
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:8, 2020

300

NANCY: Combining Adversarial Networks with
Cycle-Consistency for Robust Multi-Modal Image

Registration
Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract—Multimodal image registration is a profoundly complex
task which is why deep learning has been used widely to address it in
recent years. However, two main challenges remain: Firstly, the lack
of ground truth data calls for an unsupervised learning approach,
which leads to the second challenge of defining a feasible loss
function that can compare two images of different modalities to judge
their level of alignment. To avoid this issue altogether we implement a
generative adversarial network consisting of two registration networks
GAB, GBA and two discrimination networks DA, DB connected by
spatial transformation layers. GAB learns to generate a deformation
field which registers an image of the modality B to an image of the
modality A. To do that, it uses the feedback of the discriminator DB

which is learning to judge the quality of alignment of the registered
image B. GBA and DA learn a mapping from modality A to modality
B. Additionally, a cycle-consistency loss is implemented. For this,
both registration networks are employed twice, therefore resulting in
images Â, B̂ which were registered to B̃, Ã which were registered
to the initial image pair A, B. Thus the resulting and initial images
of the same modality can be easily compared. A dataset of liver
CT and MRI was used to evaluate the quality of our approach and
to compare it against learning and non-learning based registration
algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01
and is therefore comparable to and slightly more successful than
algorithms like SimpleElastix and VoxelMorph.

Keywords—Multimodal image registration, GAN, cycle
consistency, deep learning.

I. INTRODUCTION

IN a medical context automatic image registration can

drastically simplify the process of combining images

that were obtained using different modalities such as CT,

MRI or ultrasound (US). The goal of this project is to

align pre-procedure MRI to intra-procedure US images via

a multi-modal real-time image registration algorithm so

surgeons get access to higher quality imaging during prostate

brachytherapy and biopsy. However, the dataset of prostate

MRI and US is still under construction which is why for

the present contribution liver MRI and CT images from

the CHAOS dataset [1] are used to test the application of

the developed algorithm to multi-modal image registration

in general. Since this task is very complex, Ferrante et al.

[2] suggest that a promising and a still not fully explored

approach to image registration is the use of machine learning.
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But as the complexity of multi-modal image registration lies

in the difficulty of comparing two images that stem from

modalities whose depiction of intensities cannot easily be

compared analytically, it remains challenging to define a

suitable similarity measure as a loss function for a machine

learning approach that aims to register multi-modal images.

In [3] the focus lies on finding optimal similarity

measures for comparing medical images that were acquired

by different modalities. The method outperforms the mutual

information similarity measure which is usually applied for

multi-modal image registration [4], [5]. Nonetheless, with this

approach it remains necessary to apply a computationally

expensive optimizer for the calculation of a registration

map. Several approaches exist to train deep CNNs to learn

how to perform the registration process itself. In [6]- [9]

unsupervised learning-based approaches consisting of CNNs

were implemented for deformable 3D/3D image registration.

They used normalized cross correlation (NCC) and sum

of squared differences (SSD) as similarity measures which

is sufficient for the registration of single modality images

but the resulting errors after multi-modal registration remain

considerably higher.

To combine the advantages of having an end-to-end

approach and a learned similarity function and to overcome

the difficulty of comparing multi-modal images, the ideas in

[10] inspired the system depicted in Fig. 1. Two discriminators

DA and DB learn a similarity measure between both modalities

to rate the quality of alignment between an image pair. Two

generators GAB and GBA learn to generate deformation fields

that register image pairs. Each generator is employed twice

to exploit the cycle-consistent character of the generated

mappings. The image pair is registered twice to each other

which should ideally result in images close to the original

image pair. The image pairs can be compared by calculating

the difference between images of the same modality.

The trained networks are tested and compared with other

state of the art algorithms such as SimpleElastix [11] and

VoxelMorph [6], [7].

II. RELATED WORK

There are a great number of already existing image

registration methodologies that are used in a medical context.

Most non-learning based image registration algorithms that

are used for multi-modal registration use an iconic matching

criterion in combination with another matching criterion such
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as geometric in [12] and [13] or a sensor based matching

criterion in [14]. All three use a continuous optimizer to find

a rigid [14], [12] or non-rigid [13] transformation model.

Learning-based approaches seem more promising in this

area. In [15] CNNs learn a general similarity function to

compare image patches. In [16] a CNN regression approach

was successfully implemented to achieve 2D/3D rigid image

registration in real-time by directly estimating the rigid

transformation parameters between a given image pair.

Since human tissue is mostly soft, the here applied image

registration algorithm needs to not only yield rigid but

also non-rigid transformation parameters. In [6] and [8]

unsupervised learning-based approaches based on CNNs were

implemented for deformable 3D/3D image registration. The

algorithms were both tested successfully on 3D MR brain

scans but are applicable to image registration tasks in general.

Another very recent trend in machine learning applications

for image registration is the implementation of Recurrent NNs

instead of CNNs, especially RNNs that are Long Short-Termn

Memory (LSTM), since they lead to very successful results

in medical image segmentation tasks as seen in [17]. In [18]

LSTMs were used to rigidly register US and MR images of

the fetal brain via a dual-modality atlas image.

Another promising approach is the use of Generative

Adversarial Networks (GANs) became a recent focus of

research within image registration and segmentation, as seen

in [19] and [20], respectively.

III. FORMULATION

We want the model to learn functions which map

a multi-modal image pair {A, B} to deformation fields

{ΦAB,ΦBA} which align each image to the respective other

one. In our case A represents a CT image volume and B

represents an MR image volume. As depicted in Fig. 1, the

model consists of two generators GAB and GBA which produce

deformation fields which align image B to image A and

vice versa. Additionally, two discriminators DA and DB are

implemented. DB aims to classify whether the registered image

B̂ is well aligned to image A, while DA learns to classify

whether image Â is well registered to image B. To learn

this it is necessary to define positive cases which determine

a ’perfect’ registration. In this work we use images aligned

via SimpleElastix deformable [11] as positive cases. If the

positive cases are well defined, the discriminator learns how

to compare a multi-modal image pair. A task that often is too

complex for analytical methods.

The full objective includes four different kinds of terms:

adversarial losses for classifying the quality of the generated

alignment; a cycle consistency loss to overcome the issue of

having to compare multi-modal images mathematically and

to also rate the quality of the alignment; an identity loss to

make sure the generated deformation field does not change

the moving image if the image pair is already well aligned;

and a continuity loss to assure that the generated deformation

fields are smooth.

A. Adversarial Loss

Both mapping functions are directed by an individual

adversarial loss. The generator GAB works against the

discriminator DB. Their adversarial loss is defined as follows:

LGAN(GAB,DB) = (DB(AT)− 1)2

+ DB(τ(B,GAB(A,B)))2
(1)

GAB generates deformation fields that are supposed to register

the moving image B to fixed image A well enough so the

discriminator rates them as well aligned. During the same time

the discriminator DB learns to rate the quality of the resulting

alignments. We define a similar loss for the second mapping:

LGAN(GBA,DA)

B. Cycle Consistency Loss

To further increase the quality of the registration we use the

fact that the learned mappings should be cycle-consistent. The

images of image pair {A, B} are registered to each other via

the deformation fields that were generated by GAB and GBA.

This results in the image pair {Â, B̂} where Â is image A

registered to image B and B̂ is image B registered to image

A. We then employ both generators a second time to register

the image pair {Â, B̂} to each other. This results in the image

pair {Ã, B̃} which should be ideally identical to image pair

{A, B}. Comparing the image pairs {Ã, B̃} and {A, B} with

each other can be done via the L1 norm since we only compare

the images of the same modality with each other.

We write this characteristic as the loss function:

Lcyc(GAB,GBA) =
∥
∥τ(Â,GBA(B̂, Â))− A

∥
∥
1

+
∥
∥τ(B̂,GAB(Â, B̂))− B

∥
∥
1

(2)

C. Identity Loss

To make sure that well aligned images are not further

changed, the following loss function is implemented:

Lident(GAB,GBA) =
∥
∥τ(AT,GAB(A,AT))− AT

∥
∥
1

+
∥
∥τ(BT,GBA(B,BT))− BT

∥
∥
1

(3)

The positive case as defined for the adversarial loss is used

as moving image. The generated deformation field should not

alter the moving image as it is already well aligned.

D. Continuity Loss

As naturally occurring deformations in soft tissue are

considered to be smooth, we also expect our deformation field

to be smooth. The following loss function therefore penalizes

non-smoothness:

Lreg(GAB,GBA) =
∥
∥GAB(A,B)

∥
∥
2
+

∥
∥GBA(B,A)

∥
∥
2

(4)

E. Full Objective

The full objective is:

L(GAB,GBA,DA,DB) = LGAN(GAB,DB) + LGAN(GBA,DA)

+ μLcyc(GAB,GBA) + νLident(GAB,GBA)

+ ξLreg(GAB,GBA)
(5)
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Fig. 1 Overview of the developed network. The differently coloured squares represent images A and B of different modalities. Dotted and dashed lines
indicate the flow of fixed and moving images, respectively

where μ, ν, ξ control the weight of each part of the full

objective.

The network is trained to solve:

G�
AB,G�

BA = arg min
GAB,GBA

max
DA,DB

L(GAB,GBA,DA,DB) (6)

The loss functions rating the output of the generator should

be minimized while the output of the discriminator should be

maximized to favour correct judgment of the alignment of the

image pair.

IV. IMPLEMENTATION

A. Network

As depicted in Fig. 1, two generators GAB and GBA -

each consisting of a UNet similar to the one used in [6],

[7] and introduced in [21] - learn how to generate smooth

deformation fields ΦAB and ΦBA which align both images A

and B to the other one, respectively. A spatial transformation

layer τ applies the deformation fields to the moving images to

generate aligned images Â and B̂. The discriminators DA and

DB are consisting of Patch-GANs [22], [23] and try to classify

whether the registered images Â and B̂ are well aligned to

images B and A, respectively. The generators GAB and GBA

are applied again. This time to align Â and B̂. The newly

registered images Ã and B̃ are then compared to the initial

images A and B, respectively.

B. Training

For training we employ the Adam optimizer with a λ =
0.0002 learning rate. We choose μ = 1000, ν = 10000, and

ξ = 100 to ensure that all parts of the objective are in the same

range so they have equal impact on the network. We use 30

MRI and CT images of the open-source CHAOS dataset [1] for

training, respectively, and combine them to 900 inter-patient

image pairs for training. We hold out 10 images of each

modality to generate 100 image pairs for testing. The model

is trained for 100 epochs with a constant learning rate. For

the next 100 epochs the learning rate is consistently decreased

until it reaches 0.

V. EVALUATION

For the evaluation of the resulting registration the liver

segmentations of both the fixed and warped image are

compared by calculating two different values. The Dice

coefficient counts the amount of overlapping voxels. If Dice=1

the volumes overlap exactly [24]. The Hausdorff distance

measures the distance between two subsets of a metric space,

it is 0 if both volumes have the same boundary [25]. We

calculate both values for the case of registration from CT

to MRI and from MRI to CT. We then compare the results

of our algorithm with the coefficients from three baseline

algorithms: SimpleElastix affine, SimpleElastix deformable,

and VoxelMorph [11], [7]. To improve readability, we refer

to our algorithm as NANCY.

VI. RESULTS

The registration results of all employed algorithms are

depicted in Tables I and II. The average of Dice coefficient and

Hausdorff distance are calculated for the registration of 100

inter-patient test image pairs that were not part of the training

data.

Our approach is comparable to or slightly more successful

than SimpleELastix and VoxelMorph, two state of the art

algorithms. However, dice coefficients of maximum 0.80 leave

room for improvement. Also notable is the fact that registration

from CT to MRI leads to smaller dice coefficients and higher

Hausdorff distances for most algorithms and is therefore less

successful than registration from MRI to CT.

Exemplary registration results are shown in Fig. 2. Here

NANCY results in a slightly smaller dice coefficient, yet the
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TABLE I
EVALUATION OF THE REGISTRATION RESULTS FOR THE TEST DATASET.

MRI ARE REGISTERED TO CT IMAGES

Dice Coefficient Hausdorff Distance
unaligned 0.49± 0.01 19.64± 28.23
SimpleElastix Affine 0.60± 0.01 17.23± 32.40
SimpleElastix Deformable 0.77± 0.01 16.84± 37.28
VoxelMorph 0.79± 0.02 15.31± 30.13
NANCY 0.80± 0.01 14.82± 35.17

TABLE II
EVALUATION OF THE REGISTRATION RESULTS FOR THE TEST DATASET.

CT IMAGES ARE REGISTERED TO MRI

Dice Coefficient Hausdorff Distance
unaligned 0.49± 0.01 19.64± 28.23
SimpleElastix Affine 0.62± 0.01 17.10± 35.24
SimpleElastix Deformable 0.65± 0.02 16.48± 22.32
VoxelMorph 0.66± 0.02 16.02± 31.56
NANCY 0.66± 0.01 15.81± 30.77

Fig. 2 From left to right: CT of liver, unaligned MRI, aligned MRI via
SimpleElastix Deformable, aligned MRI via NANCY. Dice coefficient for

unaligned pair: 0.30, for aligned pair using SimpleElastix: 0.75, for aligned
pair using NANCY: 0.73. As depicted, both registration approaches result in

more overlap of the liver. However, using NANCY the registered liver
remains in a more physiological shape than the result obtained with

SimpleElastix

resulting liver segmentation keeps a more physiological shape

than the deformable SimpleElastix approach.

VII. DISCUSSION AND OUTLOOK

A novel approach of multi-modal image registration

was implemented using GANs and cycle-consistency. The

algorithm was tested on an open-source dataset consisting of

3D CT and MRI of the liver [1]. The results show that the

newly developed algorithm is at least comparable if not more

successful than the chosen baseline algorithms. However, the

best results are a dice coefficient of 0.80 and a Hausdorff

distance of 14.82 for the registration of MRI to CT via

NANCY which leaves space for improvement.

One flaw of the algorithm is the definition of a ’positive

case’ for the learning process of the discriminator. Using

images that were aligned via the SimpleElastix deformable

registration algorithm can obviously not lead to perfect

results since SimpleElastix does not generate perfectly aligned

images. Our definition of a ’positive case’ therefore needs to

change. One idea to do this would be by using translated

images instead of aligned images as positive cases. E.g use

an MRI that was translated to look like a CT as the positive

case for how a perfectly aligned CT to said MRI would look

like. Algorithms that could be employed for this strategy are

either cycleGAN as introduced in [10] and [20].

Another idea to improve NANCY is to change the

implemented model from a UNet-type model to a long

short-term memory network (LSTM) or to a kervolutional

neural network as introduced by [26]. Both networks seem to

be better equipped to handle the entirety of the spatio-temporal

context of a 3D image volume as opposed to CNNs that only

perceive small local voxel contexts [18], [26]. Both networks

have not yet been applied to multi-modal deformable image

registration.
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