be rewritten in compact form as: 
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where J is Jacobian matrix. 

It is required that the position error vector go exponentially 
to a zero as a function of time: 
 

 0=+ Kee
dt
d , (8) 

 
where ei=ei,0exp(-kt). 
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This requirement is satisfied with the following control law: 
 
 rr xxxKv &+−= )( , (9) 
 
where matrix K need to be positive definitive. On the other 
words the following relation hold: 
 
 0, 21 >kk , (10) 
where k1 and k2 are elements of the matrix K, respectivelly: 
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Using equation (8) velocities of the right and left wheels: 
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The Jacobian matrix J is a non-singular one so as to assure 

that a control law based on the inversion of J is possible. 
Various controller parameters were tested by using 

lamniscate desired motion trajectories. The controller 
parameters, which ensure the good tracking performance is 
found to be: 
 
 k1=102.9822, k2=1.3536. (13) 
 

On the basis of this velocity controller, the neural network 
controller will be designed in the next section. 

III. NEURAL NETWORK CONTROL DESIGN 
In design of velocity mobile robot controller the following 

simplifications are assumed: 
 Kinematic model is captured by first order differential 
equation. 
 Assume that an arbitrary commanded speed can be 
achieved (instantaneously). 

Under these simplifications, results are expected: 
 Exponential convergence of trajectory to desired 
trajectory. 
 Speed of convergence can be tuned. 

B. Design of Neural Network Controller  
A neural network (NN) performs the system model 

identification that will be used to design the appropriate 
intelligent mobile robot controller. The usage of NN for 
controlling a mobile robot is justified from the following 
reasons: the operational conditions considered raises complex 
nonholonomic mobile robot kinematics and NN has universal 
approximation and supervised learning capabilities. 

The neural network controller in Fig. 4, based on the 
recurrent network architecture, has a time-variant feature: 
once a trajectory is learned, the following learning takes a 
shorter time.  

The dynamic neural network is composed of two layered 
static neural network with feedbacks (one hidden and one 
output layers) (Fig. 5). The hidden layer contains ten 
tansigmoidal neurons and the output layer has one neuron 
with a linear activation function.  

It is important to note that rather then learning explicit 
trajectories, the neural network controller learns the 
relationship between linear velocities and position errors of 
the mobile robot. This network is trained using the 
backpropagation algorithm through time with an adaptive 
learning rate [14] and [15]. In the training phase the network 
is presented with a series of input-answer pairs. 
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Fig. 4 Neural network learning architecture 
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Fig. 5 Dynamical neural network 
 
The network’s current output vk is compared with the 

desired input ek, and the errors are used to correct the weights 
in order to reduce the network’s error on this input: 
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Synaptic weights are updated as  
 
 ijjiji vtwtw ηδ+=+ )()1( , (16) 
 jkkjkj vtwtw ηδ+=+ )()1( , (17) 
 
where η is the learning rate, δj is the error gradient at unit j, δk 
is the error at unit k and vi and vj are the outputs of unit i and j, 
respectively.  
A unifying framework for neural networks that encompasses 
process identification concept is to view neural network 
training as a nonlinear optimization problem: 

 

 )(min wJ
w

. (18) 

 
That is, we need to find values for neural network 

parameters w (weight vector) for which some cost function 
)(wJ is minimized.  

Let us assume that the controller is described by the 
following time difference equation: 
 
 ))(),...,();(),...,1(()( mtetentvtvftv −−−= , (19) 
 
where v(t) is the process output at time t depends on the past n 
output values and on the past m values of the input e. For 
identification plant model the neural network is used in the 
following form: 
 
 ))(),...,();(),...,1((),( mtetentvtvftv wn −−−=w , (20) 
 
where mn ≥ for physically realizable systems. 

Here fw(·) represents the nonlinear input-output map of the 
neural network which approximates the controller mapping f 
(·). The input to the neural network includes the past values of 
the controller output.  

The training process for neural network modeling can be 
expressed as the minimization of an error measure. If the 
sampled process data are collected over a period [0,T], the 
cost function  J(w) is defined as: 

 

                     ∑
=

−=
T

t
n tvtvtJ

0

2)],()([)( ww, .                 (21) 

 
In our algorithm [14], [15] we define relationship between 

ΔJ(w,t) and J(w,t) by the relative factor χ(t):  
 

             
),(

)1,(),(
),(
),()(

tJ
t-JtJ

tJ
tΔJt

w
ww

w
w −

==χ .              (22) 

 

Then, we determine how to adjust learning rate term 
according to the relative factor χ. The adjustment of the 
learning rate is given as follows: 

)1,0(   ],))(sgn(1)[()1( )( ∈⋅−=+ − υυχηη χ tettt         (23) 
 

The learning rate is adjusted at each iteration according to 
Eqs. 6 and 7. The algorithm proceeds as follows. First, we 
select the number of neurons in hidden and output layers, 
initial value of learning rate and the parameter υ. Then, the 
training process in the closed control loop is performed for 
various values of parameter υ, υ∈[0,1]. We adopt the value of 
υ for which a satisfactory identification performance is 
achieved. Our neural network has 10 sigmoid neurons in 
hidden layer and 2 linear neurons in its output layer. The 
proposed algorithm starts with the same initial learning rate 
η=0.02 for both layers. The good results were obtained with 
υ=0.71.  

The trajectory tracking performance obtained by adopted 
neural controller will be shown in the following section.  

IV. SIMULATION RESULTS 
The effectiveness of the neural network controllers is 

demonstrated in the case of tracking of a lamniscate curve. 
The trajectory tracking problem for a mobile robot is based on 
a virtual reference robot [16] that has to be tracked. The 
overall system is designed and implemented within 
Matlab/Simulink environment. We consider the following 
profiles: position, orientation, linear and angular velocities. 

The simulation results obtained by neural network 
controller are shown in Figs. 6-13. Results achieved in Figs. 
6-10 demonstrate the good position tracking performance. 
Also, a desired orientation during robot motion is following in 
satisfactory manner, which is depicted in Fig. 11. The 
proposed neural controller ensures small values of the control 
input velocities (linear) for obtaining the reference position 
trajectories (Figs. 12 and 13). This mean that smaller power of 
DC motors is requested.  
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Fig. 6 Tracking the lamniscate trajectory 
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Fig. 7 Time history of x coordinate 
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Fig. 8 X coordinate error 
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Fig. 9 Time history of y coordinate 
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Fig. 10 Y coordinate error 
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Fig. 11 Time response of robot orientation 
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Fig. 12 Linear velocity of right wheel 
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Fig. 13 Linear velocity of left wheel 

V. CONCLUSION 
This paper presented a design of the neural network-based 

velocity controller for the kinematic model of mobile robot 
with differential drive. The proposed neural controller has two 
inputs (position errors of wheels) and two outputs (velocities 
of wheels). It is trained on-line through controlling of the 
mobile robot by PD controller. For this purpose the 
backpropagation algorithm with adaptive learning rate is 
applied. Simulation results demonstrate the effectiveness of 
the proposed neural network-based control system. 
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