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Abstract—Two multisensor system architectures for navigation 

and guidance of small Unmanned Aircraft (UA) are presented and 

compared. The main objective of our research is to design a compact, 

light and relatively inexpensive system capable of providing the 

required navigation performance in all phases of flight of small UA, 

with a special focus on precision approach and landing, where Vision 

Based Navigation (VBN) techniques can be fully exploited in a 

multisensor integrated architecture. Various existing techniques for 

VBN are compared and the Appearance-Based Navigation (ABN) 

approach is selected for implementation. Feature extraction and 

optical flow techniques are employed to estimate flight parameters 

such as roll angle, pitch angle, deviation from the runway centreline 

and body rates. Additionally, we address the possible synergies of 

VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU 

(Micro-Electromechanical System Inertial Measurement Unit) 

sensors, and the use of Aircraft Dynamics Model (ADM) to provide 

additional information suitable to compensate for the shortcomings of 

VBN and MEMS-IMU sensors in high-dynamics attitude 

determination tasks. An Extended Kalman Filter (EKF) is developed 

to fuse the information provided by the different sensors and to 

provide estimates of position, velocity and attitude of the UA 

platform in real-time. The key mathematical models describing the 

two architectures i.e., VBN-IMU-GNSS (VIG) system and VIG-

ADM (VIGA) system are introduced. The first architecture uses VBN 

and GNSS to augment the MEMS-IMU. The second mode also 

includes the ADM to provide augmentation of the attitude channel. 

Simulation of these two modes is carried out and the performances of 

the two schemes are compared in a small UA integration scheme (i.e., 

AEROSONDE UA platform) exploring a representative cross-section 

of this UA operational flight envelope, including high dynamics 

manoeuvres and CAT-I to CAT-III precision approach tasks. 

Simulation of the first system architecture (i.e., VIG system) shows 

that the integrated system can reach position, velocity and attitude 

accuracies compatible with the Required Navigation Performance 

(RNP) requirements. Simulation of the VIGA system also shows 

promising results since the achieved attitude accuracy is higher using 

the VBN-IMU-ADM than using VBN-IMU only. A comparison of 

VIG and VIGA system is also performed and it shows that the 

position and attitude accuracy of the proposed VIG and VIGA 

systems are both compatible with the RNP specified in the various 

UA flight phases, including precision approach down to CAT-II. 
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I. INTRODUCTION 

IVIL and military applications of Unmanned Aircraft 

(UA) have much expanded in recent years as these 

vehicles provide cost-effective and safe alternatives to manned 

aircraft in several operational scenarios. In particular, small 

UA have the ability of performing tasks with higher 

manoeuvrability, longer endurance and, additionally pose less 

risk to human lives and nature. UA employ a variety of 

sensors, as well as multisensor data fusion algorithms, to 

provide autonomy to the platform in the accomplishment of 

mission- and safety-critical tasks. Technical requirements for 

air navigation systems primarily include accuracy, physical 

characteristics such as weight and volume, support 

requirements such as electrical power, and system integrity. 

One of the most important concepts is to use a multisensor 

integrated system to cope with the requirements of 

long/medium range navigation and landing. This would reduce 

cost, weight/volume and support requirements and, with the 

appropriate sensors and integration architecture, give 

increased accuracy and integrity of the overall system. The 

best candidates for such integration are indeed satellite 

navigation receivers and inertial sensors. In recent years, 

computer vision and Vision-Based Navigation (VBN) systems 

have started to be applied to UA. VBN can provide a self-

contained autonomous navigation solution and can be used as 

an alternative (or an addition) to the traditional sensors 

including Global Navigation Satellite Systems (GNSS), Micro 

Electro Mechanical Systems (MEMS) based Inertial 

Measurement Units (IMUs) and GNSS/IMU integrated 

sensors. The required information to perform autonomous 

navigation can be obtained from cameras, which are compact 

and lightweight sensors. This is particularly attractive in UA 

platforms, where weight and volume are tightly constrained. A 

model-based approach is used to develop a system which 

processes image sequences from visual sensors fused with 

readings from GNSS/IMU to update a coarse, inaccurate 3D 

model of the surroundings [1]. Digital Elevation Models 

(DEM) were used to build the 3D model of the environment. 

Occupancy grid mapping was used in this study, in which the 

maps were divided into cells. Each cell had a probability value 

of an obstacle being present associated with it. Using this ‘risk 

map’ and the images from the visual sensors, the UA was able 

to update its stored virtual map. Shortest path optimization 

techniques based on the Djikstra algorithm and dynamic 
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programming were then used to perform obstacle avoidance 

and online computation of the shortest trajectory to the 

destination. A system which deals with vision-based SLAM 

using a trinocular stereo system was proposed in [2]. In this 

study, Scale-Invariant Feature Transform (SIFT) was used for 

tracking natural landmarks and to build the 3D maps. The 

algorithm built submaps from multiple frames which were 

then merged together. The SIFT features detected in the 

current frame were matched to the pre-built database map in 

order to obtain the location of the vehicle. With the 

development of deep space exploration, VBN has been used to 

provide an autonomous navigation system for rovers operating 

on the lunar surface and on Mars. The use of GNSS on the 

Moon is not possible as its signals cannot reach the lunar 

surface. Sonar and magnetic sensors cannot be used due to the 

absence of an atmosphere and magnetic field; while dead 

reckoning sensors such as IMU suffer from error 

accumulation. Stereo vision-based navigation has been used 

for navigating these space rovers because of its low power 

consumption and high reliability. The stereo vision system 

provides motion estimation for autonomous localization 

techniques and environmental information for obstacle 

avoidance and DEM construction. A stereo vision-based 

navigation system was implemented on the 2004 twin Mars 

Exploration Rovers, Spirit and Opportunity. They were 

equipped with three types of stereo cameras which allowed 

them to navigate the Martian surface for long distances. A 

stereo vision-based navigation system for lunar rovers was 

proposed in [3]. The system performed robust motion 

estimation and disparity estimation using stereo images. This 

enabled accurate lunar navigation, obstacle avoidance and 

DEM reconstruction. The position of the rover while 

descending was found using sequence images taken by a 

descent camera and the reading were integrated with 

measurements from a laser altimeter and DEM. Image 

processing was carried out using feature detection, tracking 

and stereo matching. Levenberg-Marquardt non-linear 

estimation was used for motion estimation and Weighted Zero 

Sum of Squared Differences gave the disparity estimation. A 

representation of the visual route taken by robots was used in 

appearance-based navigation [4]. This approach was called the 

View-Sequenced Route Representation (VSRR) and was a 

sequence of images memorized in the recording run along the 

required route. The visual route connected the initial position 

and destination via a set of images. This visual route was used 

for localization and guidance in the autonomous run. Pattern 

recognition was achieved by matching the features detected in 

the current view of the camera with the stored images. Criteria 

for image capture during the learning stage were given in the 

study. The visual route was learnt while the robot was 

manually guided along the required trajectory. A matching 

error between the previous stored image and current view was 

used to control the capture of the next key image. The current 

view was captured and saved as the next key image when a 

pre-set error threshold was exceeded. Localization was carried 

out at the start of the autonomous run by comparing the 

current view with the saved visual route images. The key 

image with the greatest similarity to the current view 

represented the start of the visual route. The location of the 

robot depended purely on the key image used and no 

assumption was made of its location in 3D space. During the 

autonomous run, the matching error between the current view 

and key images was monitored in order to identify which 

image should be used for guidance. The robot was controlled 

so as to move from one image location to another and finally 

to reach its destination. This ‘teach-and-replay’ approach was 

adopted in [5]-[8]. In the case of [5], [6], a single camera and 

natural landmarks were used to navigate a quadrotor UA along 

the visual route. The key images were considered as waypoints 

to be followed in the sensor space. Zero normalised cross 

correlation was used for feature matching between the current 

view and the key images. A control system using the dynamic 

model of the UA was developed. Its main task was to reduce 

the position error between the current view and key image to 

zero and to stabilize and control the UA. Vision algorithms to 

measure the attitude of a UA using the horizon and runway 

were presented in [9], [10]. The horizon is used by human 

pilots to control the pitch and roll of the aircraft while 

operating under visual flying rules. A similar concept is used 

by computer vision to provide an intuitive means of 

determining the attitude of an aircraft. This process is called 

Horizon-Based Attitude Estimation (HBAE). In [9], grayscale 

images were used for image processing. The horizon was 

assumed to be a straight line and appeared as an edge in the 

image. Texture energy method was used to detect it and this 

was used to compute the bank and pitch angle of the UA. The 

position of the UA with respect to the runway was found by 

computing the angles of the runway boundary lines. A Canny 

Edge detector was applied to part of the image below the 

horizon. The gradient of the edges was computed using the 

pixel coordinates, which gave a rough indication of where the 

UA was situated with respect to the runway. A similar 

approach to develop algorithms to compute the attitude and 

attitude rates is used in [10]. A Sobel edge detector was 

applied to each channel of the Red Green Blue (RGB) image. 

The three channels were then combined and Hough transform 

was used to detect the horizon. In this research, it was 

assumed that the camera frame and the body frames were 

coincidental and equations were developed so as to calculate 

the pitch and roll angle. The angular rates of the UA were 

derived using optical flow of the horizon. Optical flow gives 

us additional information of the states of the UA and is 

dependent on the angular rates, velocity and the distance of the 

detected features. During this research, it was observed that 

the image processing frontend was susceptible to false 

detection of the horizon if any other strong edges were present 

in the image. Therefore, an Extended Kalman Filter (EKF) 

was implemented to filter out these incorrect results. The 

performance of the algorithms was tested via test flights with a 

small UA and a Cessna 172. Results of the test flight with the 

UA showed an error in the calculated pitch and roll with 

standard deviations of 0.42 and 0.71 degrees respectively. 

Moving forward from these results, in our research we 

designed and tested a new VBN sensor specifically tailored for 
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approach/landing applications which, in addition to horizon 

detection and image-flow, also employed runway features 

extraction during the approach phase. MEMS-IMUs are low-

cost and low-volume/weight sensors particularly well suited 

for small/medium size UA applications. However, their 

integration represents a challenge, which needs to be 

addressed either by finding improvements to the existing 

analytical methods or by developing novel algorithmic 

approaches that counterbalance the use of less accurate inertial 

sensors. In line with the above discussions, the main objective 

of our research is to develop a low-cost and low-

weight/volume Navigation and Guidance System (NGS) based 

on VBN and other low-cost and low-weight/volume sensors, 

capable of providing the required level of performance in all 

flight phases of a small/medium size UA, with a special focus 

on precision approach and landing (i.e., the most demanding 

and potentially safety-critical flight phase), where VBN 

techniques can be fully exploited in a multisensor integrated 

architecture. The NGS is implemented using an existing 

controller that employs Fuzzy logic and Proportional-Integral-

Differential (PID) technology. 

II. VBN SENSOR DESIGN, DEVELOPMENT AND TEST 

As discussed above, VBN techniques use optical sensors 

(visual or infrared cameras) to extract visual features from 

images which are then used for localization in the surrounding 

environment. Cameras have evolved as attractive sensors as 

they help design economically viable systems with simpler 

hardware and software components. Computer vision has 

played an important role in the development of UA [11]. 

Considerable work has been made over the past decade in the 

area of vision-based techniques for navigation and control [9]. 

UA vision-based systems have been developed for various 

applications ranging from autonomous landing to obstacle 

avoidance. Other applications looked into the possible 

augmentation IMU and GNSS/IMU by using VBN 

measurements [12]. As discussed above, several VBN sensors 

and techniques have been developed. However, the vast 

majority of VBN sensor schemes fall into one of the following 

two categories [13]: Model-based Approach (MBA) and 

Appearance-based Approach (ABA). MBA uses feature 

tracking in images and creates a 3D model of the workspace in 

which robots or UA operates [14]. The 3D maps are created in 

an offline process using a priori information of the 

environment. Localisation is carried out using feature 

matching between the current view of the camera and the 

stored 3D model. The orientation of the robot is found from 

3D-2D correspondence. MBA has been extensively researched 

in the past and is the most common technique currently 

implemented for VBN. However, the accuracy of this method 

is dependent on the features used for tracking, robustness of 

the feature descriptors and the algorithms used for matching 

and reconstruction. The reconstruction in turn relies on proper 

camera calibration and sensor noise. Knowledge of the 

surroundings so as to develop the 3D models is also required 

prior to implementation which may not be case in most 

situations. ABA algorithms eliminate the need for a metric 

model as they work directly in the sensor space. This approach 

utilizes the appearance of the whole scene in the image, 

contrary to MBA, which uses distinct objects such as 

landmarks or edges [4]. The environment is represented in the 

form of key images taken at various locations using the visual 

sensors. This continuous set of images describes the path to be 

followed by the robot. The images are captured while 

manually guiding the robot through the workspace. In this 

approach, localisation is carried out by finding the key image 

with the most similarity to the current view. The robot is 

controlled by either coding the action required to move from 

one key image to another or by a more robust approach using 

visual serving [8]-[15]. The ABA approach is relatively new 

and has gained active interest. The modelling of the 

surrounding using a set of key images is more straightforward 

to implement compared to 3D modelling. A major drawback 

of this method is its limited applicability. The robot assumes 

that the key image database for a particular workspace is 

already stored in its memory. Therefore, the key images need 

to be recaptured each time the robot moves to a new 

workspace. It is limited to work in the explored regions which 

have been visualised during the learning stage [16]. The ABA 

approach has a disadvantage in requiring a large amount of 

memory to store the images and is computationally more 

costly than MBA. However, due to improvements in computer 

technology, this technique has become a viable solution in 

many application areas. We selected the ABA approach for the 

design of our VBN sensor system. 

A. Learning Stage 

The first step required for appearance based navigation is 

the learning stage. During this stage, a video is recorded using 

the on-board camera while guiding the aircraft manually 

during the landing phase. The recorded video is composed of a 

series of frames which form the visual route for landing. This 

series of frames is essentially a set of images connecting the 

initial and target location images. The key frames are first 

sampled and the selected images are stored in the memory to 

be used for guidance during autonomous landing of the 

aircraft. During the learning stage, the UA is flown manually 

meeting the Required Navigation Performance (RNP) 

requirements of precision approach and landing. If available, 

Instrument Landing System (ILS) can also be used for 

guidance. It should be noted that the visual route captured 

while landing on a runway, can only be used for that particular 

runway. If the UA needs to land at multiple runways 

according to its mission, the visual route for all the runways is 

required to be stored in the memory. The following two 

methods can be employed for image capture during the 

learning stage. 

• Method 1: Frames are captured from the video input at 

fixed time intervals. The key frames are selected manually 

in this case. 

• Method 2: Frames are captured using a matching 

difference threshold [4]. This matching difference 

threshold is defined in number of pixels and can be 
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obtained by tracking the features in the current view and 

the previously stored key image. The key images can then 

be selected based on the threshold and stored in the 

memory. 

The algorithm starts by taking an image at the starting point. 

Let this image be captured at location i. As the aircraft moves 

forward, the difference between the current view (V) and the 

image Mi increases. This difference keeps increasing until it 

reaches the set threshold value (x). At this point, a new image 

Mi+1is taken (replacing the previous image Mi) and the process 

is repeated until the aircraft reaches its destination. The image 

capture process is summarised in Fig. 1. 

 

 

Fig. 1 Image capture process 

B. Localisation 

Localisation is a process which determines the current 

location of the aircraft at the start of autonomous run. This 

process identifies the key image which is the closest match to 

the current view. The current view of the aircraft is compared 

with a certain number of images, preferably the ones at the 

start of the visual route. The key image with the least matching 

difference is considered to be the start of the visual route to be 

followed by the UA. At the start of the autonomous run, the 

UA is approximately at the starting position of the visual 

route. The current view, captured from the on-board camera is 

compared with a set of images (stored previously in the 

memory during the learning stage) in order to find the location 

of aircraft with respect to the visual route. The key image with 

the least matching difference with the current view is 

considered to be the location of the UA and marks the start of 

the visual route to be followed. The localisation process is 

summarised in Fig. 2.  

 

Fig. 2 Localisation process 

 

In this example, the number of images to be compared (X) 

is taken as 20. First, the algorithm loads the current view (V) 

and the first key frame (Mi). Then the difference between the 

current view and the current key frame is computed. The 

algorithm then loads the next key frame Mi+1 and again 

computes the difference with the current view. If this 

difference is less than the previous difference, Mi+1 replaces 

Mi, and the process is repeated again. Otherwise, Mi is 

considered as the current location of the aircraft. 

C. Autonomous Run 

During the autonomous run phase, the UA follows the 

visual route (previously stored in memory during the learning 

stage) from the image identified as the current location of the 

aircraft during localisation. The set of key images stored as the 

visual route can be considered as the target waypoints for the 

aircraft in sensor space. The current view is compared to the 

key images so as to perform visual servoing. The approach 

followed to identify the key image to be used for visual 

servoing, is describes as follows. Let Mj be the current key 

frame, i.e. image with the least matching difference with the 

current view. During the autonomous run, the current key 

image and the next key image (Mj+1) are loaded. The matching 

differences of the current view V with Mj and Mj+1 (which are 

DMj,V and DMj+1,V respectively) are tracked. When the 

matching difference DMj,V exceeds DMj+1,V, Mj+1 is taken as the 

current key image replacing Mj and the next key image is 

loaded as Mj+1. This process keeps repeating until the aircraft 

reaches its destination, that is the final key frame. Fig. 3 

summarises the process of autonomous run in the form of a 
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flow chart while the change in matching difference for 

different key frames during autonomous run is presented in 

Fig. 4. 

 

 

Fig. 3 Autonomous run 

 

 

Fig. 4 Matching difference/key frame selection process 

 
Key frame 1

Key frame 2

(start of visual route)

Key frame 3

Key frame 4

Key frame 5

(end of visual route)

 

Fig. 5 VBN process 

 

The proposed VBN process is depicted in Fig. 5. The key 

frames represent the visual route the UA requires to follow. 

The figure shows that the key frame 2 is identified as the 

starting point of the visual route during the localisation 

process. 

The onboard computer tracks the matching difference 

between current view and the second and third key frames 

until the difference for key frame 2 and the current view 

exceeds the difference of key frame 3 and the current view. At 

this stage, key image 3 is used to control the UA and the 

matching differences between key frames 3, 4 and the current 

view are monitored. This process is repeated until the UA 

reaches its destination. To capture the outside view, a 

monochrome Flea camera from Point Grey Research was 

used. The main specification of the camera and lenses are 

listed in Table I. This camera was also used in a previous 

study on stereo vision [17] and was selected for this project. 

The Flea camera is a pinhole Charged Coupled Device (CCD) 

camera with a maximum image resolution of 1024 x 768 

pixels. It is capable of recording videos at a maximum rate of 

30 fps. An IEEE 1394 connection was used to interface the 

camera and computer with a data transfer speed of 400 Mbps.  

D. Image Processing Module 

The Image Processing Module (IPM) of the VBN system 

detects horizon and runway centreline from the images and 

computes the aircraft attitude, body rates and deviation from 

the runway centreline. Fig. 6 shows the functional architecture 

of the IPM. As a first step, the size of the image is reduced 

from 1024x768 pixels to 512x384 pixels. After some trials, it 

was found that this size reduction speeds up the processing 

without significantly affecting the features detection process. 

The features such as the horizon and the runway centreline are 

extracted from the images for attitude computation. The 

horizon is detected in the image by using Canny edge detector 

while the runway centreline is identified with the help of 

Hough Transform. The features are extracted from both, the 

current viewand the current key frame. The roll and pitch are 

computed from the detected horizon while the runway 

centreline in used to compute the deviation of aircraft from the 

runway centreline. Then the roll and pitch difference are 

computed between the current view and the current key frame. 

Optical flow is determined for all the points on the detected 

horizon line in the images. The aircraft body rates are then 

computed based on the optical flow values. The IPM provides 

the aircraft attitude, body rates, pitch and roll differences 

between current view and key frame, and deviation from the 

runway centreline. 
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TABLE I 

POINT GREY FLEA AND LENSES SPECIFICATIONS 

 
Sensor type Sony ICX204AQ/AL 1/3" CCD sensor 

Scan type Progressive 

Resolution 1024x768 BW 

Format 8-bit or 16-bit, 12-bit AtoD 

Pixel size 4.65µm x 4.65µm 

Frame rates 1.875, 3.75, 7.5, 15, 30fps 

Video output signal 8 bits per pixel / 12 bits per pixel digital data 

Interfaces 6-pin IEEE-1394 for camera control and video data transmission 4 general purpose digital input/output pins 

Voltage requirements 8-32V 

Power consumption < 3W 

Gain Automatic/Manual modes at 0.035dB resolution (0 to 24dB) 

Shutter Automatic/Manual/Extended Shutter modes (20µs to66ms @ 15Hz) 

Trigger modes DCAM v1.31 Trigger Modes 0, 1 and 3 

SNR 50dB or better at minimum gain 

Camera dimensions (no lenses) 30mm x 31mm x 29mm 

Mass 60g without optics 

Operating temperature 0° to 45°C 

Focal length 3.5- 8.0 mm 

Max CCD format 1/3" 

Aperture F1.4 – 16 (closed) - Manual control 

Maximum Field of View (FOV) Horizontal: 77.6°/Vertical: 57.6° 

Min working distance 0.4m 

Lenses dimensions  34.0 mm diameter x 43.5 mm length 

 

 

Fig. 6 Functional architecture of the IPM 

 

The attitude of the aircraft is computed based on the 

detected horizon and the runway. The algorithm calculates the 

pitch and roll of the aircraft using the horizon information 

while aircraft deviation from the runway centreline is 

computed using the location of runway centreline in the 

current image. The detailed processing performed by the IPM 

is illustrated in Fig. 7. 

E. Mathematical Model 

Fig. 8 shows the relationship between the body (aircraft) 

frame (Ob, Xb, Yb, Zb), camera frame (Oc, Xc, Yc, Zc) and the 

Earth frame coordinates (Ow, Xw, Yw, Zw). 
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Fig. 7 Image processing module flowchart 

 

 

Fig. 8 Coordinate system 

 

The position of a 3D space point P in Earth coordinates is 

represented by a vector Xp
w with components xp, yp and zp in 

the Earth frame. The position of aircraft centre with respect to 

the Earth coordinates is represented by the vector Xb
w with 

components xb, yb and zb in the Earth frame. The vector Xp
c  

represents the position of the point P with respect to the 

camera frame with components xcp, ycp and zcp in the camera 

frame. The position of centre of camera lens with respect to 

the body frame is represented by the vector Xc
b. The vector Xc

w 

represents the position of lens centre with respect to the 

ground frame with components xc, yc and zc in the ground 

frame. The position of point P with respect to body frame with 

components in the Earth frame can be computed as Xp
w-Xb

w. For 

representation purposes, we adopt the following notation;  as 

cos and  as sin The transformation matrix from Earth frame to 

body frame ���  is obtained in terms of the yaw �, pitch �, and 

roll angle � as:  
 

��� � � C � C � C � S � � S �� C � S � � S � S � C � C � C � � S � S � S � S � C �S � S � � C � S � C � � S � C � � C � S � S � C � C �
   (1) 

 

The position of point P with respect to the aircraft’s body 

with components in the body frame can be obtained as:  

 ��� � ��� ���� � ����                    (2) 

 

The position of point P with respect to the camera frame can 

also be found in a similar way as: 
 ��� � ������� � ���� � ������ ���� � ���� � ������       (3) 

 

where ��� is the constant transformation matrix from the body 

frame to the camera frame. With the assumption that the 

camera is fixed with respect to the body and the angle from the 

camera optical axis to the longitudinal axis of the aircraft is 

fixed value, �������  is a known constant vector with 

components kx, ky and kz in the camera frame. In this case, the 

velocity and rotation rate of aircraft are the same as those of 

the camera. Thus, the position and attitude of the aircraft can 

be easily computed according to those of the camera as: 

 ��� � ��� � ��������� � ��� � ������, �� , ��� �       (4) 

 � � ��               (5) 

 � � �� � ��                (6) 
 � � ��               (7) 

 

where �� is the roll, �� is the pitch, �� is the yaw and �� is the 

angle of incidence of the camera. The transformation matrix 

from camera frame to the ground frame, represented by ���, is 

obtained from: 

 

Cwb � �C θc C ψc - C $c S ψc � S $c S θc C ψc S $c S ψc � C $c S θc C ψcC θc S ψc C $c C ψc � S $c S θc S ψc - S $c C ψc � C $c S θc S ψc- S θc S $c C θc C $c C θc
% (8) 

 ��� � ������                 (9) 

 

Equation (9) represents the transformation matrix from the 

Earth frame to the camera frame coordinates [2]. From now 

onwards, only the state estimates of the camera are considered. 

The position of 3D point P with respect to camera frame is 

given by: 
 ��� � ��� ���� � ����     (10) 

 

with components in the camera frame given by: 
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1  (11) 

 

Then, the coordinates (2, 3) of P in the image plane is 

obtained from: 
 2 � 456                           (12) 

 3 � 476                           (13) 

 

Using the coordinate previously defined, the point P is 

assumed to be located on the detected horizon line. As the 

Earth’s surface is approximated by a plane, a normal vector to 

the plane, nw is described as: 

 8� � �0    1    0��                 (14) 
 

If the horizon line is described by a point ��� and a 

direction vector ;�tangential to the line of horizon visible to 

the image plane, then: 

 ��� � �,    0    <��   (15) 

 ;� � �1    0    0��                (16) 

 

where , is an arbitrary point along x-axis and < is the distance 

to horizon along z-axis. If the camera is assumed to be placed 

directly above the origin of the ground frame, the position of 

camera ��� is described as: 

 ��� � �0    =    0��   (17) 

 

Then, a point on horizon may be expressed as: 

 ��� � ��� � ���                 (18) 

 

The horizon projection on the image plane can be described 

by the point > and a direction vector ? as: 
 ? � @?� ?� 0A�

                (19) 

 > � �2    3    B��               (20) 

 

where (?�/?�) gives the gradient of the horizon line. As the 

position of the horizon ��� lies on the surface of the ground 

plane, therefore: 

 8� · ��� � 0                                    (21) 

 

 

Substituting ��� gives: 

 8� · *��� � ���+ � 0                            (22) 

 

The direction vector of the horizon line lw lies on the plane 

and is therefore orthogonal to the normal vector.  Therefore: 

 8� · ;� � 0             (23) 

 

Equations (22) and (23) are in form known as line plane 

correspondence problem. Recalling the equations for a 

projective perspective camera: 
 

�23B
 � 46 ��/0
              (24) 

 

Substituting (24) into (22), roll angle can be derived as [6]: 
 � � tanHI JHKLKM N                                (25) 

 

which is an intuitive result that roll angle is dependent on the 

gradient of the horizon line on the image plane. Similarly, it 

can be shown that substituting (20) into (22), the pitch angle 

can be derived as [6]: 

 � � tanHI JO P4QRS TUV WQXS YZT WS4HRP TUV WHXP YZT WN              (26) 

 

If the distance to the horizon is much greater than the height 

of the aircraft (i.e., < [ =), the expression for pitch reduces to 

the following: 

 � � tanHI JO R TUV WQX YZT W4 N           (27) 

 

which shows the pitch dependency on roll angle, focal length 

and position of the horizon in the image plane. Optical flow 

depends on the velocity of the platform, angular rates of the 

platform and the distance to any features observed [6].  

Differentiating (24) we obtain: 

 2\ � 4*5\ 6H6\5+6] � 46 J�\ � 56 0\N           (28) 

 3\ � 4*7\ 6H6\7+6] � 46 J/\ � 76 0\N           (29) 

 

Substituting (28) into the time derivative of (18) yields the 

classical optical flow equations [6]:  

 

^2\3\ _ � 46 `1 0 HR40 1 HX4 a `b\��b\��b\��a � ` RX4 � JB � R]4 N 3JB � X]4 N � RX4 �2a �c�c�c� 
 (30) 

 

If the observed point lies on the horizon, then Z will be 

large and the translational component will be negligible. In 

this case, (30) reduces to: 
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^2\3\ _ � ` RX4 �*B � R]4 + 3*B � X]4 + � 234 �2a �c�c�c� 
      (31) 

 

To minimize the effect of errors, a Kalman filter is 

employed. The state vector consists of the roll angle, pitch 

angle and body rates of the aircraft. It is assumed that the 

motion model of the aircraft is disturbed by uncorrelated zero-

mean Gaussian noise. The EKF measurement model is defined 

as: 

 -d � ed f ,d � 3d                              (32) 

 

where: -d is the measurement vector  ed is the design matrix ,d is the state vector 3d is the measurement noise k  is the k
th

 epoch of time, hd 
 ,dQI � Фj f ,d � kd f ld                      (33) 
 

where: ,dQI is thestate vector at epoch k�1 Фj is the state transition matrix from epoch k  to k�1 kd is the shaping matrix ld is the process noise 

The EKF comprises of prediction and update algorithms. 

The prediction algorithm estimates the state vector and 

computes the corresponding covariance matrix md from the 

current epoch to the next one using the state transition matrix 

characterizing the process model described by:  

 mdQIH � ФjQImdQФdQI� � nd                     (34)  
where mdQIH  represents a predicted value computed by the 

prediction equations and mdQ refers to updated values obtained 

after the correction equations. The process noise at a certain 

epoch k is characterized by a covariance matrix, nd. The 

updating equations correct the predicted state vector and the 

corresponding covariance matrix using the measurement 

model as follows:  ,dQIQ � odQI2dQI                               (35)  mdQIQ � mdQIH � odQIedQImdQIH                   (36)  

where odQIis the Kalman gain matrix at epoch, k+1 and 2dQI is the innovation vector at epoch, k+1. The innovation 

vector represents the difference between the current 

measurement and the predicted measurement and can be 

described as:  2dQI � -dQI � edQI,dQIH                        (37)  
The Kalman gain is used to quantify the influence of new 

information present in the innovation vector on the estimation 

of the state vector and can be considered as a weight factor. It 

is basically equal to the ratio of the uncertainty on the current 

measurement and the uncertainty on the predicted one. This 

gain is defined by: 

 odQI � mdQIH edQI� �edQImdQIH edQI� � pdQI�HI     (38) 

 

where RjQIis the measurement noise covariance matrix. For 

the process model defined here, the state vector of the system 

composed of error in position, rbs, velocity, r3s  and attitude, ts is described by: 

 

u� �rbsr3sts 
                                       (39) 

 
The dynamic matrix of the system is expressed by:  

v � `         vww vwX 0vXw vXX *Bs u+vxw vxX �*rcyss u+    a               (40) 
 

where: 

*Bs u+ � `      0 �z{ z|z{ 0 �z}�z| z} 0    a                 (41) 

 
where z{ is the yaw error, z} is the roll error, Bs is the 

specific force transformation matrix from the inertial frame to 

the navigation frame. cys is the angular rate transformation 

matrix from inertial frame to navigation frame defined w.r.t 

latitude, �,  altitude, =, velocity in east direction, 3| , velocity 

in north direction, 3}, angular rate error, cx, the radius of 

Earth is p � √b� � b� and is given by: 
 �*rcys u+ � ��  /   0�                            (42) 
 

where the matrixes W, Y and Z are given by: 

 

� � � 0�cx ��8*�+ � X�f��sWw�QPHX�w�QP
%   / � �cx ��8*�+ � X�f��sWw�QP0�cx ���*�+ � X�w�QP

%  0 � �
X�w�QPcx ���*�+ � X�w�QP0 %

\
                              (43) 
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The augmented process model is obtained as follows: 

 

,*h+ �
��
��
��
��rbs\r3s\ts\r��\r��\r��\r��\ ��

��
��
��

    �
���
���
��
  
vww vwX 0�vXw vXX *Bs u+vxw vxX �*rcyss u+

0� 0� 0���s 0� ��sv�0� ���s 0�
0�0���s��0�     0�     0�     0�     0�     0�     0�     0�     0�     

��� 0� 0�0� ��� 0�0� 0� ���
0�0�0�0�     0�     0�     0�   0�   0� ���

 
  ��

���
���

��
��
��
�rbsr3stsr��r��r��r�� ��

��
��
�

  � 
���
���
��      

0�  0�  0���s  0�  0� 0� ���s  0�
 0�  0�  0� 0�  0�  0� 0�  0�  0�  

0�  0� �� 0�  0�  0� 0�  0�  0�
 0�  0�  0� ��  0�  0� 0�  ��  0�  

  0�   0�  0� 0�  0�  ��  
 

  ��
���
���

���
���

���������������� ���
���                 (44) 

 

where: 

��� � `�1/���� 0 00 �1/���� 00 0 �1/����    a          ���  � ��1/���� 0 00 �1/���� 00 0 �1/����    %                    (45) 

��� � `�1/���� 0 00 �1/���� 00 0 �1/����    a           ��� � ��1/���� 0 00 �1/���� 00 0 �1/����    %            (46) 

v� � `     B� 0 00 B� 00 0 B�    a            �� � `     c� 0 00 c� 00 0 c�    a                                                   (47) 

 
where r��and r�� are the accelerometers and gyroscopes 

biases.  r�� and r�� are the scale factors of accelerometers 

and gyroscopes. ��� and ��� are the correlation times for 

accelerometers and gyroscopes. ��� and ��� are the correlation 

times for accelerometers and gyroscopes scale factors. ��s is 

the transformation matrix from the body frame to the 

navigation frame. The covariance matrix of the model is given 

by: 

 

n �
���
���
��� 0 00 �� 00 0 ���

0    0    00    0    00    0    00   0   00   0   00   0   0
��� 0 00 ��� 00 0 ������

���
�
                 (48) 

 

The discrete process noise matrix is defined as follows:  nd ~ k*hd+n*hd+k�*hd+                         (49) 
 

When the position errors are expressed in radians (latitude 

and longitude), the values are so meager that they can lead to 

numerical instabilities in the Kalman filter [18]. Then it is 

preferable to express them in NED coordinates [19]. For this, 

the position terms in the state vector ,*h+ in (2) are 

transformed. Defining ,� as the new state error vector, after 

being transformed by the matrix T, we obtain:  ,� � �,                                             (50)  , � �HI,�                                         (51)  
Substituting (50) and (51) in (33), we obtain:  ,�\ � �\ , � �,\                                       (52)  

,�\ � �\ �HI,� � �v, � ��\ �HI � �v�HI�,� � �kl    (53)  ,�\ � v�,� � k�l                                  (54)  
where F’ and G’ are the new dynamics and shaping matrices 

defined by:  v� � �\ �HI � �v�HI � �v�HI                    (55)  k� � � k                                       (56)     
Herein, the state error vector , with position error rbs 

expressed in terms of latitude and longitude (radians) is 

transformed into ,� with position error rms expressed in 

meters as: 
 

, �
��
��
��
�rbsr3stsr��r��r��r�� ��

��
��
�

;         ,� �
��
��
��
�� δPV*δvV+�*¤V+�*δb¥+��δb¦��*δS¥+��δS¦����

��
��
��
                       (57) 

 

where δPV is the position error state, δvV is the velocity error 

and ¤V is the attitude error term and 
 � � § ¨ 0I©fI©0I©fI© �I© ª                               (58) 

 

¨ � `    b� � = 0 00 *b� � =+��� *«+ 00 0 �1    a            (59) 

 

If the body rates are assumed to be approximately constant 

during the sampling interval Δh and first order integration is 

applied, then the state transition equations are as follows: 
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��
��
� �*� � 1+�*� � 1+c�*� � 1+c�*� � 1+c�*� � 1+��

��
� �

���
���
�*�+ � Δh*�\ *�++�*�+ � Δh*�\*�++c�*�+c�*�+c�*�+ ���

��� �
���
���

�W*�+�­*�+�®M*�+�®L*�+�®¯*�+���
���      (60) 

where: 
 �\*�+ � *c�*�+ sin��*�+� � c�*�+ cos��*�+� tan��*�+� � c�*�+ (61) 
 �\*�+ � c�*�+ cos��*�+� � c�*�+ sin��*�+�         (62) 

 

The measurement equations are comprised of direct 

observations of the pitch and the roll from the horizon and ³ 
optical flow observations on the detected horizon line. 

Therefore, the length of the measurement vector -*�+ 

is  2*³ � 1+. The relation of measurement vector and the states 

is represented by following linear equations: 

 

���
���
���
� �*�+�*�+2\ I*�+3\I*�+2\ µ*�+3\µ*�+¶2\ y*�+3\y*�+���

���
���
�

�

��
���
���
���
��
� 1 0 0 0 00 1 0 0 00 0 R·X·4 � JB � R·]4 N 3I0 0 JB � X·]4 N HR·X·4 �2I0 0 R]X]4 � JB � R]]4 N 3µ0 0 JB � X]]4 N HR]X]4 �2µ¶ ¶ ¶ ¶ ¶0 0 R¸X¸4 � JB � R¸]4 N 3y0 0 JB � X¸]4 N HR¸X¸4 �2y ��

���
���
���
��
�

u
���
���

�*�+�*�+c�*�+c�*�+c�*�+���
��� (63) 

F. VBN Sensor Performance 

Based on various laboratory, ground and flight test activities 

with small aircraft and UA platforms, the performance of the 

VBN sensor were evaluated. Fig. 9 shows a sample image 

used for testing the VBN sensor algorithms and the results of 

the corresponding horizon detection process for attitude 

estimation purposes. The algorithm detects the horizon and the 

runway centreline from the images. The horizon is detected in 

the image by using Canny edge detector with a threshold of 

0.9 and standard deviation of 50. In this experiment, the values 

of the threshold and the standard deviation were selected by 

hit-and-trial method. The resulting image after applying the 

Canny edge detector is a binary image. The algorithm assigns 

value ‘1’ to the pixels detected as horizon while the rest of the 

pixels in the image are assigned value ‘0’. From this test 

image, the computed roll angle is 1.26° and the pitch angle is -

10.17°. To detect the runway in the image, kernel filter and 

Hough Transform are employed. The runway detected from 

the same test image is shown in Fig. 10. For this image, the 

location of the runway centreline was computed in pixels as 

261. The features were extracted from both the current 

viewand the current key frame. After the pitch, roll and 

centreline values were determined, the roll/pitch differences 

and the deviation from centreline are computed between the 

current view and the current key frame. 

 

 

 

Fig. 9 Horizon detected from the test image (landing phase) 

 

 

 

Fig. 10 Runway detected in the test image 
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Fig. 11 Received image from camera (top) and optical flow computed 

for the detected horizon in the image (

 

The algorithm also computes the optical flow for all the 

points on the detected horizon line in the images. The optical 

flow is determined based on the displacement of points in two 

consecutive frames of a video. The algorithm takes two 

consecutive frames at a time and determines 

each point on the horizon. These optical flow values are used 

to compute the body rates of the aircraft. 

optical flow calculation is shown in Fig. 11, where the original 

image (from the camera) is shown on the top and the i

the bottom shows the optical flow vectors (in red) computed 

for the detected horizon line. The vectors are magnified by a 

factor of 20. Since the vectors on the right half of the horizon 

line are pointing upwards and the vectors on the left halfare

pointing downwards, the aircraft is performing roll motion 

(clockwise direction). The real-time performance of the IPM 

algorithms were evaluated using a combination of 

experimental data (from the VBN camera) collected in flight 

and IPM simulation/data analysis performed on the ground 

using MATLAB
TM

. The algorithm processed the video frame 

by frame and extracted horizon and the runway from each 

frame. The roll and pitch of the aircraft were computed based 

on the horizon detected in each frame. 

The algorithm also identified the location of runway 

centreline in each frame which was further used to calculate 

the deviation of the aircraft from the runway centreline. 

Kalman filter was employed to reduce the effect of errors in 

the measurements. The roll and roll-rate results obtained 

800 frames are shown in Fig. 12.  

 

 

 

) and optical flow computed 

for the detected horizon in the image (bottom) 

es the optical flow for all the 

points on the detected horizon line in the images. The optical 

flow is determined based on the displacement of points in two 

consecutive frames of a video. The algorithm takes two 

consecutive frames at a time and determines the motion for 

each point on the horizon. These optical flow values are used 

to compute the body rates of the aircraft. An example of the 

optical flow calculation is shown in Fig. 11, where the original 

image (from the camera) is shown on the top and the image on 

the bottom shows the optical flow vectors (in red) computed 

for the detected horizon line. The vectors are magnified by a 

factor of 20. Since the vectors on the right half of the horizon 

line are pointing upwards and the vectors on the left halfare 

pointing downwards, the aircraft is performing roll motion 

time performance of the IPM 

algorithms were evaluated using a combination of 

experimental data (from the VBN camera) collected in flight 

lysis performed on the ground 

. The algorithm processed the video frame 

by frame and extracted horizon and the runway from each 

frame. The roll and pitch of the aircraft were computed based 

also identified the location of runway 

centreline in each frame which was further used to calculate 

the deviation of the aircraft from the runway centreline. 

Kalman filter was employed to reduce the effect of errors in 

rate results obtained for 

Fig. 12 Roll and roll-rate 

TABLE

VBN ATTITUDE AND ANGULAR 

VBN measured parameters 

Roll angle 

Pitch angle 

Yaw angle (centreline 

deviation) 

Roll rate 

Pitch rate 

Yaw rate 

 

Similarly, Fig. 13 depicts the results for pitch and pitch

The computed location of centreline (pi

drift rate (pixels per second) are shown in Fig. 1

the test activities were carried out in a limited portion of the 

UA operational flight envelopes, some preliminary error 

analysis was performed comparing the performance

VBN sensor and IMU. The mean and standard deviation of the 

VBN attitude and attitude-rate measurements are listed in 

Table II. 

The performance of the VBN sensor is strongly dependent 

on the characteristics of the employed camera.

algorithms are unable to determine the attitude of the aircraft 

in case of absence of horizon in the image. Similarly, the 

deviation of the aircraft from the runway centreline cannot be 

computed in the absence of runway in the image. The most 

severe physical constrain is imposed by the Field of View 

(FOV) of the camera. The maximum vertical and horizontal 

FOVs of the Flea Camera are 57.6° and 77.6° respectively.

Due to this limitation, the VBN sensor can compute a 

minimum pitch angle of -28.8° and a maximum of 

Additionally, environmental factors such as fog, night/low

light conditions or rain also affect the horizon/runway 

visibility and degrade the performance of the VBN system.

 

rate computed from the test video 
 

TABLE II 

NGULAR RATES ERRORS PARAMETERS 

Mean Standard deviation 

0.22° 0.02° 

-0.32° 0.06° 

0.64° 0.02° 

0.33°/s 0.78 °/s 

-0.43°/s 0.75°/s 

1.86°/s 2.53°/s 

depicts the results for pitch and pitch-rate. 

The computed location of centreline (pixels) and the centreline 

drift rate (pixels per second) are shown in Fig. 14. Although 

the test activities were carried out in a limited portion of the 

operational flight envelopes, some preliminary error 

analysis was performed comparing the performance of the 

. The mean and standard deviation of the 

rate measurements are listed in 

The performance of the VBN sensor is strongly dependent 

on the characteristics of the employed camera. The developed 

rithms are unable to determine the attitude of the aircraft 

in case of absence of horizon in the image. Similarly, the 

deviation of the aircraft from the runway centreline cannot be 

computed in the absence of runway in the image. The most 

onstrain is imposed by the Field of View 

The maximum vertical and horizontal 

FOVs of the Flea Camera are 57.6° and 77.6° respectively. 

Due to this limitation, the VBN sensor can compute a 

28.8° and a maximum of +28.8°. 

Additionally, environmental factors such as fog, night/low-

light conditions or rain also affect the horizon/runway 

visibility and degrade the performance of the VBN system.  
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Fig. 13 Pitch and pitch-rate computed from the test video

 

Fig. 14 Centreline and rate of change of centreline location 

test video 

III. INTEGRATION OF CANDIDATE 

There are a number of limitations and challenges associated 

to the employment of VBN sensors in UA

best exploited at low altitudes, where sufficient features can be 

extracted from the surrounding. The FOV of the camera 

limited and, due to payload limitations, it is often impractical 

 

te computed from the test video 

 

rate of change of centreline location from the 

ANDIDATE SENSORS 

There are a number of limitations and challenges associated 

UA platforms. VBN is 

where sufficient features can be 

extracted from the surrounding. The FOV of the camera is 

limited and, due to payload limitations, it is often impractical 

to install multiple cameras. 

installed, additional processing is required f

exploitation. In this case also 

implemented. Wind and turbulence disturbances must be 

modelled and accounted for in the VBN processing.

Additionally the performance of VBN can be very poor in 

low-visibility conditions (performance enhancement can be 

achieved employing infrared sensors as well). However, 

despite these limitations and challenges, VBN is a promising 

technology for small-to-medium size 

guidance applications, especially when integrated wi

low-cost and low-weight/volume sensors currently available.

In our research, we developed an integrated NGS

employing two state-of-the-art physical sensors: MEMS

IMU and GNSS, as well as 

Dynamics Model (ADM) in specific flight phases.

A. GNSS and MEMS-IMU Sensors 

GNSS can provide high-accuracy position and velocity data 

using pseudorange, carrier phase

various combinations of these 

using multiple antennae suitably positioned in the aircraft

GNSS can also provide attitude data

currently being conducted on 

Measurements (CFM) for attitude estimation

the position and velocity of state

Position error parameters are 

parameters are from [21], in which an improved time 

differencing carrier phase velocity estimation method was 

adopted. Typically, GNSS position and velocity measurements 

are provided at a rate of 1 Hz.

TABLE
GNSS POSITION AND

Errors 

North position error  

East position error 

Down position error  

North velocity error  

East velocity error 

Down velocity error  

 

The IMU include 3-axis gyroscopes

pitch and yaw rates of the aircraft around the body

also comprise 3-axis accelerometers determining the specific 

forces in the inertial reference f

considered a strap-down IMU

IMUs. MEMS-based IMUs 

weight/volume devices that represent an attractive alternative 

to high-cost traditional IMU

aviation or small UA applications. 

sensors do not necessitate high power and the level of 

maintenance required is far lower than for high

sensors [22]. The main drawback of these sensors is the 

relatively poor level of accuracy of

provide. In our research, MEMS

White Noise (WN) or as Gauss

to install multiple cameras. When multiple cameras are 

installed, additional processing is required for data 

In this case also stereo vision techniques can be 

Wind and turbulence disturbances must be 

modelled and accounted for in the VBN processing. 

Additionally the performance of VBN can be very poor in 

s (performance enhancement can be 

achieved employing infrared sensors as well). However, 

despite these limitations and challenges, VBN is a promising 

medium size UA navigation and 

guidance applications, especially when integrated with other 

olume sensors currently available. 

In our research, we developed an integrated NGS approach 

art physical sensors: MEMS-based 

as well as augmentation from Aircraft 

in specific flight phases. 

Sensors Characteristics 

accuracy position and velocity data 

using pseudorange, carrier phase, Doppler observables or 

combinations of these measurements. Additionally, 

suitably positioned in the aircraft, 

GNSS can also provide attitude data. Additional research is 

being conducted on GNSS Carrier Phase 

for attitude estimation. Table III lists 

velocity of state-of-the-art GNSS receivers. 

are from [20] and velocity error 

, in which an improved time 

differencing carrier phase velocity estimation method was 

position and velocity measurements 

provided at a rate of 1 Hz. 
 

TABLE III 
AND VELOCITY ERRORS 

Mean Standard deviation 

-0.4 m 1.79 m 

0.5 m 1.82 m 

0.17 m 3.11 m 

0 mm/s 3.8 mm/s 

0 mm/s 2.9 mm/s 

2.9 mm/s 6.7 mm/s 

axis gyroscopes, measuring the roll, 

pitch and yaw rates of the aircraft around the body-axis. They 

axis accelerometers determining the specific 

reference frame. In our research, we 

IMU employing low-cost MEMS 

MUs are low-cost and low-

weight/volume devices that represent an attractive alternative 

IMU sensors, especially for general 

UA applications. Additionally, MEMS 

do not necessitate high power and the level of 

maintenance required is far lower than for high-end IMU 

. The main drawback of these sensors is the 

oor level of accuracy of the measurements that they 

In our research, MEMS IMU errors are modeled as 

White Noise (WN) or as Gauss-Markov (GM) processes [23], 
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[24]. Table IV lists the MEMS IMU error parameters 

considered in our research.  
 

TABLE IV 

MEMS-INS ERROR PARAMETERS 

IMU error parameters Error models 

p gyro noise WN (0.53 °/s) 

q gyro noise WN (0.45 °/s) 

r gyro noise WN (0.44 °/s) 

x accelerometer noise WN (0.013 m/�µ) 

y accelerometer noise WN (0.018 m/�µ) 

z accelerometer noise WN (0.010 m/�µ) 

p gyrobias GM (0.0552 °/s, 300 s) 

q gyrobias GM (0.0552 °/s, 300 s) 

r gyrobias GM (0.0552 °/s, 300 s) 

x accelerometerbias GM (0.0124 m/�µ, 300 s) 

y accelerometer bias GM (0.0124 m/�µ, 300 s) 

z accelerometer bias GM (0.0124 m/�µ, 300 s) 

p gyroscale factor GM (10000 PPM, 18000 s) 

q gyroscale factor GM (10000 PPM, 18000 s) 

r gyroscale factor GM (10000 PPM, 18000 s) 

x accelerometerscale factor GM (10000 PPM, 18000 s 

y accelerometer scale factor GM (10000 PPM, 18000 s) 

z accelerometer scale factor GM (10000 PPM, 18000 s) 

B. ADM Virtual Sensor Characteristics 

The ADM Virtual Sensor is essentially a Knowledge-Based 

Module (KBM) used to augment the navigation state vector by 

predicting the UA flight dynamics (aircraft trajectory and 

attitude motion). The ADM can employ either a 6-Degree of 

Freedom (6-DOF) or a 3-DOF variable mass model with 

suitable constraints applied in the different phases of the UA 

flight. The input data required to run these models are made 

available from aircraft physical sensors (i.e., aircraft data 

network stream) and form ad-hoc databases. Additionally, for 

the 3-DOF case, an automatic manoeuvre recognition module 

is implemented to model the transitions between the different 

UA flight phases. Typical ADM error parameters are listed in 

Table V [23], [24]. Table VI lists the associated error statistics 

obtained in a wide range of dynamics conditions for 20 

seconds runtime. 
 

TABLE V 

ADM ERROR PARAMETERS 

ADM error parameters Error models 

Coefficients (on all except the flap 

coefficients) 
GM(10%,120s) 

Control input 
WN(0.02°) aileron, rudder, 

elevator 

Center of gravity error [x,y,z] Constant [0.001, 0.001, 0.001]m 

Mass error 2% of true 

Moment of inertia error [Jx,Jy,Jz,Jxz] 2% of true 

Thrust error 
Force, 5% of true, Moment 5% of 

true 

Gravity error 1¹ 36 ºg 

Air density error 5% of true 

Speed of sound error 5% of true 

 

 
 

 

 

TABLE VI 

ADM ERROR STATISTICS 

Error Mean Standard deviation 

North velocity error 4.48E-3m/s 3.08E-2m/s 

East velocity error -3.73E-2m/s 1.58E-1m/s 

Down velocity error -4.62E-2m/s 5.03E-2m/s 

Roll error 4.68E-5° 7.33E-3° 

Pitch error 3.87E-3° 2.41E-3° 

Yaw error -1.59E-3° 7.04E-3° 

IV. MULTISENSOR SYSTEM DESIGN AND SIMULATION 

The data provided by all sensors are blended using suitable 

data fusion algorithms. Due to the non-linearity of the sensor 

models, an EKF was developed to fuse the information 

provided by the different sensors and to provide estimates of 

position, velocity and attitude of the platform in real-time. 

Two different integrated navigation system architectures were 

defined, including VBN-IMU-GNSS (VIG) and VIG-ADM 

(VIGA). The VIG architecture uses VBN at 20 Hz and GNSS 

at 1 Hz to augment the MEMS-IMU running at 100 Hz. The 

VIGA architecture includes the ADM (computations 

performed at 100 Hz) to provide attitude channel 

augmentation. The corresponding VIG and VIGA integrated 

navigation modes were simulated using MATLAB
TM

 covering 

all relevant flight phases of the AEROSONDEUA (straight 

climb, straight-and-level flight, straight turning, turning 

descend/climb, straight descent, etc.). The navigation system 

outputs were fed to a hybrid Fuzzy-logic/PID controller [25]-

[28]. Our previous research activities [25]-[35] highlight the 

various sensor choices, data fusion methods and the overall 

implementation of the various NGS schemes. 

A. VIG and VIGA Architectures 

The VIG architecture is illustrated in Fig. 15. The sensor 

measurements are processed by a sensor processing and data 

sorting block. The data sorting algorithm is based on Boolean 

decision logic, which accepts 0 and 1 as input states and 

allows automatic selection of the sensor data based on pre-

defined priority criteria. The sorted data is then fed to an EKF 

to obtain the best estimate values. The IMU position and 

velocity provided by the navigation processor are compared to 

the GNSS position and velocity to form the measurement 

input of the data fusion block containing the EKF. A similar 

process is also applied to the IMU and VBN attitude angles, 

whose differences are incorporated in the EKF measurement 

vector. The EKF provides estimates of the Position, Velocity 

and Attitude (PVA) errors, which are then removed from the 

sensor measurements to obtain the corrected PVA states. The 

corrected PVA and estimates of accelerometer and gyroscope 

biases are also used to update the IMU raw measurements. 

The VIGA architecture is illustrated in Fig. 16. As in the case 

of VIG system, the IMU position and velocity provided by the 

navigation processor are compared to the GNSS data to form 

the measurement input of EKF. Additionally, in this case, the 

attitude data provided by the ADM and the IMU are compared 

to feed the EKF at 100 Hz, and the attitude data provided by 

the VBN sensors (VBS) and IMU are compared at 20 Hz and 
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input to the EKF. The EKF provides estimations of PVA 

errors, which are removed from the IMU measurements to 

obtain the corrected PVA states. The corrected PVA and 

estimates of accelerometer and gyroscope biases are used to 

update IMU raw measurements and the corrected attitude date 

is fed back to the ADM. 

 

 

Fig. 15 VIG architecture 

 

 

Fig. 16 VIGA architecture 

 

B. VIG and VIGA Simulation 

Both the VIG and VIGA multisensor architectures were 

tested by simulation in an appropriate sequence of flight 

manoeuvres representative of the AEROSONDE UA 

operational flight envelope. The duration of the simulation is 

600 seconds. The 3D trajectory plot of UA flight profile is 

shown in Fig. 17. The list of the different simulated flight 

manoeuvres and associated control inputs is provided in Table 

VII. The VIG position error time histories (east, north and 

down) are shown in Fig. 18. For comparison, also the GNSS 

position errors (unfiltered) are shown. Table VIII presents the 

VIG position error statistics associated to each flight phase.  

 
 

 

TABLE VII 
FLIGHT MANOEUVRES AND CONTROL INPUTS 

Flight maneuver 
Required 
roll (°) 

Required 
pitch (°) 

Time 
(s) 

Straight climb (take off) 0 10 50 

Leftturningclimb 5 10 50 

Left turning climb (helix) 4 2 50 

Level left turn 10 8 100 

Straight and level 0 3.5 100 

Level right turn (helix) 12 -5 130 

Level right turn 3 -4 50 

Left turning descent 6 -3 50 

Straight descent 0 -2 20 
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Fig. 17 3D Trajectory plot of UA flight profile 

 

 

 

 

Fig. 18 VIG position error time histories 
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TABLE VIII 

VIG POSITION ERROR STATISTICS

Flight maneuver 
North position East position Down position 

Mean (m) σ (m) Mean (m) σ (m) Mean (m) σ (m) 

Straight climb (take off) 1.1082 0.5897 -0.1871 0.3949 -0.4323 0.4526 

Left turning climb 1.0531 0.7401 -0.2290 0.5289 -0.0612 0.6278 

Left turning climb (helix) -1.0110 0.5750 -0.1447 0.4886 -0.2855 0.4418 

Level left turn -0.1701 1.1080 -0.6219 0.8439 -0.1369 0.6026 

Straight and level 1.7413 0.5327 -1.5381 0.5442 -0.3599 0.6775 

Level right turn (helix) 0.9409 1.8376 -0.7228 1.3230 -0.7846 0.6752 

Level right turn 2.1041 0.6436 0.2312 0.5950 -0.3845 0.7172 

Left turning descent 0.5003 1.1802 0.9372 0.6482 -0.7820 0.7348 

Straight descent -2.3483 2.2365 -0.1956 0.4206 -0.3130 0.7518 

The VIG velocity error time histories are obtained and it is 

deducted that GNSS is the dominating sensor for velocity 

computations but a significant improvement is obtained with 

the VIG system on the accuracy of the vertical data. Table IX 

shows the velocity error statistics associated to each flight 

phase. The attitude error time histories of the VIG system are 

shown in Fig. 19. Table X presents the associated attitude 

error statistics. 

As discussed above, the ADM data were used in the VIGA 

architecture to update the attitude channel (the position and 

velocity channels are derived from the VIG system). 

Therefore, only the attitude error statistics of the VIGA system 

are presented here. The time histories of the VIGA attitude 

errors are shown in Fig. 20 and compared with the 

corresponding VIG attitude errors in Fig. 21. Table XI 

presents the VIGA attitude error statistics. 
 

TABLE IX 

VIG VELOCITY ERROR STATISTICS 

Flight maneuver 
North velocity East velocity Down velocity 

Mean(m/s) σ(m/s) Mean(m/s) σ(m/s) Mean(m/s) σ (m/s) 

Straight climb (take off) 0.0012 0.0602 -0.1096 0.1000 0.0124 0.0844 

Left turning climb -0.0088 0.0588 -0.0073 0.0354 -0.0072 0.0423 

Left turning climb (helix) -0.0133 0.0247 -0.0011 0.0498 -0.0018 0.0008 

Level left turn -0.0061 0.0416 -0.0013 0.0433 -0.0022 0.0034 

Straight and level 0.0162 0.0313 0.0803 0.0350 0.0002 0.0007 

Level right turn (helix) -0.9276 0.0333 0.0088 0.0370 -0.0006 0.0148 

Level right turn 0.0066 0.0533 -0.0674 0.0435 -0.0110 0.0462 

Left turning descent -0.0018 0.0904 0.0033 0.0797 -0.0009 0.0361 

Straight descent 0.0212 0.0697 0.1302 0.1665 0.0012 0.0146 

 

 

Fig. 19 VIG attitude error time histories 
 

TABLE X 
VIG ATTITUDE ERROR STATISTICS 

Flight maneuver 
Roll (Phi) Pitch (Theta) Yaw (Psi) 

Mean (°) σ (°) Mean (°) σ (°) Mean (°) σ (°) 

Straight climb (take off) 0.0078 0.0037 0.0597 0.0045 0.0512 0.0102 

Left turning climb -0.0678 0.0502 0.1494 0.0032 -0.0130 0.0104 

Left turning climb (helix) 0.0198 0.0421 0.0607 0.0104 -0.0116 0.0133 

Level left turn 0.0052 0.0014 -0.0323 0.0167 -0.0323 0.0162 

Straight and level 0.0672 0.0531 -0.0809 0.0045 -0.0175 0.0109 

Level right turn (helix) -0.0034 0.0082 -0.0297 0.0145 0.0016 0.0307 

Level right turn 0.0102 0.0352 0.0776 0.0067 0.0042 0.0093 

Left turning descent 0.0032 0.0058 0.0563 0.0042 0.0529 0.0098 

Straight descent 0.0149 0.0128 -0.1107 0.0031 0.0568 0.0106 
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Fig. 20 VIGA attitude error time histories 

 

 

 

Fig. 21 Comparison of VIG (top) and VIGA (bottom) attitude errors 

 

TABLE XI 
VIGA ATTITUDE ERROR STATISTICS 

Flight maneuver 
Roll (Phi) Pitch (Theta) Yaw (Psi) 

Mean (°) σ (°) Mean (°) σ (°) Mean (°) σ (°) 

Straight climb (take off) 0.0054 0.0039 0.0034 0.0037 0.0114 0.0083 

Left turning climb -0.0560 0.0461 0.0832 0.0028 -0.0130 0.0156 

Left turning climb (helix) 0.0171 0.0307 0.0285 0.0099 -0.0072 0.0049 

Level left turn 0.0046 0.0014 -0.0496 0.0132 -0.0073 0.0013 

Straight and level 0.0350 0.0043 -0.0600 0.0036 -0.0163 0.0111 

Level right turn (helix) -0.0026 0.0068 -0.0266 0.0065 0.0002 0.0345 

Level right turn 0.0012 0.0347 0.0710 0.0030 0.0040 0.0075 

Left turning descent 0.0012 0.0069 0.0424 0.0038 0.0525 0.0093 

Straight descent 0.0143 0.0036 -0.0893 0.0029 0.0569 0.0096 

 

During the initial VIGA simulation runs it was evidenced 

that the ADM data cannot be used without being reinitialised 

regularly. For the AEROSONDE UA manoeuvres listed in 

Table VII, it was found that the optimal period between ADM 

reinitialisation was in the order of 20 seconds. Converting the 

data in Tables X and XI to the corresponding RMS (95%) 

values, we obtain the error data in Tables XII and XIII. 

Comparing the two tables, it is evident that the ADM virtual 

sensor contributes to a moderate reduction of the overall 

attitude error budget in all relevant flight phases. 
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TABLE XII 

VIG ATTITUDE RMS-95% ERRORS 

Flight maneuver 
RMS-95% 

Phi (°) 

RMS-95% 

Theta (°) 

RMS-95% 

Psi (°) 

Straight climb (take off) 0.0172 0.1197 0.1044 

Left turning climb 0.1687 0.2988 0.0332 

Left turning climb (helix) 0.0930 0.1231 0.0253 

Level left turn 0.0132 0.0727 0.0722 

Straight and level 0.0712 0.1620 0.0412 

Level right turn (helix) 0.0177 0.0661 0.0614 

Level right turn 0.0732 0.1557 0.0186 

Left turning descent 0.0132 0.1129 0.1076 

Straight descent 0.0392 0.2214 0.1155 

 
TABLE XIII 

VIGA ATTITUDE RMS-95% ERRORS 

Flight maneuver 
RMS-95% 

Phi (°) 

RMS-95% 

Theta (°) 

RMS-95% 

Psi (°) 

Straight climb (take off) 0.0133 0.0100 0.0282 

Left turning climb 0.1450 0.1664 0.0312 

Left turning climb (helix) 0.0701 0.0603 0.0174 

Level left turn 0.0096 0.1026 0.0148 

Straight and level 0.0705 0.1202 0.0394 

Level right turn (helix) 0.0145 0.0547 0.0690 

Level right turn 0.0694 0.1421 0.0170 

Left turning descent 0.1400 0.0851 0.1066 

Straight descent 0.0294 0.1787 0.1154 

 

To conclude the simulation data analysis, Table XIV shows 

a comparison of the VIG/VIGA horizontal and vertical 

accuracy (RMS-95%) with the required accuracy levels for 

precision approach [36], [37]. Both the VIG and VIGA 

performances are in line with CAT II precision approach 

requirements.  
 

TABLE XIV 

VIG AND VIGA POSITION ERROR STATISTICS 

Category 

of 
approach 

Horizontal Accuracy (m) 
2D RMS-95% 

Vertical Accuracy (m) 
RMS-95% Down 

Required VIG VIGA Required VIG VIGA 

CAT I 16  
5.9 

4  
1.6 CAT II 6.9 6.2 2 1.6 

CAT III 4.1  2  

V. CONCLUSIONS 

Our research efforts have addressed the development of a 

low-cost and low-weight/volume integrated Navigation and 

Guidance System (NGS) for small/medium size UA 

applications. As a first step, we designed and tested a VBN 

sensor employing appearance-based techniques and 

specifically tailored for UA low-level flight, including 

precision approach and landing operations. In addition to 

horizon detection and image-flow, the VBN sensor also 

employed runway features extraction during the approach 

phase. Various candidates were considered for integration with 

the VBN sensor and, as a result, GNSS and MEMS-IMUs, 

with attitude augmentation from ADM were finally selected. 

The multisensor integration was accomplished with an EKF. 

The attitude/attitude-rate accuracies obtained with the VBN 

sensor were evaluated by a combination of laboratory, ground 

and flight test activities. The results were satisfactory in low-

level flight and during the approach and landing phases of a 

UA flight. However, the VBN sensor performance was 

strongly dependent on the characteristics of the employed 

camera. The algorithms developed are unable to determine the 

attitude of the aircraft in case of absence of horizon in the 

image. Similarly, the deviation of the aircraft from the runway 

centreline cannot be computed in the absence of runway in the 

image. The most severe physical constrain is imposed by the 

angular FOV of the camera. The maximum vertical and 

horizontal FOVs of the employed camera are 57.6° and 77.6° 

respectively. Due to this limitation, the VBN sensor can 

compute a minimum pitch angle of -28.8° and a maximum of 

+28.8°. Two NGS architectures, namely VBN-IMU-GNSS 

(VIG) and VIG-ADM (VIGA), were proposed and the 

AEROSONDE UA was used as a test-bed for the simulation 

test cases. Simulation of the VIG integrated navigation mode 

showed that this integration scheme can achieve 

horizontal/vertical position accuracies in line with CAT-II 

precision approach requirements, with a significant 

improvement compared to stand-alone GNSS. An 

improvement was also observed in the accuracy of the vertical 

velocity data. Additionally, simulation of the VIGA navigation 

mode showed promising results since, in most cases, the 

attitude accuracy is higher using the ADM-VBN-IMU than 

using VBN-IMU only. However, due to rapid divergence of 

the ADM virtual sensor, there is a need for a frequent re-

initialisation of the ADM data module, which is strongly 

dependent on the UA flight dynamics and the specific 

manoeuvres/flight-phase transitions performed. In the 

considered portion of the UA operational flight envelope, the 

required re-initialisation interval was approximately 20 

seconds. Results show that there is a moderate accuracy 

improvement with the use of ADM in high dynamics 

conditions. Compared to the VIG system, the VIGA shows 

accuracy improvements in all three attitude angles. Current 

research activities are focusing on adopting the proposed 

integrated architectures for other UA platforms such as the 

JAVELIN UA [38]. GNSS multipath and antenna obscuration 

problems are being also investigated and adequate algorithms 

are being developed in order to cope with these effects during 

high dynamic manoeuvres. To cope with the issue of frequent 

ADM re-initialisation, the original ADM is being modified to 

take into account specific manoeuvre constraints and the 

transition states between various manoeuvres are being 

carefully modelled leading to a higher stability time. 

Additionally, the potential benefits attainable from the 

adoption of an Unscented Kalman Filter (UKF) to replace the 

EKF and/or to pre-filter the ADM data are being investigated. 

Finally, Avionics Based Integrity Augmentation (ABIA) and 

integrity monitoring functionalities for UA are being 

researched in order to improve the overall system performance 

in mission- and safety-critical applications [39]-[42]. As a 

result of these further developments, the performance of the 

multisensory integrated NGS will be significantly enhanced in 

terms of data accuracy, continuity and integrity to fulfill 

present and likely future RNP requirements for a variety of 

small UA applications. 
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