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Mutually Independent Hamiltonian Cycles of
C, x C,

Kai-Siou Wu and Justie Su-Tzu Juan*

Abstract—In a graph G, a cycle is Hamiltonian cycle if
it contains all vertices of G. Two Hamiltonian cycles C7 =
(w0, U1, U2y ooy Un—1,u0) and C2 = (Vo,V1,V2, ..., Upn_1,v0) in G
are independent if ugp = wo,u; # v; forall 1 < ¢ < n — 1. In
G, a set of Hamiltonian cycles C = {C1,Cy,...,Cy} is mutually
independent if any two Hamiltonian cycles of C' are independent. The
mutually independent Hamiltonicity IHC(G) = k means there exists
a maximum integer k such that there exists k-mutually independent
Hamiltonian cycles start from any vertex of G. In this paper, we
prove that IHC(C,, x C,,) = 4, for n > 3.

Keywords—Hamiltonian, independent, cycle, Cartesian product,
mutually independent Hamiltonicity.

I. INTRODUCTION

YCLES the fundamental class of network topologies for
C parallel and distributed computing, is suitable for design-
ing simple algorithms with low communication costs [1]-[3].
For solving various algebraic problems, graph problems, and
somc parallel applications, therc arc many cfficient parallel
algorithms designed on cycles, such as those in image and
signal processing, can be found in [1], [4]. If the network
can be embed cycles, then we can use these algorithms
as control/data flow structures for distributed computing in
arbitrary networks so that the algorithms designed on cycles
can be executed on the embedded cycles.

When designing a structure in interconnection network,
we often transform this problem to graph for discussing and
studying. Formally, A processor will be transformed to be a
vertex and the connection between two processors will be
transformed to be an edge. By this transformation, it can
transform an interconnection network to a graph.

For definitions and notations, we follow [5]. A graph G =
(V,E), V, E are finite set, where V' is vertex set and E is edge
set define as E C {(u,v) : (u,v) is an unordered pair of V'}.
Two vertices u, v are adjacent if (u,v) € E(G),u,v € V(Q).
A path Plvg,vg] = (vg,v1, ..., 0x) in G, define as a sequence
of adjacent vertices and for all 0 < i < j < k,v; # v;. Let
P(i) = v;—1 be the ith vertex of path P. A cycle Clvg,vi] =
(vg,v1,...,0x) in G is a sequence of adjacent vertices where
vo = Uk, k > 3 and for all 0 < i < j < k,v; # v;. In
G, a cycle is Hamiltonian cycle if it contains all vertices
of G. Two Hamiltonian cycles C1 = (ug, u1, U, ..., Un, Ug)
and Cy = (vg,v1,V2,...,Un,09) In G are independent if
ug = vg,u; # v; for all 1 < ¢ < n. A set of Hamiltonian
cycles C = {C4,Cy,...C,,} start from the same vertex in
G is mutually independent if any two Hamiltonian cycles of
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C are independent. The mutually independent Hamiltonicity,
IHC(G) = k, of a graph G means there exists a maximum
integer k such that there exists k-mutually independent Hamil-
tonian cycles start from any vertex of G. In this paper we
define C,, is a cycle with |V (C,,)| = n.

Broadcasting is an information dissemination process that
involves one node in a network sending pieces of information
to all other nodes in the network. Constructing a set of
k-mutually independent Hamiltonian cycles enables us to
efficiently broadcast a message formed of % pieces on a graph
G. The common starting vertex acts as the source to send the &
pieces of the given message along the k parallel Hamiltonian
cycles. This broadcasting can be done in O(n) time using an
all-port model.

Given two graph G = (Vg,Eg),H = (Vu,FEpg), the
Cartesian product of G and H,G x H, is a graph which
Vi= Vo x Vg, E = {((prq1), (p2:q2)) : (p1,q1)s
(p2,q92) € V, and (p1 = p2, (q1,92) € En, or ¢t = go,
(p1,p2) € Eg)}. For a vertex u € V(G), the neighbor
of u, Ng(u), is the set {v : (u,v) € FE(G)}. And
degi(u) = |Ng(u)| is called the degree of u. In a graph G,
we use A(G) and 6(G) to denote the maximum degree and
minimum degree of G such that A(G) = maximum degree,
0(G) = minimum degree. When we consider IHC(G), these
mutually independent Hamiltonian cycles are start from any
vertex of (G, then we can get a property as follows:

Remark 1. For any graph G, IHC(G) < 4(G).

The mutually independent Hamiltonicity of a graph can be
represented by a Latin square. A Latin square of order n is an
n X n matrix which each row and each column is an integer
from 1 to n, and in the same row or column, each number
occur exactly once. If we remove any & rows of Latin square
for 1 < k < n, we can get a Latin rectangle.

Mutually independent Hamiltonian cycle problem is an
important property for graph theory, there are many studies
for this problem on different graph [6]-[12]. In 2005, Sun
et al. study on the mutually independent Hamiltonicity of
hypercube [13]. In 2007, Hsieh et al. study on fault-free
mutually independent Hamiltonian cycles in hypercubes with
faulty edges [14]. Lin et al. study on the pancake graphs and
the star graphs in 2009 [15]. Chang et al. study on (n, k)-
star graphs in 2009 [10]. In this paper, we study on mutually
independent Hamiltonicity of C,, x C,,. And we prove that for
n >3, HC(C, x C,) =4.
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Fig. 1. Symbol definition of C5 X Cs.

II. SYMBOL DEFINITION

Let Z, = {0,1,2,..n — 1}, n € N and let V(C,) =
Zn. We refer to toroidal mesh graph [16] and define graph
Cp x C,, n > 3 as follows: The vertex set V(C,, x C,) =
{(z,y) : x, y € Z,}; The edge set E(C, x Cy,) = {((u1,
ug), (v1, v2)) : (u1, uz), (v1, v2) € V(Cy, x Cy) and u; =
vy, Jug —we| € {1, n — 1} or ug = vq, |ug — 1] € {1,
n —1}}. We use this symbol definition to construct Cs x C'5
as Fig. 1. A graph G is a k-regular graph if for all z € V(G),
degg(x) = k. And a graph is vertex transitive if every vertex
can be mapped to any other vertex by some automorphism [2].
By definition, C,, x C,, is a 4-regular graph with n? vertices
and it is vertex transitive.

In C,, x C,,, we use C* to denote the ith subgraph of C,, x
C, for i € Z,, where the vertex set V(C?) = {(i,v) : v €
Z,}; The edge set E(C?) = {((i,v1), (i,v2)) : |v1 —va| € {1,
n—1}and 0 < vy < vy <n—1, vy,vy € V(CH}. Then C,, x
C,, can be decomposed into n subgraph C* for i € Z,, and
each C? is isomorphic to C,,. Let (i,z) and (i,y) € V(C?),
then we define P; , , + = ((¢,2), (4, 2+1), (1, 24+2), ..., ({,9))
is a path of C which is from (i, z) to (i,y) and the index of
vertices are increased. And P, , , — = ((i,2), (i,z—1), (i,z—
2), ..., (i,y)) is a path of C* which is from (i, z) to (,y) and
the index of vertices are decreased. Note that the operation +
or — should be calculate on Z,,. In a cycle C, we use C(t) = x
for 1 <t < |C| to denote the tth vertex of C from the start
vertex.

III. MAIN RESULT
We study on mutually independent Hamiltonicity of
C, x C, in this section. First, we prove some lemmas and
use them to show that IHC(C,, x C,,) = 4. We show results
as follows.

0 1 2 n—1
n—1/ 0 1 n—2
n—2n—1, 0 n—3

1 2 3 0

Fig. 2. A Latin square order n, which subtract 1 from each element.

h—ntllh— b2 -1 & Lt la+2b . htn—1
P 0 |n—1] - 2 1
b#0 0 [n—1] - 2 1
b=1 0 |n—1] - 2 1
b=2 0 [n—1] - 2 1
b=.. 0 [n—1] - 2 1 |
b=mn—1] 0 n—1] - 2 1 |

Fig. 3. A matrixof u=a=v=0,b€ Z,,b#0.

Lemma 1. For any odd positive integer n > 3, IHC(C,,) = 2.
Proof. Let V(C,,) = Z,, it is easy to see that there exits two
Hamiltonian cycles Hy, Hy as follow:

Hy:(0,1,2,3,...,n—1,0); Hy : (0,n—1,n—2,n-3,...,1,0).
So, for all 1 <4 < n,Hy(i) =i — 1;Hs(1) = 0 and for
all 2 < j < n,Hs(j) = n — j + 1. Thus, for all
2 < k < n,Hi(k) + Hy(k) = n. Since n is odd,
Hy(k) # Hs(k). Then there exists two independent
Hamiltonian cycles start from vertex 0. Since cycle is vertex
transitive, there exists two independent Hamiltonian cycles
start from any vertex of C,. Hence, IHC(C,) > 2. By
Remark 1, we can know that IHC(C,,) = 2. O

It is not too difficult to see that the following lemma is true.

Lemma 2. For any graph G, if there exists two P, P
and a subgraph C,, C G with V(C,,) = {xo,z1,..., Tn_1}.
Forall 1 <i<20<j<n-—1P(# +j) € V(C,). Let
Pi(t1+j) =ay_j, Poto +j) =ay_j for 0<j<n—1.1f
u—a = a mod n, t; —ta = b mod n for some, a,b € Z,
and a # b, then these 2 paths are not at the same vertex of
C,, in the same time.

Fig. 3 is an illustration of Lemma 2.

Theorem 1. For n > 3 and n is odd, IHC(C,, x C,,) = 4.
Proof. Since C,, x C,, is 4-regular graph, IHC(C,, x C},) < 4
by Remark 1. Next, we will show that IHC(C,, x C,,) > 4 by
constructing 4-mutually independent Hamiltonian cycles from
any vertex of C,, x C,. Without loss of generality, we may
assume that start vertex e = (0, 0) because C,, x C,, is vertex
transitive. We construct 4-mutually independent Hamiltonian
cycles Hy, Ho, Hs and H, start from e as follows:

Hl = <(O70)’ PO,O,nfl,Jrv (Oyn - 1)’ (1,’[1 - 1)7
Plvnfl’nfgﬁ_, (1,71 — 2), (2,7'L — 2), ngnfg.’n,gv_‘_, (2,7'L —
3), ceey (n — 1, 1), Pnfl.’lyo?_‘_, (n — 1,0), (O, O)>

Hy; =((0,0), (1,0), Pio1,—, (1,1), (2,1), Po12.—, (2,2),
(3,2), P3,2737_./ (3,3),..., (n - 1./7’l - 2)/ Pn—l,n—2,n—1,—7
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Fig. 4. The construction of 4 Hamiltonian cycles of Cj, X C,, start at e

(n_ 1)7 (n 1)’ (O n-— ) POn 1,0,—> (O 0)>

}Ig:<(0,0)7 (n—lO) n—1,0,n—1,+> (n—l,n—l),
n=2,n—1), Ph_on_-1n-2+, (n—2,n—2), (n—3,n—2),
Pn73,n72,n73,+a (n - 3,71, - 3), ceey (O, 1), POJ»,OH" (O, 0))

Hy = ((0,0), Poo1,—, (0,1), (n —1,1), P12,
(n—1,2), (n—2,2), Pp_223,—, (n—2,3),..., (1,n— 1),
P1,7L—1,0,—a (1,0), (0a0)>

We represent H;, Hy, H3 and H, as graph in Fig. 4.
According to vertices H;(t), for 2 <t < n?,i € {1,2,3,4}
belong to different subgraph C7, for j € Z,, or not, we have
following cases:

Case1:2<t<mnand n(n—1)+2<t<n2

For any 2 < t; < n and n(n — 1) + 2 <
ts < n? By the construction of Hy, Ho, Hs and Hj,
we can know that Hi(t1), Hy(t1) € V(C%); Ha(t:) €
V(Cl); Hg(tl) S V(Cn—l) and Hl(tg) S V(Cl),
Hg(tg) Hg(tg) S V(CO) H4(t2) S V(Cn—l) By Lemma
1, Hyi(t1) # Hy(t1) and Ho(to) # H3(t2). In the same time,
Hy(ty), H3(t1); Hy(t2), Hy(t2) are in different subgraph, so
H;(t) # H;(t), for 4,5 € {1,2,3,4},1 # j, for 2 <t < n
or n(n — 1) +2 < t < n? That is, Hy, Hy, H3 and H, are
mutually independent for this case.
Case2:t=in+1,foralll1 <i:<n-—1.

From the construction of 4 Hamiltonian cycles, we can
know that for all 1 <i<n—1,t=in+1, Hi(t) = (i,n —
i); Hy(t) = (i,0); Ha(t) = (n — i,n — )3 Hy(t) = (n — i, ).
Since n is odd, n — ¢ # 4. It means that when ¢ = in + 1, for
1<i<n-—1Hy(t),Ha(t), H3(t), Hy(t) are distinct.
Case 3:in+2<t<in+mn,foralll <i<mn-—2and
i#(n—1)/2.

Forall 1 <i<mn-—2andi# (n—1)/2 and in+ 2 <
t < in+n, Hi(t) € V(CY, Ha(t) € V(CHY), Hz(t) €
V(Cn=i=1), and Hy(t) € V(C™9). It is trivial that i # i +
I,n—i+1#n—4 Sincei# (n—1)/2, then i #n —i —
1;44+1#n—i.Besides,i #n—iandi+1 #n—i—1, forn
is odd. Hence, Hy, Hy, Hs and H, are mutually independent
in this range.

Case 4 :in+2 <t <in-+n, when i = (n —1)/2.
When t = in + 2, Hl(t — 1) = Hg(t), H4(t — 1) = Hg(t),

Fig. 5. Hamiltonian cycles Hy in C5 X Cs.

and for all in+2 <t < in+n,i = (n—1)/2, Hi(t), H3(t) €

V(C%; Ha(t), Hy(t) € V(C'*1). In this interval, (H(in-+1),
Hy(in+2),..., Hi(in+n)) = (Hs(in+2), Hs(in+ 3), ...,
H3(1n+n+1)> = PL'JJrL?jﬂL and <H2(2n+2), H2(2n+3), ceny
Hy(in+n+1)) = (Hy(in+1), Hy(in+2),..., Hy(in+n))
= Lit1,,i41,—

From the above discussion Hy, H3 and Ho, H, are indepen-
dent. Besides, H, Hs and Hy, H, are in different subgraphs.
Thus, Hy, He, H3 and H4 are mutually independent in this
range.

From the above 4 cases, we can know that Hy, Ho, H3
and H, start from e are mutually independent. Hence,
IHC(C,, x C,) > 4 and it implies IHC(C,, x C,) = 4 for
odd integer n > 3. O

We construct 4-mutually independent Hamiltonian cycles
of C5 x C5 in Fig. 5, 6, 7, 8 as an example of Theorem 1.
Next, we discuss the number of IHC(C,, x C,,) for n is an
even positive integer with n > 4.

Theorem 2. For n > 4 and n is even, IHC(C,, x C),) = 4
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Fig. 7. Hamiltonian cycles H3 in C5 x Cs.

Fig. 8. Hamiltonian cycles Hy in Cs x Cs.

Proof. Since C,, x C,, is 4-regular graph, IHC(C,, x C,,) < 4
by Remark 1. Without loss of generality, we may assume that
start vertex e = (0,0) because C,, x C,, is vertex transitive.
For n = 4, we construct 4-mutually independent Hamiltonian

t 1 2 3 4 5 6 8 9
H, [(0,0)[(0, 1) (L. 1) (1, 0) (1. 3)[(1.2) (2, 2) (2, 1)|(2,0)
Hy |(0.0) |(1,0) (1.3) (1.2)|(0.2)[(0.3) (3,3) (3.0 /(3. 1)
H(0.0)[(3,0)(2.0)(2.3) (2. 2)[(2.1) (3, 1)[(3.2)](3,3)
H,[(0.0)[(0,3)/(3.3) (3.2) (3. 1)[(0. 1)|(0,2) (1. 2)|(1..3)

t 10 11 12 13 14 15 16 17
Hy (2, 3103, 3)[(3, 0)[(3. 1) (3. 2) (0, 2) (0, 3) (0, 0)
Hy((3:2)1(2,2)[(2,3)[(2,0) (2, DI(L, 1)[(0, 1[0, 0)

Hay |(0,3)](0,2)[(0, 1)[(1,1)|(1,2)|(1,3)[(1, 09 (0, 0)
Hy (1,0 (1, D)1(2,1)[(2:2)](2:3)|(2,0)|(3,0) (0, 0)

Fig. 9. In C4 X C4, 4-mutually independent Hamiltonian cycles start at e.

cycles Hy, Hy, Hs and H, start from e as Fig. 9. For n > 6,
We construct 4-mutually independent Hamiltonian cycles
H,, Hy, H3 and H, start from e as follows:

Hl = <(070)’ (071)7 (171)7 P1,1,2,*7 ( ) (7 )7

13272,3’77 (2,3), (3,3), P37374’,, (374) ooy (n - 2,n — 2),
P,_opn—on-1-, (n—2n-1), (n— -1), (0,n —1),
(0,m—2), (n—1,n—2), (n—1,n—3), (On 3), (0,n—4),
(n—1,n—4), (n—1,n-5),..., (n—1,1), (n—1,0), (0,0)).
H2:<(070)’ (170)7P1,0,1,*7(1’1) ( ) P212*7(27 )7
(3,2), P3,2,37,7 (3 3) (O n — 1) Po n—1,0,—» (O 0)>

H3:<(070)7 (nflo) n—1,0,n— 2+7( 1777'72)7
(0,7172), PO,TL—Q,L—? (071) (1 1) Pl-,l,?—v ( ’ )7 ( ’ )7
Pros—, (2,3), (3,3), P3ga—, (3,4),...., (n —2,n — 2),
P on-2mn-1,—, (n—2,n—-1), (n—1,n—-1), (0,n—1),
(0,0)).

H4 = <(0,0), PO,O,l,—: (0,1), (TL 1, ), Pn—1,1,2,—7
(n—1,2), (n —2,2), Po_o21,4, (n—2,1), (n — 3,1),
Pn 3,1,0,4> (n—30) (n—4,0), Pn 4,0,1,— 7(TL—4,1)7
(n_51) n010+7(n_570)7"'7(7)7 310+7(7)7
(2,0)7 PQ,O,n 1,4 (2 n — 1), (l,n— ), Pln 1,0,—> ( 5 )
(0,0)).

We represent H,, Ho, H3 and H, as graph in Fig. 10.
According to H;(t),2 <t <n?,1¢€ {1,2,3,4} belong to the
same subgraph C” for some j € Z,, or not, we have following
cases:

Case 1:t=2,n2—1, or n?

)

For t =2, Hy(2) = (0,1), H2(2) = (1 0) H3(2) = (n —
1,0), Hy(2) = (0,n — 1). And for ¢ = n? — 1, Hy(n® —
1) = (n—1,1),Hy(n* — 1) = (0,2), H3(n* — 1) = (n -
1,n—1),Hyn?—1) = (1,1). Fort—n2 Hi(n?) = (n—
1,0), Hy(n?) = (0,1), H3(n?) = (0,n — 1), Hy(n® — 1) =
(1,0). Hence, Hy, Ho, H3 and H4 are mutually independent

in this case.
Case2: (i—1)n+3<t<in+2 foralll <i<n-—2.
Forany 1 <i<n-—2,forall i—1)n+3<t<in+2,
Hy(t), Hx(t) € V(C*). Two paths H; and Hy go the same
way in C*. Let Hy((i — 1)n+3) = (i,u), Ha((i —1)n+3) =
(¢,v). By the construction of H; and H,, we can know that
v = (u— 2) mod n. By Lemma 2 and H;(in + 2) € V(C?),
Hy(in +2) € V(CH!) for any 1 < i <n —2, H; and Hy
are independent for (i —1)n+3 <t <in+2,1<i<n-—2.
Then, we have the following subcases:
Case 2.1:3<t<n.

Hl(t),HQ(t) S CZ,Hg(t) S Cn71 and H4(t) S CO, for
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Fig. 10. The construction of 4 Hamiltonian cycles start at e

3 <t < n.Since H; and Hy are independent and Hs, H4 are
in different subgraph with H; and Hs, then H;, Ho, H3 and
H, are mutually independent in this subcase.

Case22:n+1<t<2n-2.

Hi(t) e V(CY) fort € {n+1,n+2} and Hy(t) € V(C?)
forn+3 <t <2n—2. Hy(t) € V(C!) for t = n+ 1, and
Hy(t) € V(C?) for n+2 <t < 2n—2. H3(t) € V(C°) and
Hyt) e V(C™ 1) forn+1 <t < 2n—3. Since Hy and H»
are independent and Hjs, H, are in different subgraph with H;
and H,, then Hy, Hy, H3 and H, are mutually independent
forn+1<t<2n-—2.

Case 23:2n—1<t<2n+2.

For 2n — 2 < t < 2n + 1, Hy(t) and Hy(t) € V(C?),
Hg(t) S V(Cl) H1(2TL+2) € V(OQ), H2(2TL+2) € V(Cd),
and Hy(2n + 2) € V(CY). Hy(t) € V(C"Y) for t €
{2n—1,2n} and Hy(t) € V(C"2) for t € {2n+1,2n+2}.
Since H; and H, are independent and Hs, H, are in different
subgraph with H; and H,, then H,;, Hy, H3 and H, are
mutually independent in this subcase.

Case24: (i—1)n+3<t<in+2,forall3<i<n-—2.

Case24.1: (i—1)n+3 <t <in—2,forall 3 <i<n-2.

When ¢ in this interval, Hy(t), H2(t) € V(C?), Hs(t) €
V(C=2), Hy(t) € V(C™*1). Since i # i — 2,i # n —
i+ 1and i —2 # n —i+ 1 for n is even, and H; and
H, are independent, then Hy, Ho, H3 and H, are mutually
independent in this subcase.

Case 242 :in—1<t<in,forall 3<i<n-—2.

When ¢ in this interval, Hy(t), H2(t) € V(C?), H3(t) €
Cl Hy(t) e C L Soi#i—1,i#n—i+1since n
is even. Furthermore, H3(in — 1) = (i — 1,7 — 1), Hy(in) =
(t—1,4), Hy(in—1) = (n—i+1,2) or (n—i+1,n—1), and
H,(in) = (n—i+1,1) or (n—i+1,0) forany 3 <i < n-—2.
Wheni=n/2+1,i—1#2orn—1and i # 1 or 0 because
n > 6. Thus, Hs(t) # Hy(t) for in — 1 < t < in, for all
3 < i < n— 2. Again, because H; and H, are independent
and above analysis, H; and H,, then Hy, Hy, H3 and H, are
mutually independent in this subcase.

Case 243 :in+1<t<in+2,forall 3<i<n—2.

Forall 3 <i<mn—2,i# n/2 t € {in+1,in+2}, Hi(t) €
V(CY, H3(t) € V(C=Y), Hy(t) € V(C™Y). Ha(in+1) €
V(C?), Ha(in+2) € V(C*1). Since n is even and i # n/2,
theni#i—1,i#n—i,i—1#n—ii+1%#i—1, and
i+1 # n—i. Since H; and H, are independent and Hs, Hy are
in different subgraph with H; and Ho, then Hy, Hy, Hs and
H, are mutually independent in this interval. When ¢ = n/2,
i—1#4,i—1#n—14,andi—1# ¢+ 1 still hold. Now
consider Hy (in+1), Hy(in+1), Hy(in+1), Hy(in+2), and
Hy(in+2) as follows. Note that Hy(in+1) = (n/2,(n/2)+
2), Hi(in+2) = (n/2,(n/2)+1), Hy(in+1) = (n/2,n/2),
H4(in + 1) = (n/Q,O), or (n/2,2). So Hl(t), Hg(t), H3(t),
H,(t) are mutually independent when ¢ = n/2 and in + 1 <
t<in+2.

Case3: (n—2)n+3<t<n?-2

Forall (n —2n+3<t<(n—1)n+1, Hy(t) e C"7 1,
and for all (n —1)n+2 <t <n?—2, Hy(t) € C°. We have
following subcases:

Case31: (n—2n+3<t<(n—1)n+1

In this case, Hi(t) € V(C° u V(C"1), Ha(t) €
V(CnY), Hs(t) € V(C™"3) U V(C™?2) and Hy(t) €
V(C?) U V(C'). Hs, Hy are in different subgraphs with
H,y, H,, we only need to consider H;(t) and H(t) both in
V(C" Y. Letx = (n—2)n+3,0<j<[n/4] — 2. By the
construction of H; and H,, we get follows:

The set {H(2) e V(C"™ ) : (n—-2n+3 <2< (n—
Dn+1}={Hi(z)=(n—1,n—1)}U{H(z+3+4j) =
(n—1,n—2-2j), Hi(e+4+4j) = (n—Ln—3 - 2))
: for all 0 < j < [n/4] — 2}. The set {Ha(2) € V(C"™1)
tn=2n+3<z< (n—1n+1} = {Ha(z) = (n -
1,n—=3)}UHy(z+3+4j) =(n—1,(n —6 —4j) mod
n), Ha(x +4+4+4j) = (n—1,(n — 7 — 45) mod n) : for all
0<j<[n/4]—2}.1fn—6-4j > 0, then (n— 6 —45) mod
n=n—06—4j(< n). Suppose that n — 2 — 2j = n — 6 — 47,
then we can get 25 = —4. Since j > 0, a contradiction. If
n—6-—4j<0,then (n—6—4j) modn=n—6—4j +n.
Suppose that n —2 — 25 —n =n — 6 — 44, then we can get
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Fig. 11. Hamiltonian cycles Hy in Cg X Cg.

44 2j =n. Since n > 6 and j > [n/4] — 2, a contradiction.
So, n —2—2j # (n— 6 —47) mod n. In the same way, we
can know that n — 3 — 2§ # (n — 7 — 45) mod n. Hence,
H,, Hy are independent, that implies Hy, Ho, Hs and H, are
mutually independent in this subcase.

Case3.2: (n—1)n+2<t<n?-2.

In this case, H1(t) € V(CO) U V(C™1), Hy(t) € V(CO),

H;(t) € V(C™?) and Hy(t) € V(CY). Hs, Hy are in
different subgraph with H;, Ho, we only need to consider the
vertices of H; and Hs in this subcase. Let z = (n — 1)n + 2,
y = |n/4] — 1, 0 < j < y. By the construction of H; and
H,, we get follows:
The set {H1(2) € V(C?) :z <z <n?-2} = {Hi(z+4j) =
(0,2(y — j) +3), Hi(z + 1+ 45) = (0,2(y — j) + 2) :for all
0 < j < y}. The set {Ha(z) € V(C%) : 2 < 2z < n? -2}
={Hs(zx + kj) = (0,n—1—k) : 0 <k < n+ 3}. Since
2y—j)+3#n—1+45.2y—j) +2#n—1— (45 +1),
then H; and H, are independent. Thus, Hy, Hy, Hs and Hy
are mutually independent in this subcase.

From the above 3 cases, we can know that H;y, Ho, Hj
and H, start from e are mutually independent and
HC(C,, x C,) > 4. Hence, IHC(C,, x C,,) = 4 can
be concluded. O

We construct 4-mutually independent Hamiltonian cycles
Cs x Cg in Fig. 11, 12, 13, 14as an example of Theorem 2.

IV. CONCLUSION

In this paper, we discuss the mutually independent
Hamiltonian cycles of C, x C,, for n > 3 and get the
optimal result on it. Note that a Hamilton cycles in any graph
G is a cycle C), with n = |[V(G)]. So, if two graphs G; and
Go are Hamiltonian with |V (G1)| = |V(G2)| = n > 3, then
graph C, x C,, will be a spanning subgraph of G; x Gj.
Hence, we have the following corollary.

Corollary 1. For any graphs Gp,Ga, if G; and Gy
are Hamiltonian and |V(Gi)| = |V(G2)| > 3, then
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Fig. 13. Hamiltonian cycles Hs in Cg X Cs.
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IHC(Gy x Gy) > 4.

In the future, discuss in the mutually independent Hamil-
tonian cycles of Cp, x C,, for myn > 3 and m # n is
an interesting question. Furthermore, we can discuss IHC(G)
for G = CF = C,, x C,, x ... x Cp, or more general graph
Cp, x Cp, x ... x Cy,, for any positive integer n; > ng >

ACKNOWLEDGMENT

This research was supported in part by the National Science
Council of the Republic of China under grant NSC 100-2221-
E-260-024- .

REFERENCES

[1] E T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[2] J. M. Xu, Topological Structure and Analysis of Interconnection Net-
works. Kluwer Academic, 2001.

[3] J. M. Xu and M. Ma, “Survey on path and cycle embedding in some
networks,” Frontiers of Mathematics in China, vol. 4, no. 2, pp. 217-
252, jun 2007.

[4] S. G. AKl, Parallel computation:models and methods. Prentice Hall,
1997.

[S] G. Chartrand and O. R. Oellermann., Applied and algorithmic graph
theory. McGraw-Hill, 1993.

[6] Y.L.Lai, D. C. Yu, and L. H. Hsu, “Mutually independent hamiltonian
cycle of burnt pancake graphs,” IEICE-Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. E94A, no. 7,
pp. 1553-1557, Jul 2011.

[7]1 Y. K. Shih, H. C. Chuang, S. S. Kao, and J. J. M. Tan, “Mutually inde-
pendent hamiltonian cycles in dual-cubes,” Journal of Supercomputing,
vol. 54, no. 2, pp. 239-251, Nov 2010.

[8] H. Su, J. L. Pan, and S. S. Kao, “Mutually independent hamiltonian
cycles in k-ary n-cubes when k is even,” Computers and Electrical
Engineering, vol. 37, no. 3, pp. 319-331, May 2011.

[9] T. L. Kueng, T. Liang, and L. H. Hsu, “Mutually independent hamil-
tonian cycles of binary wrapped butterfly graphs,” Mathematical and
Computer Modelling, vol. 48, no. 11-12, pp. 1814-1825, Dec 2008.

[10] S. Y.-P. Chang, J. S.-T. Juan, C.-K. Lin, J. J. M. Tan, and L.-H. Hsu,
“Mutually independent hamiltonian connectivity of (n, k)-star graphs,”
Annals of Combinatorics, vol. 13, pp. 27-52, 2009.

[11] T. L. Kung, C. K. Lin, T. Liang, J. J. M. Tan, and L. H. Hsu, “Fault-
free mutually independent hamiltonian cycles of faulty star graphs,”
International Journal of Computer Mathematics, vol. 88, no. 4, pp. 731-
746, 2011.

[12] C.-D. Lin, “Mutually independent hamiltonian cycles on arrangement
graphs,” Master’s thesis, Chung Yuan Christian University, 2011.

[13] C. M. Sun, C. K. Lin, H. M. Huang, and L. H. Hsu, “Mutually
independent hamiltonian cycles in hypercubes,” in Parallel Architec-
tures,Algorithms and Networks, 2005. ISPAN 2005. Proceedings. 8th
International Symposium on, 2005, p. 6.

[14] S.Y. Hsieh and P. Y. Yu, “Fault-free mutually independent hamiltonian
cycles in hypercubes with faulty edges,” Journal of Combinatorial
Optimization, vol. 13, no. 2, pp. 153-162, Feb 2007.

[15] C. K. Lin, J. J. M. Tan, H. M. Huang, D. F. Hsu, and L. H. Hsu,
“Mutually independent hamiltonian cycles for the pancake graphs and
the star graphs,” Discrete Mathematics, vol. 309, no. 17, pp. 5474-5483,
2009.

[16] K. W. Tang and S. A. Padubidri, “Diagonal and toroidal mesh networks,”
Computers, IEEE Transactions on, vol. 43, no. 7, pp. 815-826, 1994.

Kai-Siou Wu Kai-Siou Wu received the B.S. degree
in Computer Science and Information Engineering
at National Chi Nan University, Nantou County,
Taiwan in 2010. He is currently pursuing his M.S.
degree in Computer Science and Information En-
gineering at National Chi Nan University, Nantou
County, Taiwan. His research interests include graph
theory.

Justie Su-Tzu Juan Justie Su-Tzu Juan received her
B.S. degree in applied mathematics from Department
of Mathematics, Fu Jen Catholic University in 1993,
her M.S. and Ph.D. degrees in applied mathematics
from National Chiao Tung University, R.O.C. in
1996 and 2000, respectively. She is currently a pro-
fessor with the Department of computer science and
information engineering, National Chi Nan Univer-
sity, R.O.C. Her research interests include graph the-
ory, information security, cryptography, algorithms,
and combinatorial mathematics.

598



