
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

587


Abstract—Floorplanning plays a vital role in the physical design

process of Very Large Scale Integrated (VLSI) chips. It is an
essential design step to estimate the chip area prior to the optimized
placement of digital blocks and their interconnections. Since VLSI
floorplanning is an NP-hard problem, many optimization techniques
were adopted in the literature. In this work, a music-inspired
Harmony Search (HS) algorithm is used for the fixed die outline
constrained floorplanning, with the aim of reducing the total chip
area. HS draws inspiration from the musical improvisation process of
searching for a perfect state of harmony. Initially, B*-tree is used to
generate the primary floorplan for the given rectangular hard
modules and then HS algorithm is applied to obtain an optimal
solution for the efficient floorplan. The experimental results of the
HS algorithm are obtained for the MCNC benchmark circuits.

Keywords—Floor planning, harmony search, non-slicing

floorplan, very large scale integrated circuits.

I. INTRODUCTION

LOORPLANNING is the first step of the physical design
in the VLSI design flow. It provides early feedback that

evaluates architectural decisions and estimates delay and
congestion caused by wiring. It is an essential design step to
estimate the chip area by considering the optimal placement
of digital blocks and their interconnections. Each block
consists of several hundreds or thousands of cells that perform
a specific operation. The blocks are of rectangular shape with
different aspect ratios. The blocks can be classified into two
types based on their shape flexibility. They are hard blocks
and soft blocks. Hard block has fixed width and height
whereas soft block’s width, and height can be varied as long
as its aspect ratio is within the given range, and its area is
fixed. The aspect ratio of a block is defined as the ratio
between the height and the width of a block. To optimize the
area of the chip, hard blocks are rotated then the width and
height of soft blocks are modified without affecting the total
area of the block. The classical floorplanning methods
normally handles only block packing to minimize the total
chip area, but modern floorplanning methods could be
devised as a fixed outline floorplanning.

There are two types of floorplanning methods used in
electronic design automation in which the first one is slicing
floorplan and the second one is non-slicing floorplan. In
slicing floorplan, the whole block area is first partitioned into
two slices of equal or unequal sizes using either a horizontal
or vertical line then the individual blocks are again partitioned

K.Sivasubramanian and K. B. Jayanthi are with the K. S. Rangasamy

College of Technology, Tiruchengode, Tamilnadu, India (e-mail:
sivameae@gmail.com, jayanthikb@gmail.com).

into by using either horizontal or vertical lines. This process
continues until all the blocks are separated. This process of
partitioning the block area is called slicing floorplan, as
depicted in Fig. 1. The slicing floorplan is represented by a
binary tree structure known as a slicing tree, as shown in Fig.
2. The leaf nodes of the slicing tree are the blocks of the
design. The other nodes are either a vertical partition
represented by V or a horizontal partition represented by H.

Fig. 1 Slicing Floorplan

Fig. 2 Slicing Tree Structure

If a floorplan is obtained with no recursive through cuts,
then it is called as non-slicing floorplan. Fig. 3 represents the
non-slicing floorplan structure. Different techniques are used
to represent the non-slicing structure of a floorplan. They are
sequence pair, Bounded Slicing Grid (BSG) O-tree and B*-
tree representations [1]-[4].

Fig. 3 Non-Slicing Floorplan

A B*-tree is an ordered binary tree for modeling non-

slicing floorplans. In a compacted floorplan, no blocks can be
moved toward left or bottom in the floorplan. Accordingly, an
area-optimal floorplan always corresponds to some B*-tree.

Music-Inspired Harmony Search Algorithm for Fixed
Outline Non-Slicing VLSI Floorplanning

K. Sivasubramanian, K. B. Jayanthi

F

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

588

Its root corresponding to the block at the bottom left corner.
The construction of B*-tree is similar to the Depth-First
Search (DFS) algorithm. In B*-tree, starting from the root
node, construction of left subtree and then the construction of
right subtree is done in a recursive fashion. B*-trees are very
easy to implement and can perform the three primitive tree
operations such as search, insertion, and deletion. Fig. 4
denotes the admissible placement of the modules and Fig. 5
gives the corresponding B*-tree representation.

Fig. 4 Admissible Non-slicing Floorplan

Fig. 5 B*-Tree Representation

Let Ri represents the set of modules located on the right-

hand side and adjacent to module mi. The left child of the
node ni corresponds to the lowest unvisited module in Ri. The
right child of the node ni represents the module located above
and adjacent to mi, with its x-coordinate equal to that of mi
and its y-coordinate less than that of the top boundary of the
module on the left-hand side and adjacent to mi. Let T be the
root node with the coordinates (xroot, yroot) = (0, 0) and nj be
the node either on the left or right side. If the node nj is on the
left of root node ni, then the module mj is placed on the right-
hand side of module i (i.e., x j= xi +wi), where wi is the width
of module i. Similarly, if the node nj is on the right of root
node ni, then the module mj is placed above the corresponding
root node ni, i.e., x j= xi .

Every B*-tree represents a possible module placement
solution. To find the next possible solution, the B*-tree is
perturbed by any one of the operations like the movement of
the node, swapping the nodes and node rotation to get another
B*-tree. Rotate the node (block) by 90◦ such that the height
and width of the corresponding block are swapped. If the
height and width of the blocks are not equal, then after
rotation the x and y-coordinates of each block, should be

exchanged, yielding a new B*-tree.
Optimization is the act of achieving the best possible result

under given conditions. The objective of any optimization
algorithm is to minimize or maximize the objective function.
An optimization algorithm is a procedure which is executed
iteratively by comparing various solutions till an optimum or
a satisfactory solution is found. Optimization algorithms are
mostly used in all engineering problems. Since VLSI
floorplanning is an NP-hard problem which is to be
optimized, many optimization techniques were used in the
literature.

Harmony Search algorithm is one of the optimization
technique. It has been successfully applied in the fields of
function optimization, mechanical structure design and pipe
network optimization [5]-[7]. It does not need any earlier
domain knowledge, such as the gradient information of the
objective function. It requires fewer mathematical
requirements and does not entail initial value settings of the
decision variables. As it uses stochastic random searches,
derivative information is also not necessary. HS algorithm
generates a new solution, after considering all the existing
solutions. These features increase the flexibility of the HS
algorithm and produce better solutions [8]. HM stores the past
search experiences and plays an important role in its
optimization performance. HS has the attractive advantage of
algorithm simplicity. In this work music-inspired Harmony
Search algorithm is used for VLSI floorplanning.

II. RELATED WORK

Many researchers have focused on optimization algorithms
for floorplanning in both slicing and non-slicing structures
[9]-[13]. O-tree representation was proposed in [3] based on a
non-slicing floorplan. A boundary constraint algorithm for
general floorplan by extending the Corner Block List (CBL)
algorithm, which was an efficient topology representation for
non-slicing floorplan, was proposed in [14]. Their
contribution was to find the necessary and sufficient
characterization of the modules along the boundary
represented by Corner Block List.

A widely used global search method for VLSI
floorplanning problems is Genetic Algorithm (GA). GA has
been successfully applied to solve slicing VLSI floorplanning
problems [15]-[17]. For non-slicing VLSI floorplanning, a
GA has also been presented by [18]. Since the encoding
scheme does not capture any topological information of the
floorplans, the performance of the GA was not satisfactory.
Tabu search algorithm was used to solve module placement
problem in [19]. Initially, all the modules are merged into
some clusters according to the ratio-connectivity of circuit
modules. The placement of the large modules is represented
by sequence-pairs. The searching of the optimal solution for
the placement was performed by the Tabu search algorithm.

A GA to tackle the VLSI floorplanning problem using O-
tree representation was proposed in [20]. Particle Swarm
Optimization (PSO) was introduced into the floorplanning
problem to find the potential optimal placement solution [21].
The implementation details of the algorithm were not stated in

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

589

this work; only the area optimization was considered. This
structure was unable to solve problems that optimize the area
and wirelength simultaneously. A Memetic Algorithm (MA)
for a non-slicing and hard-module VLSI floorplanning
problem was presented in [22]. A hybrid genetic algorithm
that uses an effective genetic search method to explore the
search space and an efficient local search method to exploit
information in the search region was used in this work.

A multi-objective genetic algorithm for floorplanning that
simultaneously minimizes area and total wirelength was
proposed in [23]. The proposed genetic floorplanner was the
first to use non-domination concepts to rank solutions. In this
work, two novel crossover operators were presented that build
floorplans using good sub-floorplans. A novel floorplanning
algorithm based on Discrete PSO (DPSO) algorithm, in which
integer coding based on module number was adopted in [24].
The principles of mutation and crossover operator in the GA
were also incorporated into the proposed PSO algorithm to
achieve better diversity and escape from local optima. This
algorithm can avoid the solution from falling into local
minimum and have good convergence performance.

A PSO algorithm was used for floorplanning where area
and wirelength were considered as the fitness function [25]. A
new heuristic method was proposed that applied Hybrid
Simulated Annealing (HSA) to represent a non-slicing
floorplan with an objective function by restricting the area
and wirelength [26]. A sequence pair approach was used to
represent non-slicing floorplans with a smaller search space
[27]. Shanavas et al. proposed a method that combined a
hierarchical design technique like genetic algorithm and
constructive technique like Simulated Annealing for local
search to solve VLSI partitioning and floor-planning problem
[28]. A Co-evolutionary Multi-Objective Particle Swarm
Optimization (CMOPSO) algorithm was proposed to solve a
VLSI floorplanning problem which was a multi-objective
combinatorial optimization and has been proved to be an NP-
hard problem [29]. The algorithm imported the concept of the
co-evolutionary algorithm and elitist strategy into basic PSO
algorithm. It took both the layout area and total
interconnection wire lengths into consideration
simultaneously.

An approach based on iterative Prototypes Optimization
with Evolved improvement (POEMS) algorithm was
proposed by [30]. It used a GA for local search and adopted a
non-slicing structure called B*-tree for the placement of
rectangular modules. A VOAS (Variable – Order Ant System)
for area optimization based on the ant algorithms was
proposed in [13]. This method used the models that are
derived from the observation of real ants’ behavior, and used
as a source of inspiration for the design of novel algorithms
for the solution of optimization and distributed control
problems. A smart decision-making PSO-GA based hybrid
method for thermal-aware non-slicing VLSI floorplanning
was used in [31]. B*-tree representation has been used in this
method. VLSI floorplanning is an NP-hard problem. The
solution space will increase exponentially with the growth of
circuits scale. Thus, it is difficult to find the optimal solution

by exploring the global solution space.

III. PROPOSED METHODOLOGY

A. Harmony Search Algorithm

The Harmony Search (HS) method is a meta-heuristic
optimization algorithm proposed in [32]. It mimics a musical
improvisation process in which the musicians in an
orchestra/band try to find a perfect state of harmony through
musical improvisations. When musicians compose harmonies,
they usually try various possible combinations of the music
pitches stored in their memory. This algorithm was designed
to mimic the way a musician uses short-term memory and the
past experiences to lead his/her to the note that results in the
most pleasing harmony when played together with the other
musicians. HS is easy to implement and can easily be applied
to solve almost any problem that can be designed as the
minimization or maximization of an objective function. This
kind of efficient search for a perfect state of harmonies is
related to the procedure of finding the optimal or near-optimal
solutions for a problem. When solving a particular problem,
each musician is considered as a decision variable. So, the
perfect harmony means the global or near-global solution.

In HS, each musician corresponds to a decision variable in
the solution vector of the problem and also represents a
dimension in the search space. Each musician (decision
variable) has a different instrument whose pitch range
corresponds to a decision variable’s value range. A solution
vector, also called an improvisation, at certain iteration
corresponds to the musical harmony at a particular period, and
the objective function corresponds to the audience’s
aesthetics. New improvisations are based on earlier
remembered good ones which are stored in the data structure
called the Harmony Memory (HM). A new solution is
improvised by using three rules. They are (a) Play what
he/she exactly knows (memory consideration) (b) Play by
slightly adjusts the pitch (pitch adjustment) and (c) Play a new
composition (random selection).

The main control parameters of HS algorithm are harmony
Memory (HM), Harmony Memory Size (HMS), Harmony
Memory Considering Rate (HMCR), Pitch Adjusting Rate
(PAR), and Bandwidth (BW). Here, HM is a memory location
where all the solution vectors are stored; HMCR and PAR are
parameters that are used to improve the solution vector.

1. Harmony Memory and Improvisation Process

The core data structure of HS is a matrix of the best
solution vectors called the HM. The number of vectors that
are concurrently processed is known as the Harmony Memory
Size (HMS). It is one of the algorithm’s parameters that have
to be set manually. Memory is structured as a matrix with
each row represents a solution vector, and the final column
represents the vector’s fitness value. In the HS algorithm, X
represents the harmony and ݂(X) denotes the melody of
harmony X. In a ܰ-dimensional problem, the HM would be
represented as:

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

590

ۏ
ێ
ێ
ۍ ଵݔ

ଵ ଵݔ
ଶ … ଵݔ

ே ∣ ଵݓ
ଶݔ
ଵ ଶݔ

ଶ … ଶݔ
ே ∣ ଶݓ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ுெௌݔ
ଵ ுெௌݔ

ଶ ⋯ ுெௌݔ
ே ∣ ےுெௌݓ

ۑ
ۑ
ې

Before optimization starts, the HM is initialized with HMS

randomly generated solution vectors. Based on the problem,
these vectors can also be randomly chosen around a seed
point that may represent an area in the search space where the
optimum is most likely to be found [33].

Each decision variable is improvised individually, and any
one of the three rules can be applied for any variable. The
HMCR is one of the HS parameters that must be manually
chosen. It controls how often the HM is taken into
consideration during improvisation. For standard HS, memory
consideration means that the decisions variable’s value is
chosen directly from one of the solution vectors in the HM. A
random number is generated for each decision variable. If it is
less than the HMCR, the memory is taken into consideration;
else, a value is randomly chosen from the range of possible
values for that dimension. The Pitch Adjustment Rate (PAR)
is set during initialization, and it controls the amount of pitch
adjustment done when memory consideration is used. Another
random number is generated. If it is smaller than the PAR, the
improvised value is pitch adjusted using (1):

௡௘௪ݔ
, ൌ ௡௘௪ݔ ൅ .ሺሻ݀݊ܽݎ (1) ܹܤ

whereݔ’new is the new pitch-adjusted value, ݔnew is the old
value chosen using memory consideration, rand() is a random
value between −1 and 1, and BW is the Bandwidth parameter.
It is the maximum variation in pitch adjustment and is one of
the parameters that must be manually set. Once a new value
has been improvised, the memory is updated by comparing
the new improvisation with the vector in the memory with the
lowest fitness. If the new improvisation has a higher fitness, it
replaces the vector with the lowest fitness. This process of
improvisation and update continues iteratively until some
stopping criterion is fulfilled, or the maximum number of
iterations is reached.

2. Steps in HS

Step1. Initialize the problem and algorithm parameters
Step2. Initialize the Harmony Memory (HM)
Step3. Improvisation

In this step, New Harmony vector is generated based on
three rules, namely, memory consideration, pitch adjustment,
and random selection. The value of a design variable can be
selected from the values stored in HM with a probability
HMCR. It can be further adjusted by moving to a neighbor
value of a selected value from the HM with a probability of
PAR, or, it can be selected randomly from the set of all
candidate values without considering the stored values in HM,
with the probability of (1 - HMCR).
Step4. Update HM

If the new harmony vector is better than the worst vector,
based on the objective value and/or constraint violation, the
new vector will replace the worst one.

Step5. Termination criterion
HS algorithm is terminated if the stopping criterion

(maximum number of improvisations) has been met; else
steps 3 and 4 are repeated.

3. Pseudocode of Harmony Search Algorithm
begin
 Set the objective function of the problem as f(x)

Generate initial Harmony memory and initial harmonics
Define pitch adjusting rate (rpa), pitch limits, and bandwidth
Define harmony memory accepting rate (raccept)
while (t<Maximum number of iterations)

Generate new harmonics by accepting the best harmonics
Adjust pitch value to get new harmonics (solutions)
if (rand>raccept), choose a harmonic randomly from HM
else
if (rand>rpa), adjust the pitch randomly within the limits
else
generate new harmonics via randomization
end if

 Accept the new harmonics (solutions) if they are better
 end while
 Find the current best solutions
end

4. Fitness function Evaluation

For the HS algorithm in floorplanning, each musician
corresponds to a possible solution. The main objective of the
floorplanning is to minimize the total chip area and wire
length. The formula for calculating the total area of the chip
that contains ‘i’ modules is given in (2):

ܽ݁ݎܣ ൌ ෌ ሺ݈݄݁݊݃ݐሺ݅ሻ ∗ ሺ݅ሻሻ݄ݐ݀݅ݓ
௡

௜ୀଵ
 (2)

The wirelength of the ith module with respect to the other

modules in the given floorplan can be calculated by using
Half-Perimeter Wirelength (HPWL). It is defined as half the
perimeter length of the smallest bounding box that encloses
all pins. Let us consider net i, connected with different
terminals, a small rectangle box that encompasses all the
terminals chosen. The HPWL of the net i can be calculated
according to (3):

௅ܹ ൌ ሺܺ௠௔௫ െ ܺ௠௜௡ሻ ൅	ሺ ௠ܻ௔௫ െ ௠ܻ௜௡ሻ (3)

Here Xmax and Xmin are the maximum and minimum x-
coordinates of the HPWL bounding box of the net. Ymax and
Ymin are the maximum and minimum y-coordinates of the
HPWL bounding box of the net. The total wirelength can be
calculated using the formula denoted in (4):

݄ݐ݈݃݊݁݁ݎܹ݅ ൌ ∑ ܮܹ
݉
݅ൌ1 . (4)

A fitness function must be devised for each problem to be

optimized. It is a designed function that measures the
goodness of a solution. It is essential to estimate how good a
possible solution is relative to other potential solutions. The
fitness function is responsible for performing this evaluation
and returns a fitness value. In each iteration, the priority of the
solution vector is ranked according to the fitness value

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

591

calculated using the fitness function. By maximizing or
minimizing the fitness values in each generation, the global
optimum value could be found. The fitness function for the
proposed method is given in (5).

݂ሺݔሻ ൌ ߙ ∗ ܽ݁ݎܣ ൅ ߚ (5) ݄ݐ݈݃݊݁݁ݎܹ݅∗

Here, α and β values are treated as the weighting factors. In
this work α value is taken as 0.8 and β value is taken as 0.2.

IV. RESULTS AND DISCUSSION

The proposed method utilizes fixed die outline with hard
rectangular modules for floor-planning. The experiments in
this study make use of MCNC (Microelectronics Center of
North Carolina MCNC 2004) benchmark circuits for the
proposed floor-planners. Simulations have been carried out
for the MCNC benchmark circuits namely apte, ami33, hp,
and xerox. Table I shows the characteristics of MCNC
benchmark circuits. The second column of Table I shows the
number of cells/modules within the circuit. The third column
presents the number of nets connecting the cells within the
circuits. The fourth column indicates the pads that connect the
circuit to the outside world. The total number of pins within
the circuit is summarized in column five. All the blocks were
considered as hard IP blocks. The coding for the proposed
floorplanning has been written and simulated in MATLAB
version R2013a. Table II gives the Parameters and their
values of the optimization algorithms used in this method.

TABLE I

CHARACTERISTICS OF MCNC BENCHMARK CIRCUITS

Name of the
Benchmark Circuit

Number of
Modules

Number of
Nets

Number of
I/O Pad

Number of
Pins

apte 9 97 73 287

ami33 33 123 42 522

hp 11 83 45 309

xerox 10 203 2 698

TABLE III

PARAMETERS AND THEIR VALUES OF HS ALGORITHM
Parameter Value

HMCR 0.9

HMS 30,50,100

Maximum no. of Iterations 100,500,1000

PAR 0.3

BW 0.01

α 0.8

β 0.2

The performance of the HS algorithm is evaluated for VLSI

floorplanning. In this work, the HMS value is taken as 30, 50
and 100. The proposed algorithm is run for 100, 500 and 1000
iterations. Table III shows the results of the proposed
algorithm. Table IV compares the performance of the
proposed work with other existing works.

TABLE IIIII
PERFORMANCE OF THE PROPOSED METHOD

Circuit
Name

HMS

HS Area in mm2(%)

Number of Iterations

100 500 1000

apte

30 48.95 48.47 48.43

50 48.47 48.43 48.21

100 48.47 48.47 48.43

ami33

30 1.52 1.38 1.35

50 1.835 1.65 1.35

100 1.75 1.65 1.30

hp

30 10.50 10.16 10.05

50 10.98 10.79 10.54

100 10.63 10.26 10.03

xerox

30 20.97 20.64 20.64

50 21.86 21.86 20.64

100 21.86 20.97 20.64

TABLE IVV

COMPARISON OF RESULTS WITH OTHER WORK

Method
Published results (Area in mm2)

apte ami33 hp xerox

[4] 46.92 1.27 8.95 19.83

[34] 47.01 1.19 9.13 20.14

[12] 48.47 1.23 9.48 20.42

[26] 48.12 1.25 9.43 21.86

[31] 47.44 1.24 - 20.2

HS 48.21 1.30 10.03 20.64

The optimum result for the apte circuit is obtained when
HMS value is 50 and 100. When HMS value is 100 the
minimum area is achieved for ami33 circuit. For hp circuit,
the minimum area is obtained in 1000th iteration with HMS
value as 50. The minimum area for xerox circuit is attained
when HMS value is 30 and 100. Figs. 6-9 show the
performance of the HS algorithm in floorplanning with
different HMS values and different iterations.

V. CONCLUSION

VLSI floorplanning is an NP-hard combinatorial
optimization problem. To solve this problem in an efficient
way, music–inspired Harmony Search algorithm is proposed
in this method. The simulation results of the MCNC
benchmark circuits have good and reasonable solution for the
non-slicing placement of hard modules within fixed outline
constraints. From the results it is inferred that the performance
of the proposed method is comparable to existing algorithms.
When a number of iteration increases, the total area of the
floorplan gets reduced. The HMS value does not influence the
performance of the algorithm, so the value of HMS should be
identified through the empirical analysis.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

592

Fig. 6 Result of apte circuit

Fig. 7 Result of ami33 circuit

Fig. 8 Result of hp circuit

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

593

Fig. 9 Result of xerox circuit

REFERENCES
[1] H. Murata, K. Fujiyoshi and Y. Kajitani, “VLSI module placement

based on rectangle-packing by the sequence-pair”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no.
12, pp. 1518-1524, 1996.

[2] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani, “Module
placement on BSG-structure and IC layout applications”, in
Proceedings of IEEE/ACM International Conf. on Computer Aided
Design, pp. 484-491, 1996.

[3] P.-N. Guo, C.-K. Chengand T. Yoshimura, “An O-Tree Representation
of Non-Slicing Floorplan and Its Applications,” in Proceedings of the
36th Annual ACM/IEEE Design Automation Conference (ACM, 1999,
pp. 268–273, 1999.

[4] Y-C Chang, Y-W Chang, G-M Wu and S-W Wu, “B*-Trees: A New
Representation for Non-Slicing Floorplans” ACM, 2000.

[5] K. S. Leeand Z.W. Geem “A new meta-heuristic algorithm for
continuous engineering optimization: harmony search theory and
practice”, Computer Methods in Applied Mechanics and Engineering,
vol. 194, no. 36–38, pp.3902–3922, 2005.

[6] S. L. Kangand Z.W. Geem,“A new structural optimization method
based on the harmony search algorithm”,Computers and Structures, vol.
82,no. 9–10,pp.781–798, 2004.

[7] Z.W. Geem, J.H. Kimand G.V. Loganathan, “Harmony search
optimization: application to pipe network design”, International Journal
of Modeling and Simulation, vol. 22, no. 2, pp.125–133, 2002.

[8] Z. W. Geem, “Harmony search algorithm for solving Sudoku”, in
Proceedings of the 11th international conference, KES 2007 and XVII
Italian workshop on neural networks conference on Knowledge-based
intelligent information and engineering systems: Part I. 2007, Springer-
Verlag: Vietrisul Mare, Italy.

[9] W. Huang, D. Chen and R. Xu, “A new heuristic algorithm for rectangle
packing” Comput. Oper.Res., vol. 34, no. 11, pp. 3270–3280, 2007.

[10] Y. Pang, C.-K. Cheng and T. Yoshimura, “An enhanced perturbing
algorithm for floorplan design using the O-tree representation”, in
Proceedings of the International Symposium on Physical Design, ACM,
pp. 168–173, 2000.

[11] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B*-tree
and fast simulated annealing” IEEE Trans. Comput. Aided
Des.Integr.Circuits Syst., vol. 25, no. 4, pp. 637–650, 2006.

[12] S. Anand, S. Saravanasankar and P. Subbaraj, “Customized simulated
annealing based decision algorithms for combinatorial optimization in
VLSI floorplanning problem”,Comput. Optim.Appl., vol. 52, no. 3, pp.
667–689, 2012.

[13] C.-S Hoo, K. Jeevan, V. Ganapathy and H. Ramiah.“Variable-Order
Ant System for VLSI multiobjective floorplanning” Elsevier Journal on
Applied Soft-Computing, vol. 13, pp. 3285–3297, 2013.

[14] Y. Ma, S. Dong, X. Hong, Y. Cai, C.-K Cheng and J. Gu, “VLSI
Floorplanning with Boundary Constraints Based on Corner Block List”,
IEEE, pp 509-514,2001.

[15] J. Cohoon, S. Hegde, W. Martin, and D. Richards, “Distributed genetic
algorithms for the floorplan design problem,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 10, no. 4, pp. 483–492, 1991.

[16] M. Rebaudengo and M. Reorda, “GALLO: A genetic algorithm for
floorplan area optimization,” IEEE Trans. Comput.-Aided Design
Integr.Circuits Syst., vol. 15, no. 8, pp. 943–951,1996.

[17] C. Valenzuela and P.Wang, “VLSI placement and area optimization
using a genetic algorithm to breed normalized postfix expressions,”
IEEE Trans.Evol. Comput., vol. 6, no. 4, pp. 390–401, 2002.

[18] B. Gwee and M. Lim, “A GA with heuristic based decode for IC
floorplanning,” Integr., VLSI J., vol. 28, no. 2, pp. 157–172, 1999.

[19] N. Xu, X.-L Hon, S.-QDong and H.-BYu, “TSCSP: Tabu Search
Algorithm for VLSI Module Placement Based on the Clustering
Sequence-Pair”, IEEE, 2003.

[20] M. Tang and A. Sebastian,A genetic algorithm for VLSI floorplanning
using O-tree representation. In Applications of Evolutionary
Computing, Springer, Berlin,pp. 215–224, 2005.

[21] T.-Y. Sun, S.-T.Hsieh, H.-M.Wang and C.-W. Lin, “Floorplanning
based on particle swarm optimization”, in IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies and Architectures,
2006.

[22] M. Tang and X. Yao, “A Memetic Algorithm for VLSI Floorplanning”,
IEEE transactions on systems, man, and cybernetics—part b:
cybernetics, vol. 37, no. 1, pp. 62-69, 2007.

[23] P. Fernando and S. Katkoori, “An Elitist Non-Dominated Sorting based
Genetic Algorithm for Simultaneous Area and Wirelength Minimization
in VLSI Floorplanning” In 21st International Conference on VLSI
Design, India, IEEE Computer Society, pp. 337-342, 2008.

[24] G. Chen, W. Guo, H. Cheng, X. Fen and X. Fang, “VLSI Floorplanning
Based on Particle Swarm Optimization” in Proceedings of 3rd
International Conference on Intelligent System and Knowledge
Engineering, IEEE, pp. 1020-1025, 2008.

[25] G. Chen, W. Guo and Y. Chen, “A PSO-based intelligent decision
algorithm for VLSI floorplanning”, Springer, Soft Computing, pp.
1329–1337, 2010.

[26] J. Chen, W. Zhu, and M. M. Ali, “A Hybrid Simulated Annealing
Algorithm for Nonslicing VLSI Floorplanning”, IEEE transactions on
systems, man and cybernetics—part c: applications and reviews, vol.
41, no. 4, pp. 544-553, 2011.

[27] D. Sengupta, A. Veneris, S. Wilton, A. Ivanov and R. Saleh, “Sequence
Pair Based Voltage Island Floorplanning”, in Proceedings of the 2011
International Green Computing Conference and Workshops, IEEE
computer society Washington, pp. 1-6, 2011.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

594

[28] I.H. Shanavas and R.K. Gnanamurthy, “Wirelength Minimization in
Partitioning and Floorplanning Using Evolutionary Algorithms”
Hindawi Publishing Corporation VLSI Design, vol. 10, Article ID
896241, 9 pages, 2011.

[29] Z. Chen, J. Chen, W. Guo and G. Chen, “A Coevolutionary Multi-
Objective PSO algorithm for VLSI Floorplanning” 8th International
Conference on Natural Computation (ICNC), IEEE, pp. 712-728, 2012.

[30] T. Singha, H. S. Dutta and M. De, “Optimization of Floor-planning
using Genetic Algorithm” Procedia Technology, vol. 4, pp. 825 – 829,
2012.

[31] P.Sivaranjani and A.S. Kumar,“Thermal-Aware Non-slicing VLSI
Floorplanning Using a Smart Decision-Making PSO-GA Based Hybrid
Algorithm” Circuits Syst Signal Process, DOI 10.1007/s00034-015-
0020-x, 2015.

[32] Z.W. Geem, J.H. Kimand G.V. Loganathan,“A new heuristic
optimization algorithm: harmony search”, Simulation,vol. 76, no. 2,
pp.60–68, 2001.

[33] J. Fourie, S. Mills, and R. Green, “Harmony filter: a robust visual
tracking system using the improved harmony search algorithm,” Image
and Vision Computing, vol. 28, no. 12, pp. 1702–1716, 2010.

[34] J. Chen and W. Zhu, “A Hybrid Genetic Algorithm for VLSI
Floorplanning”, in International Conference on Intelligent Computing
and Intelligent Systems (ICIS), IEEE, 2010, pp. 128-132.

