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Abstract—A network of coupled stochastic oscillators is 

proposed for modeling of a cluster of entangled qubits that is 
exploited as a computation resource in one-way quantum 
computation schemes.  A  qubit  model has been designed  as a 
stochastic oscillator  formed by a pair  of coupled limit cycle 
oscillators with chaotically modulated limit cycle radii and   
frequencies. The qubit  simulates the behavior of electric field of 
polarized light beam and adequately imitates the states of two-level 
quantum system. A cluster of entangled qubits  can be  associated 
with  a beam of  polarized light, light polarization degree  being 
directly related to cluster entanglement degree. Oscillatory network, 
imitating qubit cluster, is designed, and  system of equations for 
network dynamics has been written. The constructions of one-qubit 
gates are suggested. Changing of cluster entanglement degree  caused 
by measurements can be exactly calculated. 
 

Keywords—network of  stochastic oscillators,  one-way quantum  
computations,  a beam of polarized  light.  

I. INTRODUCTION 
UANTUM computations is the interdisciplinary research 
field undergoing  active development  Currently both 

quantum physicians and information theory  experts focused 
their attention on theoretical analysis and experimental 
realizations of  quantum computation algorithms.  After the 
discovery of  Shor’s quantum algorithm for large number 
factorization  it become  clear that quantum algorithms are 
capable to provide an effective solution to some mathematical 
problems for which exist no effective classical  algorithms. 
The development theoretical foundation of quantum 
calculations stimulated  the  appearance  of   quantum 
informatics, a new research field arisen at the intersection of 
quantum physics and information theory [2-4].    

  Quantum computation  algorithms are based  on evolution 
of some quantum system  and  exploitation of quantum 
physics  laws  for  computation  performance.  Sometimes it  
permits  to  realize a specific type of  algorithm  parallelization  
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 that is not inherent to traditional parallel algorithms, 
including  neural network ones.  The majority of quantum 
computation schemes is based on construction of a set one-
qubit and two-qubit gates controlling  evolution of quantum 
system. One-qubit gates provide modification  of single qubit 
states whereas two-qubit gates specify qubit interactions. The 
information readout is implemented  via a sequence of 
measurements over qubit states. The measurements inevitably  
destroy a coherent state of quantum system, and it is a matter 
of  great difficulties.  
       In 2001 a significantly new type of  quantum  
computation scheme has been proposed   – so called one-way, 
or cluster  quantum computations (CQC) [5 -7]. The feature of 
one-way QC is that the sequence of measurements, necessary 
to readout the information from qubit cluster, is explicitly 
included  in CQC computation scheme. So, each qubit cluster, 
initially prepared in maximally entangled state, undergoes  
irreversible evolution via one-qubit measurements in the 
process of computations. As a result the cluster can be used 
for computations only once. The choice of measurement 
sequence just defines the quantum computation algorithm 
itself. As it turned out, the CQC scheme is ideally suitable for 
realization of  Grover’s algorithm [2].   The significant feature 
of CQC  is that the  information processing in the schemes  is  
really performed at  classical level, although  quantum  
physics  principles  have been used in preparation of  a cluster 
of  entangled qubits.  So,  it  seems natural to expect that  
CQC computation schemes could  be formulated in terms of  
evolution of proper artificial neural  network. In the paper we 
just try to develop a network  approach to the problem. The 
preliminary design of proper  oscillatory model of single qubit 
was of one of our goals. The qubit model should be capable to 
adequately imitate the features of two-level quantum  system. 
Our oscillator qubit is constructed as a pair of coupled limit 
cycle oscillators with chaotically modulated limit cycle sized 
and  frequencies.  After that we designed a network of  
stochastic coupled oscillators as a model of  cluster of 
entangled qubits. Further we associated the qubit model with a 
beam of polarized light, that is  one of adequate physical 
realization of qubit, and related cluster entanglement  to light  
polarization  degree. Thus cluster entanglement destruction, 
caused by measurements, was related to polarization degree 
increasing due to external optical device actions on polarized 
light beam.  The designed one–qubit gates just imitate actions 
of typical optical devices on polarized light beam.    
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II.  QUANTUM  AND CLASSICAL LEVELS OF DESCRIPTION OF 
QUASI-MONOCHROMATIC   POLARIZED FIGHT. 

A qubit (quantum bit of information) can be described as a 
two-level quantum-mechanical system that can be either in a 
pure or in a mixed quantum state.  Mixed state is understood 
as a state of  statistical ensemble of  identical quantum 
systems and is described by density operator (density matrix) 
ρ̂  satisfying the conditions 

                         ˆ ˆdet 0, 1.Trρ ρ≥ =                             (1) 
In the case of pure qubit state, defined by a column state 

function  |ψ〈 , the density operator is reduced to one-

dimensional projector onto the state |ψ〈 ,  | | .ˆψ ψ ψρ 〉〈=  

Here we use traditional notations:  operator | |A ψ ϕ= 〉〈  of 
rank 1 acts on state |χ〈  by formula | | | ,A χ ψ ϕ χ〉 = 〉〈 〉  
where |ϕ ψ〈 〉  is the inner product. If one uses the basis 

{(1 0) , (0 1) }{ }, T T
x ye e =r r ,  it is convenient to introduce the 

basis of Pauli  matrices in real space of Hermitian matrices 
and  present the density operator in the form 
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ˆ ˆ ˆˆ ˆ ˆ, , ,( ) ( ) ( )x y zx y zp p pTr Tr Trρσ ρσ ρσ= = =       (3) 

 
and  ( , , )x y zP p p p= are Stokes parameters. From the 

condition det ˆ 0ρ ≥  it follows the restriction on P: 
2 2 2 1x y zp p p+ + ≤ . Pure states are characterized  by the 

condition  2 2 2 1x y zp p p+ + =  and form the Bloch sphere 

(which  is known as Poincare sphere in optics).  
The Stoke parameters are also used for polarization 

description of classical  electromagnetic radiation in terms of  
intensity,  degree of polarization, shape and orientation of the 
polarization ellipse. Moreover, a beam  of quasi-
monochromatic light can be equivalently described both at 
quantum  level (as an  ensemble of photons)   and  at classical 
level, in frames of classical electromagnetic field theory. At 
quantum level of description a beam of quasi-monochromatic 
light is considered as photon beam  propagating in a direction  

specified by vector k
r

. It can be described as statistical 
ensemble of photons with moment  ( / )p ch c kω=

rr   and 

polarization state defined by two-dimensional unit vector   er , 

located in the plane orthogonal to k
r

.  Stokes parameters  
characterize the ensemble in a mixed state from the viewpoint 
of its representation by a superposition of two sub-ensembles 
in pure states with polarization vectors xer  and  .yer  In the 

case of coherent superposition of the sub-ensembles we have a 
beam of fully polarized  photons, in the case of completely 
non-coherent  superposition – a beam of unpolarized photons, 
and in an intermediate case of partially coherent  superposition 
– a beam of partially polarized photons.  

From the viewpoint of classical  electrodynamics a beam of 
quasi-monochromatic light is a plane quasi-monochromatic 

electromagnetic wave, specified by  propagation vector  k
r

. 

Electrical field vector ( )E t
r

 of the electromagnetic wave,  

located in the plane orthogonal to k
r

 (electromagnetic wave 
transversality),  can be written as 

 
( )( ) i i

x x y yE E Et e e e eα α δ+= +⋅ ⋅
r r r

, ( ) ( ) 0, ,x ye k e k= =
r rr r

.  

 
For adequate description of light  polarization in terms of  

wave electrical field one should consider ( )E t
r

 is as a two-

dimensional stationary random function of time. Let ( )E t
r

 be 

the mean of random function ( )E t
r

 and so   

( ) ( ) ( )E t E t E t= −
r r

%  be the fluctuation of ( )E t
r

. For 

stationary random functions the mean ( )E t
r

 coincides with the 

mean over time , ( )E t〈 〉
r

 , that is 

      1( ) ( ) lim (2 ) ( ) .
T

T
TE t E t T E t dt−

−
→∞= 〈 〉 ≡ ∫

r r r
 

There is the following relation between the coherence 
matrix Ĵ of quasi-monochromatic light beam in the basis 
{ },x ye er r
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and correlation matrix  D̂   of  random  function ( )E t
r

: 
 

    
*

(0) (0) ,

( ) ( ) ( )
mn mn mn m n

mn m n

J D D E E

D E t E tτ τ τ

= = + 〈 〉〈 〉

= 〈 + + 〉

%

% % %
                  (5) 

In optics Stokes parameters, denoted as Q, U, V, 
characterize polarization state of light beam. In the basis 
{ },x ye er r

 there is the following relation between light intensity 

I,  Stokes parameters and coherence matrix Ĵ : 

11 22 11 22

12 21 12 21(
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, ),

I J J

J i J

J Q J

U J V J

= =

= = −

+ −

− −
                              (6)          
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or 
2 2 2 2, ,

2 cos( ) , 2 sin( ) .
x y x y

x y x y

I E E Q E E

U E E V E Eδ δ

= 〈 〉 + 〈 〉 = 〈 〉 〈 〉

= 〈 〉 = 〈 〉

−
                  (7) 

The Stokes parameters describe form and orientation of 
polarization ellipse – the projection onto the plane, orthogonal 

to  vector  k
r

, of the curve, that the end of random vector 

( )E t
r

 traces  out  in  the space. If we denote by  β   the angle 

between   xer   and  large ellipse semiaxis and  by ε  the angle,  
characterizing  the  ratio  of ellipse  semiaxes (so as  

min max| | / | |( ) E Etg ε = ), then the following relations are 
valid 
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The optical Stokes parameters Q, U, V,  are related to Stokes 
parameters , ,x y zp p p , defined in eq. (3), as 

         / , / , / .x y zp U I p V I p Q I= = =                       (9) 

The inequality  2 2 2 2Q U V I+ + ≤  is   fulfilled for optical  
Stokes parameters  (the equality  takes place  in the case of 
fully polarized light). The value 2 2 2 1/ 2( ) /Q U Vp I= + +  
defines  the degree of light  polarization   (the  part of fully 
polarized  component of light  in total light beam).     

So, as we can see, polarization state of classical quasi-
monochromatic light preserves all the properties of  quantum 
photon beam as two-level quantum system. Therefore, the 
attempt to design a qubit model capable to  imitate  electric 
field behavior of quasi-monochromatic light beam seems 
reasonable. It allows  to formulate one-way quantum 

computations in terms of controllable dynamics of artificial 
neural network, qubit model being network processing unit. 

III. QUBIT MODEL AS A PAIR OF COUPLED OSCILLATORS 
      We design  qubit model  as a pair of chaotically modulated 
coupled limit cycle oscillators. Let the initial dynamical 
equations for unperturbed pair of uncoupled limit cycle 
oscillators be written as  
 
                       2

1,2 1,2
2

1,2 1,21,2 [ ]| |u u uiρ ω= + −&                      (10) 

where 1,2 1,2 1,2u x iy= +  are complex-valued dynamical  

variables, 1ρ , 2ρ  are  radii of circular limit cycles  and  

1 2,ω ω   are own oscillator frequencies of two identical 
oscillators [11-13]. Consider further chaotically modulated 
oscillators which  limit cycle radii  1ρ% , 2ρ%  and  own 

frequencies 1ω% ,  2ω%    defined  as      

          1,2 1,2 1,2 1,21,2 1,2( ), ( ),t tρ ρ ξ ω ω η= + = +% %      (11) 

where  1,2 ( )tξ  and   1,2 ( )tη  are stationary random functions 

with zero means. Then the system of ODE governing internal 
dynamics of  two linearly coupled  stochastic oscillators  can 
be written as 

              
2 2

1 1 1 1 1 2 1
2 2

2 2 2 2 2 2 1
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where 
                

1 1 1 2 2 2, ,u x y u x yi i= + = +                    (13) 

 
and  | | ie δκ κ= is the strength of  oscillator coupling.  The 

variable 1 2U u u= + , defining  oscillation superposition of 
two  oscillators,  will be of main interest for qubit behavior.  
So it is convenient to rewrite system  (12)  for variables 

1 1 12 2 20.5( ), 0.5( )v u u v u u+ = −=  :  
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where 

                   1 2, .v x iy v z iu= + = +                       (15) 
Four-dimensional dynamical system (14) has been constructed 
in such a manner, that the projection  of its trajectory onto  
( , )x y -plane  imitates the behavior of electrical field  ( )E t

r
 of  

superposition of two light  beams in the states of right and left 
circular polarization. In the case of coherent superposition of 
two oppositely circularly polarized  beams the summary beam 
will be in some state of full polarization, whereas  in the case 
of completely non-coherent  superposition it will be in the 
unpolarized state. Three typical examples of ( )E t

r
 behavior of 

summary beam in the case of coherent  superposition of  two 
inner beam components are shown in fig. 1 – 3. The electric 
field of circularly polarized light depicted in fig. 1, is obtained 
at zero intensity of the second sub-beam. It corresponds to 
pure qubit state | 1〉  (photon ensemble of fully circular 
polarized photons). The electric field of linearly polarized 
light,  depicted in fig. 2, is obtained as a result of coherent 
superposition of two oppositely circularly polarized  sub-
beams at phase difference 0δ =   between the electric field 
components 1,2 ( )E t

r
. The case of full elliptic polarization, 

shown in fig. 3, is obtained in the case of coherent beam 
superposition at 0δ ≠ . At last, the electrical field of  
unpolarized light, obtained in the case of non-coherent 
superposition of two identical oppositely circularly polarized  
beams, is  presented  in  fig.4.  
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Fig.  1. Pure qubit  state  | 1〉   

(Ensemble of circular polarized photons) 
 
 
 

 
Fig. 2. Pure qubit state  | 1 | 0〉 + 〉      

(Ensemble of linearly polarized photons ) 
 
 
 
 

 
Fig. 3. Pure qubit  state  | 1 | 0α β〉 + 〉          

(Ensemble of elliptically polarized   photons ) 
 

 
 
It is important,  that in the case incoherent superposition of 

strongly monochromatic oppositely circular polarized beams 
the mixed state (unpolarized light beam) just corresponds  to  
entangled qubit state (polarization entangled state of two 
oppositely circularly polarized photons).    

    So, the designed oscillatory model of qubit correctly 
simulates both pure quantum mechanical state of photon  
(electric field behavior of light beam  in different  states of full 
polarization) and mixed  (polarization entangled) quantum 
mechanical  state of photon  (electric field behavior of 
unpolrized  photon  beam). 
 

 
Fig.  4. Mixed qubit  state , corresponding to ˆ 0.5 [1,1]diagρ = ⋅           

(Ensemble of  unpolarized  photons  in  polarization  entangled state) 
 
 

IV. DYNAMICAL EQUATIONS FOR OSCILLATORY NETWORK, 
SIMULATING  A QUBIT CLUSTER   

      Remind that one-way computation schemes are based on 
gradual qubit cluster entanglement destruction during a 
sequence of  one-qubit  measurements, realized via a set of 
one-qubit gates. We  designed single qubit  as stochastic 
oscillator, imitating the behavior of  electric field of  classical 
electromagnetic wave. We further model a cluster of 
entangled qubits  as  a  network of  coupled  stochastic 
oscillators. A sequence of one-qubit  measurements can be 
just realized  as a sequence of optical device actions, 
transforming single oscillator states (modifying polarization of 
light beam, corresponding the oscillator).   

 In the frames of our optical interpretation of CQC 
computation process we further associate a cubit cluster in the 
state maximal initial entanglement with a beam of  quasi-
monochromatic unpolarized light, consisting of N  
independent unpolarized sub-beams.  And we relate an 
oscillatory network of N  stochastic oscillators to the total 
light beam,  each network oscillator being a model of sub-
beam in a mixed (polarization entangled) state. Single 
oscillator state  can be changed in response to action of 
external optical device. It is convenient to interpret the device 
action as measurement. Obviously,  as a result of  a sequence 
of  measurements the  oscillatory network state will be 
changed in a discrete manner.  

 Let ( , , , )j j j j j TV x y z u=
r

 is  four–component  variable, 

specifying oscillator state, and 1 2 1 2{ , , , , }j j j j j jρ ρ ω ω κα = % % % %  
is the collection of internal oscillator parameters (see eq. (14)). 
Then system of equations governing network dynamics can be 
written  as  [11-13]   
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1, ... ,
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N
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k
V f V F V

j N

W V Vα β
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= +

=

⋅ − +∑
rr r r r& r r

(15)

where  ˆ[ ]jkW  is the matrix characterizing  oscillatory  

network coupling and ( ; )jF V β
r r

 is a four-component 
function, specifying external action on  j-th  network 
oscillator.  In general  problems of quantum computations 

ˆ[ ]jkW  can be defined  via system of two-qubit gates. 
However, in the case of one-way quantum computation 
schemes, which are of main interest for us at the moment,   

ˆ 0jkW ≡ .  Now we  shortly describe typical optical device 

actions and  give the example   of  function  ( ; )jF V β
r r

 
construction.             

V.  EXAMPLES OF ONE-QUBIT GATES  
     One-qubit gates should imitate the actions of typical optical 
devices that modify polarization of light.  A polarizer is just 
one of widely used optical devices that transforms light 
polarization. It converts a beam of arbitrarily polarized light 
into the beam with well-defined light polarization, for 
instance, linear polarization.  Let β   be the angle between  
the direction of polarizer plane of polarization  and  direction 

of  xer  -vector,  and E
r

 be electric field vector of incident 

light beam.  Then electric field vector 'E
r

 of transmitted light 

can be written as ˆ'E AE=
r r

  (where Â  is so called Jones 
matrix of optical device). For instance, in the basis 
{ },x ye er r

the Jones matrix of ideal absorptive linear polarizer 

can be written as  

     
2

2 /
2

cos ( ) cos( ) sin( )

cos( ) sin( ) cos ( )
ˆ ,ind

LPA e π λ β β β

β β β

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
         (16) 

where β  is the angle between  xer  and the plane of  

transmitted  polarization, n  and d  are refractive index of 
polarizer matter and polarizer thickness, correspondingly.    
In the frames of our model the one-qubit gate, imitating qubit 
transmission through linear polarizer of some finite thickness 
d , can be defined by a function  ( ; ),F V tθ Δ

r r
 that is 

nonzero only during  finite time interval 

2 1, .t t t t dΔ Δ= −   The analytical expression for such  

( ; ),F V tθ Δ
r r

can be written as 

1 1

2 2

( ; ) ( )
ˆ

{ }ˆ, ,LP

LP

F V H t
F A vd

dtF A v
tθ = ⋅Δ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

r r
r r

r r                 (17) 

21( ) ( (0.5{ )) ( ( ))}, 1,H t t tth th t tγ γ γ= − − −          (18) 

                1
1 2

2

, , .V
v x z

v v
v y u

= = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

r
r

r r
r                 (19)  

As one can see from fig. 5,  after qubit transmission through 
linear polarizer, its initial linear polarization has been 
transformed into another type of linear polarization. Besides 
absorptive polarizers,  there exist also so called  beam-
splitting polarizers  that split the unpolarized light beam into 
two light beams of opposite polarization states.    

Similarly functions ( ; )jF V β
r r

, corresponding to actions of 
phase-shifters (polarization  rotators) and optical 
compensators can also be  designed.   Phase-shifters transform 
a linearly polarized light beam  into a beam of circularly 
polarized light via  creating  of  additional    phase  difference    

between  two components  of    electric  field E
r

.     Matrix Â   
of     optical   

 

 
Fig. 5  Single qubit under action of one-qubit gate, imitating 

passing through  linear polarizer  (oscillations after transmission are 
shown by curves of green  color) 

 
 

compensator in the complex-valued basis { , }e e+ −r r
,   

21/( )( )x ye e ei± = ±r r r
 can be written as 

               
cos( / 2) sin( / 2)

sin( / 2) cos( / 2)
ˆ .cA

δ δ

δ δ

±⎛ ⎞
= ⎜ ⎟

⎝ ⎠m
                    (20) 

At last,  let network  oscillator be subject  to a measurement 
via transmission through circular polarizer. In the basis  

{ , }e e+ −r r
,  21/( )( ),x ye e ei± = ±r r r

 the matrix  ˆ
CPA  of  

partial circular  polarizer is diagonal one  and can be written 
as 

                       / 2 / 2ˆ ( , )CPA diag e eα α−=                          (21) 

where  α   is the ratio of damping factor of right circular 
polarized light to that one  of left circular polarized light in the 
polarizer medium. In the case of  ideal polarizer, transmitting 
only the light with right circular polarization,  we obviously 

obtain   ˆ [1, 0]CPA diag= . 
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VI.  CALCULATION  OF   CLUSTER  ENTANGLEMENT  DEGREE  
CHANGING  UNDER  A  SEQUENCE  OF  MEASUREMENTS 

   One-way quantum computation algorithm is defined 
through a sequence of measurements for entangled qubit 
cluster. In our model an entangled qubit cluster is implied as   
a beam of quasi-monochromatic unpolarized light composed 
of  N independent sub-beams (beam components) of quasi-
monochromatic unpolarized light which frequencies belong to 
different non-intersecting  narrow frequency intervals. To 
characterize statistical properties of  unpolarized or partially 
polarized light beam (mixed  state of quantum system)  it  is  
necessary to use Stokes parameters ( , , , )I Q U V , defined in 
eq. (6) - (7). In particular, there is the obvious simple relation 
between light  polarization degree  2 2 2 1/ 2( ) /Q U Vp I= + +  
of total beam and  entanglement degree e of  corresponding  
qubit cluster:  e = 1 – p. The optical interpretation of qubit 
cluster permits to consider a sequence of measurements over 
sigle qubits  as a sequence of  actions of optical devices on 
unpolarized light sub-beams.  The results of such  actions  in 
terms of Stokes parameters can be accurately calculated with 
the help of  known methods  of classical ellipsometry [14]. 
The general result is that light polarization  degree is gradually 
increased when unpolarized light is transmitted through a 
sequence of non-depolarizing optical devices. 
Correspondingly, entanglement degree of initially maximally 
entangled cluster is decreased.  Moreover, in view of  optical  
interpretation  of entangled qubit  cluster the  results of  
entanglement degree changing under a  sequence of 
measurements  can be  accurately calculated in terms of 
Stokes parameters.   
Another advantage of the relation between  cubit cluster and  a 
beam of classical polarized light  is that  one can associate 
one-way quantum computation algorithm  with state evolution 
of a feed-forward neural-like network – network of stochastic 
oscillators. The network oscillators are not mutually 
connected, but the network itself  undergoes discrete sequence 
of state changing as a result of external actions on single 
oscillators. Artificial neural networks of the type  might be 
regarded as quantum-inspired networks. 
      At last it should be noted, that sometimes the study of 
quantum evolution of entangled qubit cluster can be reduced 
to  simple calculation of Stokes parameter changing in the 
problem of  polarized light beam transmission through a series 
of optical  devices, transforming beam light polarization state.                     

VII. CONCLUSIONS  
The following  results  are obtained in the paper: 
 
•oscillatory model of qubit is designed in the form of pair of 
coupled  stochastic oscillators (limit cycle oscillators with 
chaotically modulated oscillation amplitudes and  
frequencies);       the model  simulates the behavior of electric 
field of polarized light beam;  it  adequately imitates both pure 
and mixed states of two-level quantum system; 

•  network of  N stochastic oscillators is designed as a model 
of  entangled  qubit cluster   –  a computation resource in one-
way quantum computation schemes; a beam of polarized light 
can serve as  an example of adequate physical realization of 
the entangled qubit cluster;  the oscillatory network  can be 
used for detailed study of electric field behavior of polarized  
light  beam, composed of N  independent sub-beams;  

         •  one-qubit gates in one-way quantum computation scheme 
can be modeled as actions of typical optical devices, 
modifying polarization of light; 

       •  the optical  interpretation one-qubit gates provides tools for    
exact calculation of  gradually  decreased cluster entanglement 
degree; 

         •  system of equations, governing  dynamics of oscillatory 
network, subject to external   actions  on single network 
oscillators,  is written;  

         •  as it follows from the approach, developed in the paper,  
quantum-mechanical qubit cluster evolution is equivalent to 
state evolution of feed-forward neural-like network of 
stochastic oscillators;  in the case of one-way  quantum 
computation schemes oscillatory network state is changed  in 
a discrete manner in response to external actions on  network 
oscillators.          
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