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Multivariable Predictive PID Control
for Quadruple Tank
Qamar Saeed, Vali Uddin and Reza Katebi

Abstract—In this paper multivariable predictive PID controller has
been implemented on a multi-inputs multi-outputs control problem
i.e., quadruple tank system, in comparison with a simple multi-
loop PI controller. One of the salient feature of this system is an
adjustable transmission zero which can be adjust to operate in both
minimum and non-minimum phase configuration, through the flow
distribution to upper and lower tanks in quadruple tank system.
Stability and performance analysis has also been carried out for this
highly interactive two input two output system, both in minimum
and non-minimum phases. Simulations of control system revealed
that better performance are obtained in predictive PID design.

Keywords—Proportional-integral-derivative Control, Generalized
Predictive Control, Predictive PID Control, Multivariable Systems

I. INTRODUCTION

The three term proportional, integral and derivative (PID)
controllers ruled over the process industry for more than six
decade, and still existing. The major selling point of PID
controllers is due to its simplified structure, robustness and
over a wide range of applicability and suitable performance,
but limited to simple control problems. In 1939, the first
commercial application of PID controller was introduced [1]
and a great deal of research and development commenced.
Since 1942, numerous PID tuning techniques have been de-
veloped and a summary of most popular tuning methods for
PID controller are available in [2].

In last few decade, advancement and competition in process
industry developed many complex control problems where
classical PID were unable to cope and control community
strive for better solution. Miller et. al., [3] have illustrated
some of the main challenges faced by the control community.
Considering the popularity and reliability of PID, many re-
searcher tried to develop optimal PID. Rivera et. al., [4] intro-
duced an Internal Model Control (IMC) based PID controller
design using a first order process model, and this was later
extended by Chien [5] for second order process model. Morari
and Zafiriou [6], proposed IMC leads to PID controllers for
virtually all models common in industrial practice. Wang et.
al., [7] proposed a PID controller using a frequency response
approach with least squares algorithm to equate with IMC.
Rusnak [8] used linear quadratic regulator (LQR) theory to
design PID controllers for a fifth order system. Grimble [9],
derived H∞ based PID structure. Katebi and Moradi [10] have
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introduced the predictive PID controller for SlSO systems
and Moradi et. al., [11] extended it for MlMO systems in
polynomial form. The Generalized Predictive Control (GPC)
method proposed by Clarke et. al., [12] is a reasonable rep-
resentative of model based predictive control (MPC) methods
and one of the most general way of posing the process control
problem in time domain [13]. Tan et. al., [14] have presented
a PID control design based on the GPC approach for a second
order system with time delay but limited to single-input single
output (SISO) systems. In this paper, we have develop a multi-
input multi-output Predictive PID controller using the same
approach as used by Tan et. al., [15] for his SISO systems.

In the recent past, multi-variable control system design have
been in great demand and need much attention in the process
industry and academia. In many processes, when some or all
of the manipulated variable affects more than its corresponding
controlled variable, mean there are some interaction between
the controlled variable, which may result in poor performance
or even in instability of control process. When the interaction
are not negligible, the plant must be considered as multiple
inputs and multiple outputs. In this paper, a highly interactive
multi-variable process has been considered i.e., quadruple tank
problem. This multi-variable systems contains a transmission
zeros, which can vary from left half plane (minimum phase) to
right half plane (non-minimum phase) depending on the ratio
of the flow to upper and lower tanks [16].

The paper has been organized as follows: Section II briefly
describe the model development of real processes. Manual
multi-loop PI and predictive PID control design techniques
has been discussed in section III and IV respectively. Stability
analysis has been conducted in Section V. Performance anal-
ysis and simulation results are available in section VI. Finally,
the conclusions are given in section VII.

II. MODEL DEVELOPMENT

Johansson [16] described a laboratory quadruple-tank pro-
cess which consists of four interconnected water tanks and two
pumps as shown in fig. 1. The first principle mathematical
model for this process using mass balances and Bernoulli’s
law is
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Fig. 1. Schematic diagram for Quadruple Tank process

where γi is the flow distribution to lower and diagonal upper
tank, Ai is the cross-section area, ai is the outlet hole cross-
section and hi is the water level, in tank i respectively.

There are two inputs (manipulators) and two outputs (con-
trolled variable) in quadruple tank system, and control ob-
jective is to maintain water level in lower tanks around its
setpoint with the manipulation of water flow with two pumps.
The process inputs are v1 and v2 and the outputs are y1 = kch1

and y2 = kch2.
The voltage applied to Pump i is vi and the corresponding

flow is kivi. The parameters γ1, γ2 ∈ (0, 1) are valves setting
for the distribution of flow to lower and upper diagonal tank
respectively. The flow to Tank 1 is γ1k1v1 and the flow to
Tank 4 is (1 − γ1)k1v1 and similarly for Tank 2 and Tank 3
as shown in fig. 1. The g is denoted as acceleration of gravity.
The parameter values of the laboratory process and operating
parameter for minimum (P−) and non-minimum phases (P+)
are given in [16], also shown in table 1 and table 2 respectively.

This typical system has two finite zeros for γ1, γ2 ∈ (0, 1).
One always lie in the left half-plane, but the other can be
placed either in the left or the right half-plane depending on
the valve setting of γ1, γ2.
If 1 < γ1 + γ2 ≤ 2 then system is minimum phase, means
transmission zero is in left half plane.
If 0 ≤ γ1+γ2 < 1 then system is non-minimum phase, means
transmission zero is in right half plane.
If γ1 + γ2 = 1 then system has transmission zero at origin,
a difficult case to handle using simple multi-loop PID control
system design without de-coupler.

Parameters Units Values
A1,A3 [cm2] 28
A2,A4 [cm2] 32
a1,a3 [cm2] 0.071
a2,a4 [cm2] 0.057

kc [V/cm] 0.5
g [cm/s2] 981

TABLE I
PARAMETER VALUE FOR QUADRUPLE TANK

The linearized state-space equation at operating
points xi = hi − h0

i and ui = vi − v0
i is given

Operating Values Units P− P+

(h0
1,h0

2) [cm] (12.4, 12.7) (12.6, 13.0)
(h0

3,h0
4) [cm] (1.8.1.4) (4.8, 4.9)

(v0
1 ,v0

2) [V ] (3.00, 3.00) (3.15, 3.15)
(k1,k2) [cm2/V s] (3.33, 3.35) (3.14, 3.29)
(γ1,γ2) - (0.70,0.60) (0.43, 0.34)

TABLE II
OPERATING PARAMETER FOR MINIMUM (P−) AND NON-MINIMUM (P+)
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where the time constants are Ti = Ai

ai

√
2h0

i

g .
Linearized transfer function matrix model for both mini-

mum (P−) and non-minimum (P+) phases are given in [16]
and [17].

III. MANUAL MULTI-LOOP PI CONTROL

The discrete position and velocity form of PID controller
are described by equations (3) and (4) respectively [10].

u(k) = kpe(k) + ki

k∑
j=1

e(j) + kd[e(k) − e(k − 1)] (3)

Δu(k) = u(k) − u(k − 1) = kp[e(k) − e(k − 1)] +
+ kie(k) + kd[e(k) − 2e(k − 1) + e(k − 2)] (4)

where, kp, ki and kd are the proportional, integral and deriva-
tive gains, respectively.

Johansson [16] applied multi-loop PI controller on quadru-
ple tank manually for both minimum and non-minimum phase
configuration in frequency domain. However, in this section
same tuning parameters are implemented in control system
design using state space formulation. All simulation results
have been discussed in section VI in comparison with [16].

If valve setting of γ1 and γ2 for the distribution of water
flow to upper and lower tanks are chosen as γ1 + γ2 = 1.0,
then this typical control problem become extremely interactive
between two controlled variables, with one transmission zero
at origin, and it will not possible to obtain a suitable tuning
parameters using multi-loop manual tuning without using de-
coupler, as mentioned in section I.
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IV. PREDICTIVE PID CONTROL

Consider a two-input two-output square multi-variable sys-
tem is given as(

y1
y2

)
=

(
g11 g12
g21 g22

) (
u1

u2

)
(5)

In equation (5), each gij (where i, j = 1, 2) contains a sub-
system which can be represented as [14] and [15]

gij(s) =
ds+ c

(s+ a)(s+ b)
e−sL (6)

The equation (6) in discrete-time transfer function can be
represented as

ǵij(z) =
b́1z + b́2

z2 + á1z + á2
z−td (7)

With some algebraic manipulation in equations (5 - 7), two
multi-input single output (MISO) model can be obtained as,(

z2 + á1
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11 0
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22

) (
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)

=
(
b́011z + b́111 b́012z + b́112
b́021z + b́121 b́022z + b́122
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)
(8)

The error to the controller is represented as e = yd−y, where
yd is the setpoint and y is the controlled output, then in terms
of error, with yd = 0, equivalent equation can be represented
as,
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Equations (9 - 10) can be represented in state space form as

X(k + 1) = AX(k) +Bũ(k) (11)

where
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and θi =
∑k

j=1 ei(j) is the integral error.
Using p and m prediction and control horizons respectively,

the predicted error in compact form can be represented as [14]
and [15],

X̄ = L̄AX(k) + BMŨ (12)

where
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Since GPC is an optimal control strategy, therefore a perfor-
mance index or cost function must be minimized in order to
obtain an optimal control signal. Considering the following
cost function

J =
p∑

l=1

‖x(k + l)‖2
Q(l) +

m∑
j=1

‖u(k + j − 1)‖2
R(j) (13)

where Q and R are the error and control weighting matrices
respectively. Substitution of prediction equation (12) in cost
function (13) i.e., an optimization step, resulted an optimal
control sequence, like [14] and [15]

Ū = −[BT
MQBM +R]−1[BT

MQLA]X(k) (14)

Under the receding horizon principle, only the first value of
the optimal control sequence is applied at each sampling time
while the rest are discarded. Therefore,

ũ(k − td) = −H[BT
MQBM +R]−1[BT

MQLA]X(k),
= −DX(k) (15)

where D = H[BT
MQBM +R]−1[BT

MQLA]
and H =

[
I 0 . . . 0

]
From equation (15), it follows that ũ = −DX(k + td),
which means that current control value depends on the future
predicted state. In case of significant time delay, this problem
would be solved in two different range i.e., 0 ≤ k < td and
k ≥ td, [14] and [15]. However, in absence of time delay (i.e.,
td = 0) then control law would simply be

ũ = −DX(k) (16)

Similarly,⎛
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ũ21,k
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There is no significant time delay in quadruple tank system,
so PID tuning parameters would only be consider for k ≥ td⎧⎨

⎩
KP = −(K1(td) +K2(td))
KI = −K3(td)
KD = K1(td)

⎫⎬
⎭ k ≥ td
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Earlier we have assumed that,

ũ11,k = u1,k +
b́111

b́011
u1,k−1 (18)

ũ12,k = u2,k +
b́112

b́012
u2,k−1 (19)

ũ21,k = u1,k +
b́121

b́021
u1,k−1 (20)

ũ22(k = u2,k +
b́122

b́022
u2,k−1 (21)

On combining equations (18 & 20) and (19 & 21), we obtain

ũ11,k + ũ21,k = 2u1,k + (
b́111

b́011
+
b́121

b́021
)u1,k−1 (22)

ũ12,k + ũ22(k = 2u2,k + (
b́112

b́012
+
b́122

b́022
)u2,k−1 (23)

Similarly,

u1,k =
1
2

{
(ũ11,k + ũ21,k) − (
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b́011
+
b́121

b́021
)u1,k−1

}
(24)

u2,k =
1
2

{
(ũ12,k + ũ22(k) − (

b́112

b́012
+
b́122

b́022
)u2,k−1

}
(25)

V. STABILITY ANALYSIS

The stability is one of the major concern in all control
system design. In case of linearized model, the stability of
overall closed loop system is determined by characteristic
equation.

In terms of transfer function two input two output (TITO)
system can be described as,

y1 = g11u1 + g12u2 (26)
y2 = g21u1 + g22u2 (27)

In multi-loop PI control tuning for minimum phase problem,
the control law is

u1 = gc1(yd,1 − y1) (28)
u2 = gc2(yd,2 − y2) (29)

As setpoint do not play any role in system stability, so let
yd,2 = 0. Now substituting the equation (29) in equation (26)
with algebraic manipulation, we get the characteristic equation
for minimum phase (C.Emp) as,

C.Emp = 1+gc1g11 +gc2g22 +gc1gc2(g11g22−g12g21) (30)

Similarly, the control law for non-minimum phase multi-loop
PID controllers are described as

u1 = gc1(ysp,2 − y2) (31)
u2 = gc2(ysp,1 − y1) (32)

On substitution of equations (31-32) in equations (26-27) yield(
1 + g12gc1 g11gc2

g22gc1 1 + g21gc2

) (
y1
y2

)
=(

g12gc1 g11gc2

g22gc1 g21gc2

) (
ysp,1

ysp,2

)
(33)

Eventually, characteristic equation for non-minimum
phase (C.Enmp) obtained as

C.Enmp = (1 + g12gc1)(1 + g21gc2) − gc1gc2g11g22 (34)

Johansson [16] describe that non-minimum phase configura-
tion in quadruple tank system, is relatively a difficult control
problem as one of the pole is very close to unit circle.

The stability of Predictive PID design based on GPC can
also be carried out in a similar manner. From (24-25), we can
obtained u1,k and u2,k as

u1,k =
{

2 +
(
b́111

b́011
+
b́121

b́021

)
z−1

}−1

(ũ11,k + ũ21,k)(35)

u2,k =
{

2 +
(
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+
b́122

b́022

)
z−1

}−1

(ũ12,k + ũ22,k)(36)

From equation (17), we have,

ũ11,k + ũ21,k =
(
D11 D21

)
X(k) (37)

ũ12,k + ũ22,k =
(
D12 D22

)
X(k) (38)

where X(k) is defined as,

X(k) =
(
X1(k) X2(k)

)T
(39)

in which

X1(k) =
(
e1(k − 1) e1(k − 1) θ1(k)

)T

X2(k) =
(
e2(k − 1) e2(k − 1) θ2(k)

)T

Using equations (26 - 27) and (35 - 38), a characteristic equa-
tion can be obtained and stability of the closed loop system
are determined. In predictive PID design, we obtained the PID
tuning parameters on the basis of GPC tuning parameters and
equate to the PID tuning parameters in result as mentioned
in section IV. Moreover, all simulation results revealed that
systems are stable along the selected tuning parameters.

VI. PERFORMANCE ANALYSIS & SIMULATION RESULTS

The multi-loop PI tuning parameters are obtained from [16],
where (K1, Ti1) = (3.0, 30) and (K2, Ti2) = (2.7, 40)
for minimum phase (P−) while (K1, Ti1) = (1.5, 110) and
(K2, Ti2) = (−0.12, 220) for non-minimum phase (P+)
system respectively. In this paper, simulation have been carried
out in time domain using state space approach in compari-
son with earlier Johansson [16], frequency domain approach.
Moreover, we have also plotted the upper tanks (i.e., tank 3
and tank 4) level along with the lower tanks (i.e., tank 1 and
tank 2), for better illustration and understanding.

For minimum phase, we have observed a peak (i.e., overshoot)
upto 7.45 with settling time is 60 sec as shown in fig. 2,
while [16] indicated peak upto 7.3 with settling time 80 sec.

For non-minimum phase, a slight inverse response along
with much higher overshoot upto 11 followed by a minor
undershoot in output y2 with settling time around 2450 sec
(i.e., 35 times more than minimum phase) has been observed
in our simulation by simple multi-loop PI control as shown in
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Fig. 2. Manual PID design for minimum phase
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Fig. 3. Predictive PID design for minimum phase
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Fig. 4. Manual PID design for non-minimum phase
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fig. 4, while [16] indicated no inverse response and overshoot
only upto 7.9 with settling time around 1200 sec (i.e., 15 times
more than minimum phase).

Our simulation results are based on state space model in
comparison with [16], which are based on transfer function
model, the results we have obtained are slightly different
than [16], but the trends are almost the same. Moreover, we
are in concordance that non-minimum phase problem is much
more difficult to tackle using manual multi-loop PID control
design as concluded in [16].

In section IV, we have developed a MIMO predictive
PID controller for quadruple tank problem using the same
technique as given in [14] and [15] for SISO system. For
minimum phase, we have used prediction horizon as N1 = 1,
N2 = 40 and control horizon as Nu = 40 with weighting
R = ρI2 = 10I2 and Q = I3 and observed the closed loop
response of y1 with peak as 7.35 for setpoint ysp,1 = 7.2 while
y2 regain its initial position within settling time i.e., 35 sec as
shown in fig. 3.

Similarly for non-minimum phase, we have used the predic-
tion horizon N1 = 1, N2 = 100 and control horizon Nu = 2
with weighting Q = I3 and R = ρI2 = 1000I2 an inverse
response have been observed with settling time around 700 sec
i.e., more than 20 times of the minimum phase problem as
shown in fig 5. However, in real plant i.e., a nonlinear system
result could be slightly different as the water drain from any
respective tank depends on the square root of its level, not
directly to its level.

VII. CONCLUSIONS

The structure of the P-PID is not much different from the
conventional PID, therefore implementation does not make any
difference. The effectiveness of all these methods have been
well illustrated in simulations.

It has been observed that in each design technique, non-
minimum phase is quite difficult to control. Multivariable
system with unstable transmission zeros usually come across
with internal instability problems i.e., a difficult aspect to
control a process with RHPT zero canceled by a RHP pole. An
important characteristic of RHPT zeros of multi-input multi-
output (MIMO) systems is that it contains hidden dynamics.
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