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Multisymplectic Geometry and Noether Symmetries
for the Field Theories and the Relativistic Mechanics

H. Loumi-Fergane, A. Belaidi

Abstract—The problem of symmetries in field theory has been
analyzed using geometric frameworks, such as the multisymplectic
models by using in particular the multivector field formalism. In this
paper, we expand the vector fields associated to infinitesimal
symmetries which give rise to invariant quantities as Noether currents
for classical field theories and relativistic mechanic using the
multisymplectic geometry where the Poincaré-Cartan form has thus
been greatly simplified using the Second Order Partial Differential
Equation (SOPDE) for multi-vector fields verifying Euler equations.
These symmetries have been classified naturally according to the
construction of the fiber bundle used. In this work, unlike other
works using the analytical method, our geometric model has allowed
us firstly to distinguish the angular moments of the gauge field
obtained during different transformations while these moments are
gathered in a single expression and are obtained during a rotation in
the Minkowsky space. Secondly, no conditions are imposed on the
Lagrangian of the mechanics with respect to its dependence in time
and in ¢, the currents obtained naturally from the transformations are
respectively the energy and the momentum of the system.

Keywords—Field theories, relativistic mechanics, Lagrangian
formalism, multisymplectic geometry, symmetries, Noether theorem,
conservation laws.

I. INTRODUCTION

HERE are different kinds of geometrical models. We have

the so-called k-symplectic formalism which uses the k-
symplectic structures introduced by Awane [1], [2] and which
replaced the polysymplectic structures used by Glinther [3]. In
this polysymplectic formalism [4], a geometric Hamiltonian
formalism for field theories was given by introduction of a
vector-valued generalization of a symplectic form called a
polysymplectic form. From this geometrical model, many of
the characteristics of the autonomous Hamiltonian systems
arise. The k-symplectic formalism is used to give a geometric
description to field theories whose Lagrangian does not
depend on the base coordinates denoted by (t,,m,tk) (said the

space-time coordinates), which means that the k-symplectic
formalism is verified for Lagrangians and Hamiltonians which
depend only on fields (i.e. Lagrangians L(¢f,...,¢/f) and

Hamiltonians g (¢f’m, Pi )). A natural extension of this is the

k-cosymplectic formalism which is the generalization to field
theories of the cosymplectic (k=1) description of non-
autonomous mechanical systems [5], [6]. This formalism is
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devoted to describing field theories involving the coordinates
(t],,,,,tk) on the Lagrangian L(t/‘,¢f,_,_,¢/{) and on the

Hamiltonian H(t“ b s D) ) :

Another way to derive the field equations is to use the so-
called multisymplectic formalism, developed by Tulczyjew’s
school in Warsaw [7]-[10], and independently by Garcia and
Pérez-Rendon [11], [12] and Goldschmidt and Sternberg [13].
This approach was revised by Martin [14], [15] and Gotay et
al. [16]-[19] and more recently by Cantrijin et al. [20], [21]. A
natural extension of this geometry was successfully operated
to describe the dynamic for non-autonomous relativistic
mechanical systems [22].

The study of symmetries and conservation laws of the .-
symplectic first-order classical field theories in both
Lagrangian and Hamiltonian formalisms was treated in [23],
[24]. In these works, they introduced different kinds of
symmetries and their relation; they associated to some of them
the so-called Cartan symmetries. This problem of symmetries
of the theories was extended to k-cosymplectic Hamiltonian
system. In particular, those called the almost standard -
cosymplectic Hamiltonian system. To these, the authors
associated Noether symmetries [25].

The problem of symmetries in field theory has also been
treated using other geometric models such as the
multisymplectic one by using in particular the multivector
field formalism [26]. In this work, Noether’s theorem is
proved and generalized in order to include higher-order
Cartan-Noether symmetries. Another subject of interest of the
study of symmetries is to have different notions of
infinitesimal symmetries. The work in [27] is devoted to
classifying the different kind of infinitesimal symmetries and
to study their relationship with conservation laws in the
geometric context of multisymplectic geometry and
Ehresmann connections.

In the present paper, we investigate some infinitesimal
symmetries on the geometrical model already developed in
[22] in order to retrieve Noether currents for classical field and
mechanical theories by setting some particular multivector
fields.

The paper is structured as follows: In Sections II and III, we
review the Lagrangian formalism developed for
multisymplectic geometry for hyper regular non-autonomous
classical field theories and the relativistic mechanics
respectively. Section IV is devoted to retrieve Noether current
of the systems via solutions of the equations of motion by
using the analytical method. In Sections V and VI, we
introduce some particular multivector fields of infinitesimal
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symmetries to retrieve Noether currents for classical field
theory and mechanical systems respectively, and finally we
close the work with a conclusion.

II. MULTISYMPLECTIC GEOMETRY FOR CLASSICAL FIELD
THEORIES

A. Lagrangian Formalism

The field theories are the classical limit of quantum fields’
theories. Those are the fields, such as gauge fields of Yang-
Mills which interact with matter fields. A geometric
description has already been done [28] in building a principal
fibre bundle G x S®? where G =Lie group associated in this
case to the quantum fields of YM. This fibre is above a
database the flat space: Minkowski space (k=4) which
coincides with the form of the Lagrangian of fields that we
studied (i.e. Lagrangian which is only explicit on fields, not on

the database coordinates (t” ). The classical limit of these

11=03
Lagrangians corresponds to the study of fields without
constraints (this coincides with the abstraction of ghosts which
corresponds to the S®? group). The favourable principal fibre
of configuration is E = G(G = M), and the structure in this
case is 4-symplectic (i.e. L, e (T, M)).

In this section, we are going to summarize the
multisymplectic geometry given for studying the dynamic of
field theories [29]-[31]. In particular, we have concentrated on
dynamic of most general case of field theories: theories whose
Lagrangians are explicit on database coordinates
(t” )ﬂ:@ = (to =ct, (ti )i:ﬁ) and which are hyper-regular [22].
So, we have followed the following steps:

Let 7: E—> M be a fibre bundle with M the base space
which is a flat manifold, i.e. the Minkowski space with global
coordinates {t’*}. 7¢ is the pull back of a section

$:R*>E
>y =g ) u=03et A=1.d

where {g* (ﬂ’)} = physical fields. These fields are presented

by a fibre above each (¢“)of the base space R*. The set of
fibres is denoted by the space M, so the fibre bundle £ will be

E=R'xM. (1)

Let z':J'7 —> E be the first-order jet bundle of 7. By
using (1),
J'r=R'xT/M )

where 7, M is the Whitney sum of 4-copies of the tangent
space TM at the space M with local coordinates (4, v*).

7' is the pull back of a section which is a mapping

w:E—J'z. If ¥ is a global section of 7' such that
7 oy =1d,, y is called a jet field. In this case, ¢ is an

integral section of ¥/ and y o g = j'¢ (wWhere j'¢p: M — J'x
denotes the canonical lifting of @) and W is the integral jet
field

wiE—>Jz(z'oy=1d,) and yop=9/jp:R' > J'z

If (¢,) is a natural local system on R*, ( t,, y*, vy is the

induced local coordinates system on J '7 where
. 4 4
J'o)=(1,,y",v)=t,,8"(,).0,8"(,)

. 04" .
with 9 ¢4 = = v# =velocity of field.
v atv v

Let 7' =xox' :J' 1 —>M, where 7' is the pull back
of the section j'@.

A Lagrangian density is usually written as L = L (7 n )
where Le C”(J‘;;) is the Lagrangian function and 77is the

volume form on R* (,7 c Q4(R4)) with
n=d't=dt’ ndt' ndt* AdP, k=4

By using the natural system of coordinates defined on J 'r,
the expression of the Lagrangian density is:

Ld't=L(t,,y",v)dt' ndt' ndt> ndt® (4

The expressions of ¢, and Q, , the Poincar¢-Cartan 4 and

5 forms, are respectively [23]:

0, = 6LA RN A —(a—LAvf -L)d't (52)
v aVV
Q, =-df, eQ’(J'7) (5b)
where d*'t, = i( aa YV t .
ot

Let T(M,E) be the set of sections {g} cited above and
(J'z,0,) be the Lagrangian system. The Lagrangian field

equations can be derived from a variational principle called
the Hamilton principle associated to the Lagrangian formalism
which is given by:

i(x,)Q, =0 (6)

where {X,}c y}(J'7) is a class of holonomic multivector

fields associated to ]1¢ (X, is @ l-'[ransverse, integrable
and SOPDE).
The local expression of X, is given by:
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X, =nA, vt 0 ) (N

4 4 o’ y?
where F,” = v, and GV’;: Yy .
ot ot?
By substituting (7) and (5) in (6), the Euler-Lagrange
equations for the fields satisfy:

oL 0 , oL 0 (8)
- oj'¢p=0 , VA=1d
[5yA ar 5vf)J 79

In this case, o°L £0 V(y)eJ'z, the Lagrangian is
ov,ov,

hyper-regular (regular globally).

III. MULTISYMLECTIC GEOMETRY FOR THE RELATIVISTIC
MECHANICS

A. Lagrangian Formalism

By analogy with the work already done for the field
theories, we have extended the idea to the relativistic
mechanics [22].

Let :E=RxM — R, where E is the configuration
bundle, R as a base space spawned by (ct) as global coordinate
and M =R’ is the fibre above each point of the database
(dim M =3 and dim E = 4).

Let (g*) = (qo =ct, (q ), |3> be a natural coordinate

/103

defined in E. If the configuration bundle £ can be equipped
v o_ H

with a metric n" = (1’_1’_1’_1) such that 4

case. E coincides with the Minkowski space.

We note that “c” is speed of light, and (q')l,:ﬁ

AV
=4y i this

are the

generalized coordinates.
We note J'z the first-order jet bundle of 77 associated to
the section j'¢:R — J'm=RxTM .

The natural coordinates defined on J'7 as done in 3) is

(¢°,q',¢") and the global integral section j'¢ such that:

7@ ) =", ¢'(¢") =0 () =4"(1),
op oy 09 _dd . _q® (t) ©)
o (g)= e = cdt( )= q'®)

We define the Lagrange function L : RxTM — R
Ldt=1L(q".q'.q")dt

The Poincaré-Cartan 1-form 9L and 2-form QQ ,, associated
at L as in (5) by:

oL .1 oL
0, = —dg' - —(—qg. - L)dg°
L o4’ q C(aq[ q, )dq (10)
Q, =-do,

(t)

We put —(t) q'(t) and (l) = =G'(1)

where ¢'(¢) and §'(¢) are the velocity and the acceleration
of the mechanical system, respectively.

For the relativistic mechanics, at the Hamilton principal (6),
we can associate the following holonomic multivector field,
(7) becomes:

S T (1

We can do the following remark that

= 1fo ., 0 .01 (12)
X, =—|—+ -+ - [=—X
¢ c[at qaq’ qaq’] ¢t

For this dynamic, the first-order jet bundle J'z is generated
by the multivector field X, (i.e. the multivector field is a
class of integrable and 7 —transverse {)? L}C ' (J'7) which

satisfy the Euler Lagrange equation

[5L d oL j (13)

oq' dt o4

IV. NOETHER CURRENT VIA ANALYTICAL METHOD

The physical characteristics, in particular, the dynamical
invariants, of the systems can be expressed via solutions of the
equations of motion [32]-[34].

Let the infinitesimal transformations be

t—>t'=t+0t

b, = . ()= 4,(0)+54,(1) (14)

Note that the variation & @, (t) is defined as

5o,(1)=0,'(t") -, (1) (15)
Equation (15) represents the change of the field due to both

the transformation of the field and the coordinate
transformation. One defines in a fixed point in space by

50, (1)=0,'(t)-9, () (16)

Transformation of the integration measure limiting to first
order is:
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atvl 6tv4

J* ot' ot' (17)
d* de{ Jd t=det : fodt (140,507 )a
d*

atvl at.4

The relationship between O @, and O, @, to first-order is:

5s=[d'rrlp,(t)o,g,
~[d' (1+8ﬂ51”)L(¢5

~[a‘t(5L+(0,50)L)

5o, (t)=0,'(t)-p.(1)=0,'(t+5t)-0,(1)
=p,'(t)+51"0,0,'(t) -0, (1)
=9,'(1)+61"0, (50 o, (1)+o, (t))—(oa (1)

where

54,()=5,4,0)+0,8,()5t" (18)

The variation of the action to first-order

jm 5,000, ¢<z>,t)

)~ [ L(p, (00,4, 0))

jd t (6, L+(6 L)5t* + (a st*)L)

~[a* t(é‘ 4, W(@ 5,4, )+0 (5:/1)]

oL
_Id t6, 4, [6(/5

_J'd t6,d, (a%

By using (8), the first term of the last equation in (19)
vanishes and substituting (18) in the last term of (19), it gives:

ss=[d"a, [%(5% —5t”aﬂgp{1)+5t“L]

0,9,

oL oL
=|d*%o,| ——06¢p, —| ————0.,0 —6“L |5t
f t ﬂ[a(aﬂﬂ,) Do [a(a#@z) vPo — O, J t‘|

The conserved current is therefore

a_ng{a_L

JH =
0(0,9.) 0(0,9.)

0,0, - 5;’LJ5¢V
(20)

V. NOETHER CURRENTS FOR FIELD THEORY

In this section, we are going to concentrate ourselves on
fields’ theory and use the geometrical model proposed in [22].
In particular, we are going to establish the physical
transformations associated to diffeomorphisms [23]-[25]
which give Noether currents; the result will be the same for
the mechanic theory.

In Section II, we saw that the dynamic of field theories can
be derived by the Hamilton principle which is given by:

i(X,)Q, =0

) ]+Id“t {a h—w S0, J (§t”L):|
., a%ﬁ+'[d4t a{a §L¢ 508, +§t”LJ

(19)

where X, is holonomic multivector fields integrable and
SOPDE.

0 0 0
Xt R @1)
where
2 A
Fl=vi=0,"=¢) and G}=2L2 _ys

"otV ot”

In this condition, the Poincare-Cartan 4-form (5a) becomes:

(e, (e, ) ate 22)

A. A Translation in the Base Space “Space-Time”

6,=Ll,

Consider an infinitesimal space-time translations associated
to diffeomorphisms:

. pk k

t" — go(t”)z t" +a" =t""/ a" =const Yu=03

and let @ be a symmetry of the multisymplectic lagrangian
system for fields

®:R*"xM > R'xM

q)(ty’¢i(tu )): (t;t = t# + a#’¢[([;t ))

24
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O R XxT/M - R*xT/M

O (e, (0, )00, )=, =1, +a,.0'(, ) 0.(,)

(25)

During this transformation, the theory remains covariant,
the Poincare-Cartan 4-form (22) can be written:

©'0, =0, ¢ ) )=Late o

A limited development of Taylor to first order of the
Poincaré-Cartan 4-form (24) for this infinitesimal space-time

translation gives (we treat & ;. as a function)

(77 -1 00, 20, 09’ _ 20, 6%}
7| ot ago ot* a(p ot
dt
a _ a i_a i
where ﬂ—at_ﬂa@,— y¢
0 (0" (100 ()= 0. (100" (1) 00 (1)) =
7 i a i a .
dQL:a" (a#+§0ﬂa—(pi+§0ﬂp@ eL:lYeL

27

The term in bracket in (27) will be identified to an
infinitesimal vector field associated to this symmetry

;0 ;0
Y=a"|0 +¢p' —+¢p' —— (28)
( u ¢,u 6(01 w#ﬂ a(ﬂ;j

Unlike other authors [23]-[25], [27], [36], to this
infinitesimal transformation, we must have (the result will be
proved later)

apfpd"t =di, 0, —i, do,
where ¥ € C” (29)

where 7 =d ¥t is the volume form on M and k=dim M. The

conservation law derived from (29) will be
P _
0,/ =0 (30)

We identify f* to Noether current. Contracting (22) by
(28),

k

d"t

i,0, =a" |0 ,Ld*t+Ld,(d")+g
NEAd

k=
d fﬂ

#a¢ wa¢

The differential “d” defined on the first-order jet bundle
J' 7 cited in Section IT

o
d=0 dt* +-—dp’ +- dg’
o¢’ o, " 31)

di,0, =a"|8,0,Ldt" nd*t+0,L0,(d"t)ndt” +0,Ldt" nd* ¢, +L3,(d"'t,)ndt"
—j;:; d*i s, a*'t,
2
vl S ndtir g aL.dtV/\d"t+¢;a—L.8v(dkt) ar* + ¢, 25 ndte
¢’ 01" o' 0" =t 04
2 2
vpl 0L nativ g, o (@ nd v =L apt nate P agi naty,  CD
ot og; a¢ A N VIEE o &
ate ¢) 80 d*e
2
+ 4! aJL dg/ a1+ gl 2 _agi natis a/L#dW '+ 2 ag) nd*y
004" 0¢704! 0ot o)
oL o°L o’L
w8 50 L g ndt v 0L _agindtir g 0L _apia
* o 0 P aglog Y saron
Using that
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dt” nd't=0Yp =03 d6, =o,Ldt" nd't+L o, (d"t)ndt’

do’ nd't =%dtﬁ nd't=gl dt” nd'1=0 d
oL - oL ;

o del . (33) +—do’ /\dkt+—jd¢>;/\dkt
dpy nd't=—22di" nd't =g, di” nd'1=0 op op)
d't, ndi” =67d' Using that
. X [, J k _ j k-1
diy0,=20,Ld"t+Ld""t, +2¢) ¢ / ;/ d*t 9, (d¢f nd't)= d¢f ANdTL, (35)

0,(dg) nd't)=—dp) nd" e

Contracting (22) by (31),

i,d6, =a"[0,0,L di* nd*t+d,L aﬂ(dtv)/\dkt+5 Ldt* nd,(d"t)+0,Ld t+Lo,(d")

0’L : oL ., :
= _dp) ndt-——dp’ nd,(d"1)+ dg) nd* 2,(a*)
o o¢’ o' 1 bt ua¢/ /
¢ d*t ¢, d*t
. 0L 0’L . oL
v 0L g natie g Edtia g dp’ nd't+ ¢ ——5" d"t
o4 ot" a¢ 04 04’ op’
, 0 : . 0L . oL . 0°L .
t e dp) A+, dt” At g, d 4 g, ———dg nd't
09’09, 6¢p6t og, 09,09
. 0L
+ @ —d) Ad L+ g, /é'fé'dt
04,09, og, (36)
Using (35), (36) becomes
. OL . OL
iyd0, =a*|30,Ld"t+Ld""t, +¢] ——d't+¢) —d"t
o¢’ o’
’ (37
Inserting (34) and (37) in (29), it gives By identification the members of (40), we find
;0L ., oL ot’ =a"s})
diy0, —iyd0, =a"| =0, L+¢, —+¢), —=|d"t ‘ o (1)
op og, op’ =a"g, =¢, o5t”
(3%)
Using the Euler-Lagrange equation (8), we get From (40), the conserved current obtained is the second
rank tensor IL’) called energy-momentum tensor or stress-
oL oL oL
7= o, = 1=0,| = energy tensor.
o¢ 00,4 o9, (39)
P _ J p
Inserting (39) in (38) and using (19), it becomes T, u 8 ¢ 7 ¢ -L 5/1 (42)
di,6, —i,d6, =0 { oL _a (0 —La" 5;):‘ d*t The results (41) and (42) have been already established in
oL ) ok B. A Rotation in the Base Space “Space-Time”
% w&ﬂ +Lot" |d'1=0 A Consider now an infinitesimal rotation in the space-time.
P
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This transformation is an element A* =% +dw? of P B
— v g i .
Lorentz group denoted as SO(1, 3) which is associated to the dg, =6 8 T O 8¢ Py ¢#p a¢i 0, =iy0,
following diffeomorphisms: P
0 R¥ _s R* 'The infinitesimal vector field associated, to this symmetry,
(43)  will be
= (p(t”)= <5j’ + 50)5’)tv ! éw"" = const in time

The rotation being infinitesimal, the variation in space-time Y=0 a)”v 5 + ¢ ¢i i (47)

. u HP A i

coordinates 5¢ og,

1=t =5t" =00t " {1 (44)

i,0, = 't (8 Ld't+Ld""t, +¢), %d"t +¢)jw§—Ll.d*t ]
In this condition, (24) and (27) become Z 48)

®:R xM — R*xM ) o on i
CD(tH,¢i(t# )= (t;, =t,+50" 1,,4'(t) ) P =$ = a/:; =115, =1, (49)

O :R*xT/M - R*xT\M
. i i , v it N aifor By making the same calculus done in Section V.A and
00000 )= 0 =1 850 06 00NA0) g (1), (35) and (49, we obta
)

(46

di,0, == 60" 2tV6HL+77VﬂL+2tV(pL6—Li+2tvqo/w AL it + 50 "1, Ld"t,
o9 o, (50)
k k-1 aL i k
dg, =0 Ldt’ Ad"t+Ld" 't Adt’+ t+——d¢ Ad't
P P a¢; P
d*t
. v i aL i aL v
i,d8, = ow" |:3tva;tL+[V¢#a_¢i+tV¢ﬂP o0, :Id t+00"t, Ldkl (51)
Inserting (50) and (51) in (29)
di 0, —i,d0, =" |n,L-1,0,L+t, ¢ oL, 9., OL g
6¢’ o,
oL ; (52)
TN\, 00—t , 00 |l+——¢ \t, 07 —t,0]
:1 e a¢,¢(‘/ﬂ #V) 8(,75" VP(V# ﬂV)dkt
2 o,L(t,67-1,67)+Lln,87 -n,,57)
- 1,0, )+ L\7,,0, —1,,

Substituting (39), (19) and (49), (52) becomes

1 9, s P, (tvé‘; - 5/>+6_Lj¢7//.> (tvé‘j - 5y>
di 6, —i,d6, =—ow" op) op, d‘t

~0,L(t, 8, ~t, 87 )+L(0,, 6,-0,t,6¢)

U | OL 0 o .
= 00" a{aw; 9! (4,67 —-1,8,)-L (1,0, 1,07 ) |d"t
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—lé‘a)’” a—L
2 op)

8(0 vou

f2)

:%(wva{ oL o (1,6 -

2 6(0;

vou u-v

2 op’

P

~1,67 )=
U

_lé‘a)ﬂv|: 8L~ (Dl (nvpé‘y S

—Lswa {O—L% (t,0]-,67)-L (1,0, 5/3)}1’%

uov

9l 0,(1,8,—1,07)-2L0, (1,60 —t 5p):|d

vou

(t 5° —t 5”)}1":

)-2L(n,,0, -n,,6¢) }1

(53)

vou u-v

1 . O , OL v
+|:—§50)ﬂ [8(0” @, - Py ¢VJ+§a)" L(UW V)}dkt

=0

a J

- %5@‘”6{ oL o) (1,67 1,00 )-L (1,5, —t#@/p)}d"t =0, (:—(jjé'(oj +L5thd"t

By identification term by term and using (42), we find

5t° =%5M(: S5 —t 5P)

o (54)
Sp’ :%5&)‘”40; (tvé'j —t#(?‘f) = ¢)yj ot
The Noether current will be
oL .
Jr = —p! (t,0] —t,0] )—
H awg 4 ( H H ) (55)
L(t,60 1,60 )=t,T,—t,T}

During a rotation in the base space, i.e. Minkowsy space,
the Noether current (55) obtained by this symmetry will be
identified to the angular momentum. The results (54) and (55)
have already been developed in [32], [33].

C. A Translation along the Fibre

Having the geometric model of the fiber bundle for the
fields theory proposed in [22], we define a new
diffeomorphism ¢ , in addition to those already mentioned
above [23]-[25]. This infinitesimal transformation is an
element U(&“):1+L9“Ta/a:1,...,,m of special unitary
group denoted SU(n) which allows to the transformation of
field coordinates (¢i li=1..,d ) on the fiber.

O:R*'XM >R*xM

(60, ) > 0,8/, )=, 07, )= 91, )+

P

We note that (7,) is a Hermitian matrix of SU (n). These

generators (Ta ) form a Lie algebra /

|.Ta’TﬂJ Cﬂy Tr
p:R" > R*
" >t )=t =t V=03
and
o: M —>M
') 50 0, ))=9"()=Ul9")¢'(,)

The translation in the fiber being infinitesimal, the variation
in field coordinates

(56)

5 =¢",)-¢0,)=9.0%0'l,) o

We also note that infinitesimal (Sa) is independent of

coordinates ( ) @ is said to be global Gauge, using (57):

56, =0,69'(t,)=9,(r"),0,6'(c,)=8.(r* ), 4.(c,)
(58)
9, (Ta)i/W(ty )) (59)
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O :R*xXT/M - R*xT/M

(g @) ) > @0 6,06 )= (87 ()00 () )

(60)
00, 0, g 0 L0, 00, . 080, .
de,‘_w dg +a¢;‘, g =8,(r )(¢ > ¢ 6¢J i0, i,0, = 50 o'+ : 9! =
The infinitesimal vector field associated to this Gauge 9 (Ta)i @’ 8_L (0' oL d*t
symmetry is “ o0¢' “ agoﬂ
Y=29 ( ) ¢j # i 1) The differential “d” defined on TM:
T o
d=——d¢'+—rd¢! (62)
Contracting (22) by (61), we have o¢ o9,
i . OL - 0°L o’
di,@, =9 \T").| o/ —d¢' Ad*t+ ¢’ —d “t+ ¢/ d¢' nd*t
iy0, = 9, ){,M § ndlte ) g nd gl
(63)
o°L oL o0°L
+ d dt+5’5p—d ~nd*t+ ¢’ d
” 04,04’ g o, 7 ” 04,00, o }
dHLza—Ld¢ ~dt+ a—L.d¢;/\dkt
o¢’ o9,
( )i o’L
i,d0, =9 \T" . d dt+§’ / de¢' nd*t
ydo, =4, ,{¢a¢a¢ ¢’ A ¢ ¢ ¢a¢a¢ ¢’ A
(64)
2
+¢/ oL ¢;/\dkt+¢ oL 1d¢ dkt+5,15;¢J aLl d*t
04,04, 0¢'04, 99,
Introducing (63) and (64) in (29),
di 6, —i,do, =3 (1) L gy nd't+ 2 agi nati— g 2 ate—gr O g (65)
o' o9, o¢’ o9,
Using (57) and (58), (65) becomes
i j oL oL . OL
di,0, —i,d0, =8\ | 9,\1" )| ¢' — + 4. — |- ¢’ d‘t
yO, —lyat; a( )j|:ﬂ( )z[ 8¢'+ Va¢v,] ¢8¢ ¢:|

di 6, —i,db, =.9Q(T“);9ﬁ(rﬂ)[{¢’ aa; ¢! aa; }d -3, “){W%Jrqﬁf 86; }d"t (66)

The transformation being infinitesimal (,9a {« 1), the first Using (39), (67) gives
term in (66), vanishes

di,0, —i,do, =-39, (T“)f{¢f aLl + ¢/ i@ }m (67)

o¢' o9,
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_ oV o L | g (68)
_—6{19,1<T )‘/_ @’ G—@}d‘t

1 2\ OL 2\/ ; OL
=—56{n9a(T ) “’fa—dwa(T ) o a—%}d%

Knowing that the matrix elements of SU (n) verify

(o), =-)
So,

di,6, —i,d0, =39, 0, |:_%(Ta )i (50'/ oL -9 a—L]:| d*t

i#]j

I\" opl " o)

=39,0, ( LY (pp - ﬂd"r
(69)

We put

s g r) o

By analogy with the mechanics as we can see below in the
next section, we conclude that when translating along the
fiber, the Noether current (70) can be identified to another
type of angular momentum of the field which is related to the
internal symmetry representing the Lorentz group in the field

space (¢l ) This is proved by the natural appearance of the

matrix elements (T“)Z_ in (70). These terms are introduced

®'0, =0, (t’,q"(t’),q"(t’))z 0, (t,q"(t),q"(t))Jr(t'—t) [agL +

3,(t,q" ()d ()~ 0, (6.q' (1.4 (0)=

The associated vector field, in this case, is identified to

Y=a° 9+q”' 6‘+q"’ a‘ (75)
o oq' aq'

Contracting (71) by (75)

without any demonstration in [34]. We can also do the
following remark that this angular momentum is obtained by a
rotation in the space (1, 3) in [32], [34].

VI. NOETHER CURRENTS IN MECHANIC THEORY

In this section and by analogy with the work already
developed for the field theories in the above section, we
extend the idea to the relativistic mechanics by using the
construction of the fiber bundle proposed in [22].

The Poincare-Cartan 1-form (10) becomes

0,=L(t.q'(1).4'(t)) at (71)

A. A Translation in the Base Space “Time”

Consider an infinitesimal time translation associated to the
diffeomorphisms:

®:RxM >RxM /M=R®
(D(t, q"(t))z (t' =z+a0,q"(t'))
@ :RxTM — RxTM

(6, q'(e)g' ()= " =t +a0,q' ()4’ (7))

During this transformation, the Poincare-Cartan 1-form (71)

(72)
(73)

can be written:

®'0, =0, (t’,qi(t’),qf(t’))z Z(t’,q"(t’),qf(t’)) dr' (74)

A limited development of Taylor to first order of the
Poincaré-Cartan 1-form (74) associated to this infinitesimal
base time translation gives:

09, 8’ 9, 8’
oq' ot oq" ot

dt

a°{£+q‘i i_+(']'i il} 0,=i,0,
¢ q

—,dt+c’j"a—.L,dt+L}
oq'

The differential “d” defined on the first-order jet bundle
J'z cited in Section I11.

O a4y (76)

dg’ +—
U

d :gdt+ 6.
ot oq’
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2
di,6, = 2—dt oL

2

+c'j"a—{4.dt/\dt+c'j" 0
o’ ot

dt+—dt+qia—L.thdt+qi oL
ot oq' ot g

L dt ndt+§ —dt +
oq' aq'

2

.dt/\dt+qia—L,dt
1 aql

2
oL 6qu/\dt
oq’ ot

2 2 2
vi =0t gy natr i =2 ag ndr+ 5 Py nat 2Ly nar 77
0q’0q' 0q’0q' ' oq' 0q’ ot
2 2
+§ ———dg’ Adt+§' _L_. dg’ dt+6—dt+a—Ld I+ a_L. dg’
0q’0q' 0q’oq¢' ot oq’ 8 /
Using that
dt ndt=0 di, 0, =2a {ZLdt+q %dt+q S—dt} (79)
dg’ Adi = G’di ndt =0 (78) 9
dg’ Adt=g’dt ndt =0
do, 6—Ldt/\dt+a—dq Adt+a—dq I+ Ldt
Substituting (78) in (77), we obtain ot g’ g’
2 2 2
i,d9, =a’ oL dt Adt+a—Ldt—a—Ldt+ 0 L. dg’ Adt— aL_ dq’ + 0 L dq‘%dt—idqf
o o ot otog oq’ ot g’ oG’
2 2 2 2
+q' ‘”, dg’ ~ndt+4q' oL —dg’ Adt+§' oL dt ndt+§' aL. dq’ ~dt (80)
oq'oq’ oq'og’ oG'ot 0G'0q’
2
+q' oL —dg’ ndt+q' 6—5’dt+ a—Lﬁa’t oL —dt+¢' a—Ldt+q a—a’t+L
8G'0g’ oq’ 8¢’ ot oq’ o'
Using (78), (80) gives 00 oL .,
T =H=""\4{4'-L
og ! (85)

i,d0, = a’ oL iy 6L~ i 6.L. @D
ot aq' oq'

Gather (79) and (80) in (29)

di 6, —i,dd, =a {‘ZL dt+q L

OL | 2
oq' oq'

Using (13) and (19), (82) becomes

d oL d(aL&],»JrL&t)

le -, do, =a

By identification the members of (83), we find

0
8q'=a"¢' =¢' 5t

The conserved current 7% appearing in (84) is the density
of the Hamiltonian

Here, in our model, the Lagrangian one treated is explicitly

ot
base leads to a conservation of energy which is the integral
density of the Hamiltonian

P =1t j[—q L]d

Equation (85) has already been found in [35] with the
condition that the Lagrangian is not explicit in time ( oL _ 0]
ot

dependent on time (5L - Oj and a translation in time along the

B. A Translation along the Fiber

To a translation of coordinates on the fiber, we associate the
following application:

9:R—>R

t—olt)=t and
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oM —>M
) . . . (86)
q'(t)>q"(t)=q'(t)+a’
O=p@®@p:RxM > RxM &7

olt, ¢'(e)= ' =1.9"(t)= ¢ (t) + ')

@ :RxTM — RxTM

(e, q' (00 ()= ("= 1.¢" ()= ¢'()+a",4" ()= 4' (1))

(88)

D0, =0, (1,

q"(1).4" (1)) =

~ g 00 00, ,.;
0,(t.q'(1).4'(¢))+ aqL dq' + P L dg

B (q" (04" (1)~ 0, (a3 (1) = a' 2 = i,

oq'
The vector field associated to this infinitesimal
transformation
. 0
Y=a — (89)
oq'
The differential “d” defined on the TM
d=-ag + 2 ap
aq./' aqi (90)
oL
0, =—
oq
2
iyd9L=ai 6.L _dq’ dt+ 5’dt+ oL dq Adt
0q'0q’ oq’ 0q'0g’
C)
. OL
i,0, = a' —di
oq
2
) L )
di,0, =a' 6_ Adt+ oL —dg’ Adt| (92)
0q’0q' 7/0q"

Inserting (91) and (92) in (29), we get

—i,df, =—a' 6—Ldt 93)
oq’

di,0,

Using (13) and (19), (93) becomes

di,0, —i,do, = —a’ia—ﬁ =
dt 0q (94)

—a dt;lt( )=d ti(aL 8q' +L5t)

By identification the members of (94), we find

0q =a 95)
o0t=0

. . 0
Using the Lagrangian (71), the conserved current 7,
appearing in (94) is the momentum vector P =cstVt obtained

during a translation along the fiber, and the result has already
been found in [35] by supposing that the Lagrange function L

does not explicitly involve the coordinate qi ie oL _ ol
oq'
which means that is a cyclic coordinate.
C. 4 Rotation in the Fiber

Consider now an infinitesimal rotation in the fiber: the
space M = R*® above each point of the database: time. This
transformation is an element R/ = exp(&wij) =

5/ +0w’ | S/ ({1 of the group denoted SO (3) which is

associated to the following diffeomorphisms:

9:R—>R
t = glt)=
and
pM oM __ ,_ 96)
q’(t)—)q”(t)zexp(&o” )q,.(t) / 6" = const in time
D=p®@p:RxM —> RxM
7

oft, '(1)) =" =1.4" () = expl60” g, (7))

The rotation is infinitesimal, and the variation in space
coordinates

q"—q'=6q'=60"q,/ "1 (98)
®":RxTM — RxTM

o' (1, 4" (04" (1)) =t = 1,q" (1) = exp(6” )q, (1), 4" (r) = expl6” ), (¢))
(99

a 1
(100)

@0, =0, (014" 0)= 0, 01 () Sy’ + 2y

Inserting (99) in (100), it becomes
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DY, = g”L (t,q” (t),q” (t)) -6, (t,qi (t),qi (t)) Contracting (69) by (101)
i o . 0 . (oL oL
=60’ q~—i+q~_-t}9 =i, 1,0, =60" | ¢, —+q,— |dt
|: /aq Jaq U UL @ 4, aql 4; aq1
) .0 Using (90
Y=60"|q,—+4,— (101) (0
oq' oq'
di,0, = 0’| 8/ L dg' nd L dg' nd L dg' nd
iy0, = ow 51?qut+qj818’th+q’816’q/\t
2 2
+q,; .,LidqlAdt+5liiidqlAdt+qj al —dg' Adt
9q'0q oq 0q'0q (102)
oL oL
do, =—d /\dl+—dq Adt
oq' oq’
2 2
iyd6, =5a){q/. al_[‘ldq’Adz+qja—€5/dz+qj%dqudt
" 0q'0q oq 9q'0q (103)
’L L oL
———dq' ndt+ —_dg' Adt+§, —-5]dt
q} a ta q q] qzaq-l q qj aql ! :|
Putting (102) and (103) in (29), we obtain
| oL . oL .. OL . oL
di 0, —i,d0, =60" | —dq’ "dt+—_—dg’ ndt—q,—dt—q,—dt (104)
aq' oq' oq' aq'
Inserting (98) in (105), we get
. dor L . . oL . oL
di 0, —i,df, = 6w’ {Méwf’qldt+wéw”qldt—qj o0 dt—gq, 20 dt} (105)
= o0’ So” {qu’,q, + SLI ql}dt o’ (q/ SL‘ dt—gq, SLI dtj
fon 38 nfinites: N 2
‘The rotation is infinitesimal (z.e.é'a) (1 ) and (105) di,0,-i,d6, = 5 (~q, 0 L__dt—' —dt)
gives " otog' % o4’ (107)
OL oL
. . . oL . OL =—dt—(— oa’q ]__dt_[_'5qj
di6, —i,do, :Ja)”(—qudz—qudt) (106) dr\ & ( ’) dt\ 0
q q

By identification of the two last terms in (107), we find
Using (13) and (20), (106) becomes
i i
g’ =0wq, (108)

By using the skew symmetry of ow”

d|( oL oL 1.,,d
di, 8, —i,do, ———5 Vdt q9,-—4q |=——oa"dt—\p, q,— P, 4,
yUL Ly ao, dt[a ] Py qu 5 dt(pl q,—Pp; ql) (109)

d ji 1 rext
:_dt5|:§a)/ Xz(q,-p,- —4,p ):IZM dt
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The conserved current in (109) between brackets, will be

identified to the angular momentum L in mechanic whose
components are:

1
L za(qu/ —4;P; ) (110)
This will be contracted
L=Gnp

and M is only the moment of the external forces which can
contribute to the rotation of the system.
In our calculation, the system is invariant in an arbitrary

rotation about any axis in the space R’ (i.e. we did not
impose conditions), which is the case of an isolated system

M =0, it follows that the angular momentum L is a

constant of movement, this result has been already found in
[35].

VII. CONCLUSION

In this work, the multisymplectic model of the fiber bundle
[22], the Poincaré-Cartan form has been greatly simplified
using the SOPDE condition for multi-vector fields verifying
Euler equations. This allows to expand easily the vector fields
associated to infinitesimal symmetries which gave
successfully the Noether currents for classical fields, in
particular, those called Gauge fields and relativistic
mechanical fields that are in good agreement with the results
already provided by the analytical method. The remarks that
can be made are that our geometric model [22] also allowed us
firstly to distinguish the angular moments of the Gauge field
obtained during a transformation while these moments are
gathered in a single expression and are obtained during a
rotation in the Minkowsky space by the analytic method.

Secondly, the Lagrangian of the mechanic that has been

treated in our calculation, is explicit in time and qi ; there was

no need to pose the conditions [(lL :Oj and [ OL :0]

ot qu
respectively as other works. The currents obtained naturally
from the transformations are respectively the energy of the
system and the momentum.

And finally, we remark that these symmetries have been
classified naturally according to the construction of the fiber
bundle [22]. The Noether currents associated to the
transformations along the fibers do not depend on the base
coordinates unlike those associated moving along the base
space.
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