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Abstract—In this paper, we summarize recent work of the authors 

on nanocomputing memory devices. We investigate two memory 
devices, each comprising a charged metallofullerene and carbon 
nanotubes. The first device involves two open nanotubes of the same 
radius that are joined by a centrally located nanotube of a smaller 
radius. A metallofullerene is then enclosed inside the structure. The 
second device also involves a metallofullerene that is located inside a 
closed carbon nanotube. Assuming the Lennard-Jones interaction 
energy and the continuum approximation, for both devices, the 
metallofullerene has two symmetrically placed equal minimum energy 
positions. On one side the metallofullerene represents the zero 
information state and by applying an external electrical field, it can 
overcome the energy barrier, and pass from one end of the tube to the 
other, where the metallofullerene then represents the one information 
state. 
 
Keywords—Carbon nanotube, Continuous approach, Energy 

barrier, Lennard-Jones potential, Metallofullerene, Nanomemory 
device 

I. INTRODUCTION 
N the past 36 years, the computer industry has followed 
Moores' law [1] that every two years the complexity of 

integrated-circuit chips doubles solely by shrinking the size of 
transistors, so that electrical signals travel less distance and 
process information faster. However, this will soon reach a 
barrier as transistors become so small that the current 
fabrication technology and the basic physical laws pose severe 
limitations on further miniaturization [2], [3]. For example, the 
present smallest commercial transistors are only 32 nanometers 
(nm) wide but it would be extremely difficult to fabricate 
transistors less than 22 nm using present lithography techniques 
[4], [5]. Nanotechnology has brought many revolutionary 
advanced materials, which at the nanometer scale display 
exceptional physical characteristics, such as their mechanical 
and electronic properties [6], and these properties can be quite 
different as compared to those at the micro and nano scales. 
Accordingly, nano scaled components might be one possible 
solution for future computer design. Since the first carbon 
nano-materials were discovered [7], carbon nanotubes and 
fullerenes have been examined for possible use as memory 
devices either experimentally [8], theoretically [9]-[12] or 
computationally (molecular dynamics studies) [8]-[11], [13]. 
Here, we summarize recent work of the authors presented in 

[12], [14] where we propose potential two-state memory 
devices each comprising a charged metallofullerene and carbon 
nanotubes. The first proposed device shown in Figure 1(a) 
involves two open host nanotubes of the same radius that are 
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joined by an open nanotube, which is centrally located between 
the host nanotubes but has a smaller radius. A metallofullerene 
is then placed inside the structure to represent a bit information 
and is originally located inside one of the host nanotubes. The 
second proposed shuttle memory device shown in Figure 1(b) 
also involves a metallofullerene that is located inside a single 
closed carbon nanotube. In the following section, we introduce 
the method for the calculation using the Lennard-Jones 
potential function which gives rise to the forces operating in 
each system. Some numerical results are presented and 
discussed, and some overall concluding remarks are made in 
the final section of the paper. 

 
Fig. 1 Two two-state memory devices. 

II. METHOD 

Figure 1 shows the two proposed two-state nanomemory 
devices comprising two non-bonded molecules, namely a 
charged metallofullerene and carbon nanotubes. The total 
interaction energy for non-bonded molecules using the 
continuum approximation is obtained from the double surface 

integral, 2121
2 1

)( dSdSE
S S∫ ∫ Φ= ρηη , where Φ(ρ) is the 

potential energy for two non-bonded atoms, η1 and η2 denote 
the mean atomic surface densities of each molecule and ρ 
denotes the distance between two typical surface elements dS1 
and dS2. The 6-12 Lennard-Jones potential for two non-bonded 
atoms at a distance ρ apart is given by 
Φ(ρ)=4ε[-(σ/ρ)6+( σ/ρ)12], where σ is van der Waals diameter 
and ε is the well depth [15]. The van der Waals diameter σab and 
the well depth εab for two different materials, say materials a 
and b, are usually found from the empirical combining rules 
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σab=(σa+σb)/2 and εab=(εaεb)
1/2 [15]. The van der Waals 

interaction force FvdW is determined by differentiation of the 

total internal energy, thus EFvdW −∇= . 

The interaction energy Em(ρ) for the metal atom with one 
carbon atom, and the energy Ef(ρ) for the fullerene with one 
carbon atom, as derived in Cox et al. [16], are given by 

])/()/([4)( 126 ρσρσερ +−=mE         (1) 
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where the numerical values of the Lennard-Jones constants are 
as shown in Table 1. The Lennard-Jones constants, ε and σ for 
equations (1) and (2) have two different values and the 
numerical values of these constants are as shown in Table 1. 
Goddard III et al. [17] propose that a potassium metal ion K 
could be ionized to K+, and then the corresponding negative 
charge on the single walled carbon nanotube is uniformly 
distributed, and the Lennard-Jones potential equation can still 
be used for the internal energy of the system. 

A. Energy for the first memory device 

For an axially symmetric problem, using cylindrical polar 
coordinates (r,θ,z), any atom of the memory device can be 
represented simply by (R,z) for the left and the right carbon 
nanotubes; (r,z) for the central carbon nanotube; (0,Z) for the 
center of the metallofullerene as shown in Figure 1(a), where r 
and R are the different radii of the nanotubes, L1 is the half 
length of the central nanotube and L2-L1 is the length of the host 
nanotubes. The total internal energy EvdW can be calculated 
from EvdW=Em-T1+Em-t+Em-T2+Ef-T1+Ef-t+Ef-T2, where m, f, T1, t 
and T2 indicate the metal, fullerene, left, central and right 
nanotubes, respectively [12]. 
The distances from the center of the metallofullerene to the 

host nanotubes and to the central nanotube are given 
respectively by 

222222 )(    ,)( zZrzZR tT −+=−+= ρρ      (3) 

Based on the above equations (1), (2) and (3), the total 
internal interaction energy for the metallofullerene interacting 
with the nanotube structure is given by 
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where the function Em+f=Em+Ef and ρT and ρt are as given in 
equation (3) and the numerical values of the constants r, b, ηc 
and ηt are as shown in Table 1. Owing to the symmetry, we are 
only concerned with the force in the axial z-direction given by 
Fz=-dEvdW/dZ.  
 

B. Energy for the second memory device 

As for the first memory device, using cylindrical polar 
coordinates (r,θ,z), any atom of the system can be represented 
simply by (R,z) for the carbon nanotube; (0,Z) for the center of 
the metallofullerene; ([R2-(z+L)2]1/2, z) for the left cap and 
([R2-(z-L)2]1/2, z) for the right cap as shown in Figure 1(b), 
where R is the radius of the nanotube and the hemi-spherical 
caps, and L is the half length of the nanotube. The total internal 
energy EvdW can be calculated from 
EvdW=Em-c1+Em-t+Em-c2+Ef-c1+Ef-t+ Ef-c2, where m, f, t, c1 and c2 
indicate the metal, fullerene, nanotube, left cap and right cap, 
respectively [14]. 
The three distances from the center of the metallofullerene to 

the left cap, to the nanotube and to the right cap are given 
respectively by 
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Based on the above equations (1), (2) and (4), the total 
internal interaction energy for the metallofullerene interacting 
with the closed nanotube is given by 
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where the function Em+f=Em+Ef and ρc1, ρT and ρc2 are as given 
in equation (4) and the numerical values of the constants r, b, ηc 
and ηt are as shown in Table 1. Again from the symmetry, we 
are only concerned with the force in the axial z-direction given 
by Fz=-dEvdW/dZ. 

III. RESULTS AND DISCUSSION 

Figure 2 shows the total energy and the total force for the 
K+@C60 metallofullerene in (10,10) with length L2-L1=80Å and 
(9,9) carbon nanotubes of half length L1=20Å. Figure 3 shows 
the total energy and the total force for the K+@C60 
metallofullerene in a (10,10) carbon nanotube of half length 
L=20Å. 
Both memory devices have an energy barrier in the middle of 

the strucutre as indicated in Figures 2(a) and 3(a), so that the 
metallofullerene stays in one of the minimum energy locations. 
The left minimum energy location represents the zero state 
information and the right location is the one state information. 
The first nanomemory device has two symmetrically placed 

minimum energy locations which are inside the larger tubes as 
indicated in Figure 2(a). The second nanomemory device also 
has two symmetrically placed minimum energy locations 
which are close to the tube extremities as indicated in Figure 
3(a). Since this is a symmetric system, the two minimum 

energy locations are such that Z=±Zmin, and they are found by 
differentiation or FvdW(Z)=0. We find that the minimum energy 
positions are linearly dependent on the half length L such that 
we have the relationship Zmin=L+r-λ, where λ is a constant. The 
total energy at both ends tends to infinity because the distance 
of the hemi-spherical surfaces from the cap and the 
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metallofullerene are very small, and so there is a greater 
repulsive force. Numerical values for the constant λ, the 
minimum energy Emin, the energy gap Egap and the critical force 
|Fcritical| are found to be 7.23Å, -4.39eV, 1.13eV and 0.469eV/Å, 
respectively. 
There exists an energy barrier between the two minimum 

energy locations, and in order to change states, the 
metallofullerene needs an external force Fext to overcome the 
energy barrier to change state from the left (state zero) to the 
right (state one). In order to reverse the states, the same applied 
force is necessary but in the negative direction, so that the 
metallofullerene overcomes the energy barrier from the right to 
the left. The external force produced from an electrical field is 
given by Fext=qE where q is the total charge of the 
metallofullerene and E is the magnitude of the applied external 
electrical field, and an equal and opposite force is produced 
simply by reversing the direction of the external electrical field. 
 

 
Fig. 2 First memory device (a) Internal energy EvdW (eV) and (b) 
internal force FvdW (eV/Å) for K

+@C60 in (10,10) and (9,9) carbon 
nanotubes with L1=20Å 

 

 
Fig. 3 Second memory device (a) Internal energy EvdW (eV) and (b) 
internal force FvdW (eV/Å) for K

+@C60 in (10,10) carbon nanotube 
with L=20Å 

  
For both nanomemory devices proposed here the important 

parameters are the radii R and r, the length of the nanotube L or 
L1, the composition of the metal M in the metallofullerene and 
the magnitude of the applied external force Fext. Since the 
metallofullerene is assumed to be located on the nanotube axis, 
the radius of the nanotube R should be chosen to be as close as 
possible to 6.4Å, 7Å and 7.4Å for the M@C60, M@C80 and 
M@C100 metallofullerenes, respectively and the radius of the 
nanotube r should be smaller than R so that the metallofullerene 
needs the applied external electrical field to change states. The 
data transfer rate for both memory devices depends on the 
length L or L1 of the nanotube, the mass m of the 
metallofullerene and the external force Fext. A shorter nanotube 
length improves the data transfer rate so that the length should 
be as short as is possible. However, the nanotube length cannot 
be less than 20Å because the energy gap does not provide a 
sufficient barrier for the two states, 0 and 1. In other words, the 

TABLE I 
NUMERICAL VALUES USED IN THE MODEL. 

Radius of (9,9)  r=6.093Å 
Radius of (10,10)  R=6.766Å 
Radius of C60  b=3.550Å 
Radius of C80  b=4.200Å 
Radius of C100  b=4.660Å 
Mean Surface density of C60  ηc=0.379Å

-2 
Mean Surface density of C80  ηc=0.370Å

-2 
Mean Surface density of C100  ηc=0.366Å

-2 
Mean Surface density of nanotube  ηt=0.3812Å

-2 
L-J Constants for K+ [17] σ=3.564 Å |ε|=3.0352meV 
L-J Constants for C60 [15] σ=3.466 Å |ε|=2.86meV 
L-J Constants for graphene [17] σ=3.412 Å |ε|=2.39meV 
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metallofullerene can overcome the energy barrier without an 
applied external force if the length of the nanotube is less than 
20Å. The metal in the metallofullerene can have two possible 
effects on the system. First, when the ion in the 
metallofullerene has two charges, the applied external electrical 
field can be reduced to half to give the same external force as 
that for a single charge ion. Second, a lighter metal or ion would 
tend to improve the data transfer rate. The external force Fext 
should be greater than the critical attractive force |Fcritical| arising 
from the hemi-spherical caps and acting against the attractive 
force required to change state. For Figure 3(b), the critical 
attractive force for K+@C60 metallofullerene is 0.469eV/Å and 
the force necessary to change state from the left end to the right 
needs to be around 0.5eV/Å. 

IV. SUMMARY 

We have presented a summary of the two-state 
nanocomputing memory devices formed from carbon 
nanotubes and metallofullerenes as proposed in [12], [14]. The 
internal energy for both memory devices are calculated 
assuming the continuous approach so that all the results are 
determined analytically, and can be evaluated by standard 
mathematical software packages such as Maple and Matlab. 
This approach has many advantages over molecular dynamics 
simulations, which require long computational times, while the 
present evaluations are virtually instantaneous. The energy 
barrier involves the binding energy that the fullerene needs to 
acquire to leave the host nanotube and the repulsive energy that 
it needs to overcome to enter the central nanotube. 
The first nanomemory device comprises a charged 

metallofullerene and two open host nanotubes of the same 
radius that are joined by an open nanotube, which is centrally 
located between the host nanotubes but has a smaller radius. It 
has an energy barrier, due to the smaller radius of the central 
nanotube, and there are two minimum energy locations 
symmetrically situated in the larger radii nanotubes. For the 
second nanomemory device, a metallofullerene located inside a 
closed single walled carbon nanotube of half-length L and 
radius r also has two symmetrical minimum energy points Zmin 
and -Zmin where Zmin is given by Zmin=L+r-λ where λ is a 
constant. 
For both memory devices, in order to change from state 0 to 

state 1, the charged metallofullerene needs an external force to 
overcome the attractive force arising from the van der Waals 
interactions. The external force must exceed the critical 
attractive force and it can be provided from an applied external 
electrical field. The lighter the atom at the center of the 
metallofullerene, the larger the external force, and the shorter 
the nanotube, are all important factors tending to increase the 
data transfer rate. 
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