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Newtonian Heating
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Abstract—The present paper considers the steady free coomect Generally, the studies on the problems of convectiv
boundary layer flow of a viscoelastic fluid on sblsphere with boundary layer and heat transfer focus to the probthat
Newtonian heating. The boundary layer equationsarerder higher related to the prescribed wall temperature and st
than those for_t_he Nevvt(_)nian_ (_viscous) fluid _andz mjh_erence However, in 1994, Merkin [8] has considered thebgm of
boundary co_ndltlons are insufficient to determime lso_lutlon of free convection boundary layer over vertical siegaor the
these equations completely. Thus, the augmentation extra - . . . . "
boundary condition is needed to perform the nuraéric ©85€ of Ne"‘"‘.’”'ar.‘ heaﬁmg in h's. study. ‘The lpgetmknn
computational. The governing boundary layer equatiare first '€veaed! the situation with Newtonian heating arige what
transformed into non-dimensional form by using s&gec are usually termed conjugate convective flows, witbe heat
dimensionless group and then solved by using aridinginite IS supplied to the convective fluid through a bdngdsurface
difference scheme. The results are displayed grafthito illustrate  with a finite heat capacity.
the influence of viscoelastic K and Prandtl NumBeparameters on Recently, the problem of Newtonian heating has been
skin friction, heat transfer, veIoc_ity profiles _ateinperature profiles. studied extensively due to the large applicatioth @@mand in
Present results are compared with the publishedrpamd are found engineering field. Salleket al. [9], [10] have considered the
to concur very well. case of Newtonian heating in their studied abouaveotion in
a sphere. Very recently, Merkit al. [11] have investigated
the problem of forced convection heat transfer reforward
stagnation point with Newtonian heating. Polymene a
complex rheological materials that exhibit bothceiss and
elastic (viscoelastic) properties under varying ditons of

N recent years, the flow and heat transfer phenanoe®r stress, strain and temperature. The viscoelastiteriabs

sphere have received a considerable attention duiést behave more like solids at low temperatures andnbafast
practical needs in numerous engineering applicatiociuding deformation speeds. They exhibit liquid propertatshigh
solving the cooling problems in turbine blades,cetmic temperatures and slow deformation speeds. A litezagurvey
systems and manufacturing processes [1]. Extersivéies indicated there has been an extensive researcHalsleai
on the topic natural convection specifically on egghhave regarding the viscoelastic fluid. Starting fromohiaset al.
been conducted by several researchers. For exa@iminget  [12], they have presented the unsteady motionsyfieere in a
al. [2] have studied an exact analysis of the lamifiae Viscoelastic liquid where they considered the wadyemotion
convection from a sphere by considering prescrisedace Of @ sphere moving under a constant force. Vern} fias
temperature and surface heat flux and their wonketaeen derived the boundary layer equations near a bodgwaflution

continued by Huang and Chen [3] who consideredeffects in a uniform stream and a case of the boundary layer the
of blowing and suction. Nazat al. [4], [5] considered the surface of sphere and found that the increaseeielésticity of

problem of free convection boundary layer on arthisomal the liquid causes a Sh'.ﬂ in the point of separatnnNard_s the
. . . forward stagnation point. Careet al. [14] have considered
sphere in a micropolar fluid for the case of contstaall - X .
temperature and also constant heat flux. Mollaldossain [6 the problem of a sphere falling along the axis eftical
Pel } ) [6] cylindrical tube containing a viscoelastic fluich themical
have investigated the effects of chemical reactlwat and

diffusion i | ion flow f h | engineering systems, viscoelastic flows arise imMmerous
mass diffusion In natural convection flow from &otherma processes. Such flows possess both viscous andicelas

sphere with temperature dependent viscosity whiter@ [7] - properties and can exhibit normal stresses andkatitm

has considered the problem of natural convectioat l@d gffects.

mass transfer from a sphere in micropolar fluidhwbnstant  Recently, the numerical studies of transient freevective

wall temperature and concentration. mass transfer in a Walters-B viscoelastic flow witfall
suction and free convection boundary layer flow of a
viscoelastic fluid in the presence of heat genanatimve been
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Motivated by the work above, this paper investigatiee
problem of natural convection boundary layer flow o
viscoelastic fluid on solid sphere with Newtoniaadting. The
full governing boundary layer equations are firsinsformed
into a system of non-dimensional equations via tioa®-
dimensional variables, and then into non-similauatpns
before they are solved numerically by the Kellex-imethod

as described in the books by Na [16] and Cebed an

Bradshaw [17]. Results of this study such as tteallskin
friction coefficient, the local wall temperature a®ll as the
velocity and temperature profiles are presentethig paper.
To the best of our knowledge, this problem has me¢n
considered before; hence the reported resultseavlyiound.

Il. PROBLEM FORMULATION

The problem of steady natural convection boundaper
flow for an isothermal horizontal circular cylindplaced in a
viscoelastic fluid is considered in this paper..Higllustrates
the geometry of the problem and the correspondigdinate
system. The problem is considered as a heated espifer

i
3y

U—=+v==a

ox ody (3)

subject to the boundary conditions;

u=v=0, g—I:—hST, on y=0,

ou ’ )
0=0, —=0, T=T,, asy - o

oy

wherep, g, S, 1, ko, @, T, andhgare the density, gravitational
acceleration, coefficient of thermal expansion, aiyit
viscosity, vortex viscosity, thermal diffusivity ahe fluid,
local temperature and heat transfer parameter fawtbhian
heating (NH), respectivelyin this problem, it is considered

_ (XY = - .
that 7 (x) = asm(gj , u and v are the velocity components

along x- and y -direction respectively.

radiusa, which is immersed in a viscous and incompressible The non-dimensional variables are introduced is $tudy
fluid of ambient temperatuf® . The surface of the sphere isas follow:

subjected to Newtonian heating (NH).

Fig. 1 Physical model and coordinate system

X:za Y=Grl’4(zj, r(x):r—)_(), u=2ay,
a a a U )
v=ra, 6=""%) ()

3
where Gr :Mis the Grashof number for the case of
1%

Newtonian heating.

Substitution of (5) into (1) - (3) led to the foNing non-
dimensional equations:

2 (1) +=- (1) =0, ©
Under the wusual Boussinesq and boundary Iaye@x
approximations, the equations for mass contingitninuity / du  ou 9« a( ol 9% dudiv
mass conservation) momentum and energy can beemviit U—+vV—=—7-K _(u_z}"v_s___z
the following form: o oy dy ox\ - dy dy” oxoy ()
+4sin (x),
9 (ra)+2(rv)=o, 1) 06 06 _ 1%
o0X ay U—+V—=——, (8)
ox 0y Proy
gou , you and the boundary conditions (4) become
9%u — u=v=0, a—I:—y(1+6?)(NH,) on y=0,
=0~ 3+ BT -T.)sink/a) @ dy ©
’ =0 ou_ 0, 6=0
ky| 0 (0% ), _0%  auox U-'Fy—, =0, asy » o .
U [Vt o |
,0 ax ayz ay3 ay ayz
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k,Gr? . ,
where K = represents the viscoelastic parameter and
a? 1 .. 5

—0'+16'=0 (16)
y=ahGr™* denotes conjugate parameter for Newtonian
heating. From Salleét al. [10], as y =0 gives =0, that with the boundary conditions
corresponding to having, = 0 and hence no heating existed  f (0)= f '(0)=0, &'(0)=-y (& & (0))(NH )

a7

from the sphere.

Ill. SOLUTION PROCEDURES

In order to solve (6) — (8), according to the bcamd
condition (9), the following variables are assumed:

w=xr(x) f(xy), 6=0(x,y).

where ¢/ is the stream function defined as

u:la_w and\/:—la_w_ (]__‘]_)
roy r ox
which satisfies (6), thus (7) and (8) become
3 2 2¢
az_[afj (“Xcosxjf o’ f
oy oy sinx
Zgi cosx f L smx
ay ay* smx oy ay (12)
| of o*f f 0% of 9*f 0% 0°f
=KX —— +
0X oy axay ay® dyoxay® dy? oxdy?
of 0°f of 0°f
+X| — -——
dy oxdy 0x oy’
2
L0, (11 C0) 00, (0000 00) g
Pr oy sinx ) dy dy 0x 0x oy
with respect to the following boundary conditions
f =0, i:0, %=—y(l+9)(NH ), on y=0
oy oy
of 0% f (14)
—=0, —=0,6=0, as y - » .
oy ay

At the lower stagnation point of the cylindgx = 0),

(12)-(13) are reduced to the following ordinaryfefiéntial
equations:

fre2ff = f +g+K(ff ™2 'f "+ 2 )= 0 (15)

f(0)=0, f")=0, G¢)=0.
where primes denote the differentiation with respecy .

The physical quantities of principal interest dneaging stress,
and the rate of heat transfer in terms of skirtibiccoefficient

(10) C; and the local wall temperatu#, (x) respectively, which

can be Written as:

2
c =x (x 0. 6W=-1-C«ONH) (8
y
Where
c 7
t = 2
A7,
_ _ 19
ou - 9*’u -0d%u 6u6u (19)
SU=) | U=—=+V—+2= .
oy’ " oxoy ay axay -

IV. RESULT AND DISCUSSION

The systems of equations (12),(13) and (15),(16é)satved
numerically for some values of the viscoelasticapaeterK
and Prandtl number Pr using the implicit finitefeifence
method known as the Keller-box method. In this papiee
case in question is when the Prandtl numigar,is 7 only in
order to save the space. The present resultsdaskiin friction
coefficient C; and the wall temperaturé, (0) were compared

with Sallehet al. [10] in order to validate the numerical results
obtained. The comparison shows that the numeraatisns
(see Table 1) obtained by the present authors gigood
aggreement with existing results obtained by previauthors.
Therefore the present authors are confident thatrésults
obtained are very accurate.

TABLE |
VALUES OF SKIN FRICTIONf "(0) AND THE WALL

TEMPERATURE®, (0) AT THE LOWER STAGNATION POINT OF THE
WALL (x=0) WHEN PRANDTL NUMBER PR=0.7 AND 7,

VISCOELASTIC PARAMETERK=0 (NEWTONIAN FLUID) AND
PARAMETER FOR NEWTONIAN HEATINGy =1

Prandt! Skin Friction f "(0) Wall Temperature 8,,(0)
number
Sallehet al.[10] present Sallekt al. [10] present
0.7 8.9606 8.961327 26.4584 26.454302
7.0 1.2489 1.248393 3.3651 3.360566
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In this paper, we include the numerical resultkaf $riction This behavior reflects the coupling of the energyation to
coefficient C, and the wall temperature), for different the momentum equation through the temperature digmen
position x. The numerical solution starts at the IowePOdy for_cgs. The effect qf Pron th(_e veIomty aethperaure
stagnation point of the spher& & 0) and proceeds around theIDrOflles IS |Ilus_trated_ by Fig. 6 and Fig. 7 respealy, near the

N o . . lower stagnation point of the sphere when Prandtilrer Pr =
sphere up to the pointx= 170° with value of viscoelastic

parameter is 1 (See Table 2). We can conclude fhentable, 2n3 a,\Tg\A;o(rfg:pr?erft?:gp:ggsrf:gé;'Sfoﬂfjrﬂd?gmg _it 1is

as x increase, i.e. from the lower stagnation pointtlod found that as Prandtl number Pr inc.reases, théete’mpe
sph?re &=0) and proce(_ed a_roynd the sphere up to the po'Bl;ofiles decrease and also the thermal boundaryr laye
170° both values of skin friction and wall tempere are hickness. This is because the fluid is highly catige for
Increasing. small values of the Prandtl number. Physically,Pifandtl
number Pr increases, the thermal diffusivity desesaand this
phenomenon lead to the decreasing manner of thegyene
transfer ability that reduces the thermal boundaser. As
expected from Fig. ,7it is shown that for viscoelastic
parameteiK = 1 and Newtonian heating parameger 1, as

TABLE Il
VALUES OF SKIN FRICTIONf "(x) AND THE WALL
TEMPERATURE&(X) FOR VARIOUS VALUES OF POSITIONX
WHEN PRANDTL NUMBER PR=7, VISCOELASTIC PARAMETER=1
AND PARAMETER FOR NEWTONIAN HEATINGy =1

Prandtl number Pr increases, the velocity profiles a@so

Position x Skin Friction f "(x) Wall Temperatured, (x)  decrease. It may also be observed that the absofatana of

0° 0.000000 4.410999 the local skin-friction shifts toward the middletbe surface.

10° 0.192349 4.421824

20° 0.383475 4.454580

30° 0.572141 4.510091 25

40 0.75711: 4.58981;

50° 0.93709! 4.69587

60° 1.11662 4.83651. 2 ]

70° 1.28230! 5.00656:

80° 1.438746 5.215692

90° 1.584305 5.471331 L8l ]

100° 1.717142 5.783590

110° 1.835103 6.166503 o

120° 1.935571 6.640135 Al Koo, 05,1, 2 i

130 2.01519! 7.23438:

140° 2.06945( 7.99658!

150° 2.091711 9.00884! ol |

160° 2.07136 10.43687.

170° 2.983848 12.837161

Fig. 2 and Fig. 3 illustrate the behavior of skiittfon and oo e R e e e

wall temperature for various values of viscoelapticameteK Fig. 2Variation of skin friction f "(x) for various values of
at Prandtl number 7. It shows that when the visgiBElS viscoelastic paramet& when Prandtl number Pr=7 and Newtonian
parameteiK increased, it reduced the values of skin friction. heating parametgr=1

Conversely, the opposite effect is observed oneshf wall
temperature.

The velocity and temperature distributions at tbevelr
stagnation point are given at Prandtl number Pr with
various values of viscoelastics paramétei hese profiles are
illustrated in Fig. 4 and Fig. 5. Based on Figt4sinoticed
that the velocity distributions are decreased whervalues of
viscoelastic parameteiK are increased until one point
(boundary layer thicknegs=1.6). Later, we can see the

profile of velocity distribution increases with thecrease of
values of viscoelastic parameter.

The values of these profiles are lower for viscsitafluid
to be compared to Newtonian fluid (viscoelasticapaeterk =

=

0) for the range values of boundary layer thickifesg < 1.6. %0 20 a0 &0 s 10 120 10 160 180
Therefore, the thickness of the velocity boundayet for a Fig. 3 Variation of wall temperatugx) for various values of
V|§Coelastlc fluid is hlg_her th_an the velocity bdgny Iaye_zr viscoelastic paramet& when Prandtl number Pr=7 and Newtonian
thickness for a Newtonian fluid. Fig. ghows that increasing heating parametgr=1

the value of viscoelastic parameter leads to higgmperature

distribution.
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0.35

Fig. 4Velocity profile near the lower stagnation pointtloé sphere,
(x=0) at Prandtl number Pr=7 and Newtonian heating
parametey =1 with various values of viscoelastic paramé€er
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n
Fig. 5Temperature profile near the lower stagnation poirthe
sphere(x=0) at Prandtl number Pr=7 and Newtonian heating
parametey =1 with various values of viscoelastic paraméter

o
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Fig. 6 Temperature profile near the lower stagmagioint of the
sphere(x = 0) at viscoelastic parametkr1 and Newtonian heating
parametery =1 with various Prandtl number Pr
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03}
§ 0.25-
0.2}

0.15

6 ‘7 8
Fig. 7 Velocity profile near the lower stagnatiasirg of the sphere

(x=0) at viscoelastic paramet&r1 and Newtonian heating
parametey =1 with various values of Prandtl number Pr

V.CONCLUSION

The steady natural convection boundary layer fldwao
viscoelastic fluid on solid sphere with Newtoniagatinghas
been investigated numerically in this paper. Theegoing
boundary layer equations are transformed into a- non
dimensional form and the resulting nonlinear systémartial
differential equations is solved numerically usihg Keller-
box method.This paper has revealed how the viscoelastic
parameterK and the Prandtl number Rffect the flow and
heat transfer characteristics.

From the present investigation, the following conclusions
can be drawn:

* Anincrease in the value of Prandtl number leads to
decrease both value of velocity and tempegatur
distribution

* It may be observed that the absolute maxima of the
local skin-friction shifts toward the middiétbe
surface.

« As viscoelastic paramet&r increase, the value of local
skin-friction coefficientC, decreases and also the

value of wall temperatute increadg(x) against the

curvature parameter from the lower stagnation point
of the circular cylinder= 0).
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