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Abstract—Expression data analysis is based mostly on the 

statistical approaches that are indispensable for the study of 

biological systems. Large amounts of multidimensional data resulting 

from the high-throughput technologies are not completely served by 

biostatistical techniques and are usually complemented with visual,

knowledge discovery and other computational tools. In many cases, 

in biological systems we only speculate on the processes that are 

causing the changes, and it is the visual explorative analysis of data 

during which a hypothesis is formed. We would like to show the 

usability of multidimensional visualization tools and promote their 

use in life sciences. We survey and show some of the 

multidimensional visualization tools in the process of data 

exploration, such as parallel coordinates and radviz and we extend 

them by combining them with the self-organizing map algorithm. We 

use a time course data set of transitional cell carcinoma of the bladder 

in our examples. Analysis of data with these tools has the potential to 

uncover additional relationships and non-trivial structures.   

Keywords—microarrays, visualization, parallel coordinates, 

radviz, self-organizing maps. 

I. INTRODUCTION

ICROARRAYS have become the norm for simultaneous 

measuring of expression levels of thousands of genes. 

The “current” and “next generation” platforms have enormous 

promise in revealing functions of genes, cell populations, 

tumor classifications [1], understanding cellular pathways, 

drug target identification, just to name a few [2]-[3]. From the 

arrays themselves, we have to derive the signal values and 

then biological conclusions, and the methods that we apply 

can be roughly divided into preprocessing and data analysis 

which is further divided into data mining and visualization 

tools. If we assume that the arrays have been preprocessed and 

signal data has been obtained, a variety of data mining 

algorithms are at hand for the next task: from self-organizing 

maps [4] to hierarchical clustering, one of the most highly 
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utilized data mining methods today. Visualization tools that 

are heavily used today range from scatter plots to dendrograms 

(displaying the results of hierarchical clustering) line plots, 

histograms, box plots and venn diagrams. Statisticians have 

used majority of these tools for a long time, but modern 

visualization tools and techniques that are targeted towards 

high-dimensional data remain underutilized, but not due to the 

usability or the power of these techniques. Our quick survey of 

the publications applying multidimensional visualizations in 

bioinformatics shows that papers using these tools are mostly 

published in the Information Visualization and Visualization 

domains rather than life science domains. In 2004 Saraiya et 

al. evaluated the use of visualization tools by biologists and 

discovered that there is an overwhelming variety of tools to 

chose from, and the users are confused about which tool to use

[5].

Novel multidimensional visualization techniques enable us 

to display larger, higher-dimensional data sets in a 

meaningful, more descriptive manner. They have been shown 

to have a very high intrinsic dimensionality [6] and uncover 

non-trivial patterns and relationships in the data. We combine 

these visualizations with self-organizing maps [7], the 

topology-preserving neural network and projection technique, 

which enables us to extend into the third dimension and 

uncover previously unknown additional relationships.

We are using a data set of the transitional cell carcinoma 

(TCC) of the bladder generated by Clifford Lab at LSUHSC-S

to show these techniques [8]. In Section 2, we first discuss the 

setup and processing of the TCC data set. We continue with 

the description of multidimensional visualizations, including 

parallel coordinates and radviz, and their intrinsic 

dimensionality in Section 3. We include a list of open source 

tools that provide these visualizations and their extensions to 

be utilized by the life scientists for their data analysis tasks.

Section 4 is a discussion of self-organizing maps, their 

extensions and combination with multidimensional 

visualization techniques: parallel coordinates and radviz. We 

conclude with Section 5 where we also describe our future 

goals.   

II. TRANSITIONAL CELL CARCINOMA DATA SET

Transitional cell carcinoma of the bladder (TCC) ranks 4th 

in incidence of all cancers in the developed world, yet the 

mechanisms of its origin and progression remain poorly 

understood and there are few useful diagnostic or prognostic 

biomarkers for this disease. In an attempt to generate a mouse 
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model for bladder cancer progression, investigators in the 

laboratory of Xue-Ru Wu engineered transgenic mice carrying 

a low copy number of the SV40 large T (SV40T) oncogene, 

expressed under the control of the bladder urothelium specific 

murine uroplakin II promoter [9]. The transgenic mice, UPII-

SV40T, develop a condition closely resembling human 

carcinoma in situ (CIS) starting as early as 6 weeks of age, 

progressing to invasive TCC from 6 months of age onward.  

We combined this transgenic mouse model for invasive 

bladder cancer with Affymetrix DNA microarray technology. 

With the Mouse GeneChip (Mouse Genome 430 2.0) it is 

possible to determine a relative expression level of over 

39,000 mouse transcripts (45,101 probe sets), representing the 

majority of the transcribed mouse genome, in a given mRNA 

sample. Duplicate arrays were performed for SV40T and non-

transgenic littermates (WT) at each time point, yielding a set 

of duplicated arrays for two factors: mouse genotype (WT or 

SV40T) and week (3, 6, 20, 30) creating eight targets. The WT 

line at the 6 week time point is the exception – due to the 

degradation of the RNA we only have one quality array. We 

followed the recommended analysis techniques [10]-[11] 

using R [12], bioconductor [13], and used the limma [14] and 

affy packages [15].

We characterized the histologic progression of 

premalignant, carcinoma in-situ, early invasive TCC and more 

advanced invasive TCC occurring at 3, 6, 20 and 30 weeks of 

age, respectively, in the UPII-SV40T mice. We performed a 

preliminary examination of genes expressed in the urothelium 

at these time points and revealed approximately 1,900 

differentially expressed (" 3 fold difference) at one or more of

the time points between the urothelium of SV40T mice and 

their age-matched WT littermates. Preliminary biometric 

analysis using the Ingenuity Pathways Analysis software 

package (Ingenuity Systems Inc.) revealed that cell cycle 

regulatory, DNA replication, and cancer related genes were 

more strongly expressed in the SV40T bladder urothelium at 

the highest proportion, even at the 3-week point.

We identified genes that are differentially expressed 

between the bladders of SV40T mice and their age-matched 

wild type (WT) littermates at 3, 6, 20 and 30 weeks of age. 

These are the times, which correspond to premalignant, 

carcinoma in-situ, and early and later stage papillary TCC, 

respectively. Empirical Bayes method moderated t-statistic 

was used to test each individual contrast equal to zero and 

compute the moderated F-statistic which combines the t-

statistic for all the contrasts into an overall test of significance 

for that gene. p-values were adjusted for multiple testing using 

the method of Benjamini and Hochberg to control the false 

discovery rate. Tests were considered to be significant if the 

adjusted p value did not exceed 0.05. We eliminated the 

control probes from our analysis using the cutoff p-value and 

required at least a one-fold change between the arrays to 

consider them as differentially expressed.

Figure 1 shows the counts of genes that were up or down 

regulated for each of the lines, when compared to the first time 

point for the WT. There is virtually no regulation present in 

the WT, while we observe an exponential growth of the 

number of differentially expressed genes for the SV40T line 

from approximately 1,300 to 2,100 and 4,400 at time points 6, 

20 and 30, respectively. We proceeded by identifying the 

difference in expression between the WT and SV40T lines for 

each of the time points. Figure 2 shows the number of genes 

that are up or down regulated at each time point using the F-

statistic with an additional requirement of a log fold change of 

1.5 or greater. The increase of the number of differentially 

expressed genes is still apparent, and there are 17 genes that 

are exponentially increasing the regulation of expression 

(either up or down) at every point from time 3 to time 30.

Fig. 1 Gene regulation at time points 6, 20 and 30 for the WT and SV40T 

lines. Differential expression is present only in the SV40T line (green).

Fig. 2 Two-way analysis confirms the exponential increase of regulation of 

genes in SV40T line.

We focused first on the set of 17 probe sets in the 

intersection. We clustered them using two-way hierarchical 

clustering (implemented in R/bioconductor) followed by the 

analysis in Expression Profiler [16]. One of our surprising 

findings was CLDN3 gene that has 5 probe sets on 430 2.0 

array and appears with 4 sets in our small list of 17.  We 

further analyzed the set of 585 genes that are differentially 

expressed at the early stages, namely weeks 6 and 20 (Fig. 2).

The goal of the project is the early identification of bladder 

cancers, thus the choice of time points (week 20 is classified 

as early stage papillary TCC). We tested several of the genes 

upregulated in SV40T urothelium, including hyaluronan 

mediated motility receptor (RHAMM), RacGAP1, PCNA and 

others as biomarkers for premalignancy, in urine samples from 

a completed chemoprevention trial.
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III. MULTIDIMENSIONAL VISUALIZATION

Data sets of four or more dimensions are harder to display 

on a two-dimensional (2D) screen, or a piece of paper. We can 

handle three or four dimensions by projecting them onto the 

2D surface. We could also use two of the dimensions as x and 

y coordinates and the other dimensions as the color, texture, 

size, shape of each record. Our perceptual ability limits us to 

five to seven dimensions that we can normally track on a 

visual display. In recent years several research efforts resulted 

in new techniques to display large multivariate data sets but 

due to the exponential data growth, we have to continue with 

the process of tool development. The first set of novel 

techniques is focused on the reduction of the data size and 

preservation of its significant features. Pixel level 

visualization schemes were proposed that permit the display of 

a large number of records and are not scalable but rather 

dependent on the size of the display area [17]. The second set 

of techniques is based on matrices [18]-[20] as one of the 

techniques first utilized to address this problem. A scatter plot

matrix, for example, shows all pairwise scatterplots, mirrored 

across the diagonal. The third set of techniques is the group of 

line-based (parallel coordinates) and point projections

(radviz). Parallel coordinates use parallel axes instead of 

perpendicular axes [21]-[22]. Radviz [23] positions 

dimensional anchors around the perimeter of a circle using 

Hooke’s law. We can measure the visual effectiveness of these 

visualizations to determine their benefits. However, no matter 

how effective a visualization, we can always identify a data set 

with a larger number of dimensions or records than can be 

displayed. Nevertheless, it is our goal to steer the reader 

towards multidimensional tools that can accommodate 

medium and larger data set exploration and aid in the visual 

knowledge discovery. These are not to replace the statistical 

and computational tools but rather complement them. We 

continue to enhance current techniques and devise new ones 

that will help us identify non-trivial patterns in the data.

A. Parallel Coordinates

The parallel coordinates [21]-[22] algorithm has been 

applied to a wide range of data analysis tasks. Parallel 

coordinates (PC) are a geometric projection visualization 

technique that represents dimensions on parallel common 

axes, arranged horizontally. Each record corresponds to a 

polyline that intersects the axes at the record’s dimensional 

values. They can display a large number of dimensions of a 

data set, but suffer from the disadvantage that the number of 

records that can be displayed is limited. Visualizing a medium 

or larger size data set usually results in over-plotting or clutter,

a featureless blob, which hides the underlying data structure. 

Several techniques have extended the original parallel 

coordinates algorithm to overcome this problem by dimension 

reordering or summarization, such as clustering, sampling and 

filtering. Regardless of their application, we can group 

existing techniques into 2D and 3D based on their topology.

A number of PC-based techniques cluster or organize the 

records first and then visualize the cluster centroids. Peng et 

al. [24] first measure the clutter and then minimize it by 

dimension ordering not only for parallel coordinates but also 

for other multidimensional visual techniques. This is 

implemented in tools such as XmdvTool [25], that allow 

manual or automatic reordering of (hierarchical dimension 

ordering), increasing and decreasing spacing between axes, 

filtering and focus+context technique DOSFA [26]. Clustering 

is applied to dimensions or to records or both. Fua et al. [27]

propose a multiresolutional view of the data using hierarchical 

clustering to records and displaying aggregate clusters as 

bands faded from an opaque centre to a transparent edge. 

Users can navigate and filter the data and select a desired 

focus region and level of detail [28]. Clustered parallel 

coordinates are also developed by Johansson et al. [29], where 

clusters and transfer functions are combined with textures to 

highlight different aspects of cluster characteristics. Siirtola 

[30] visualizes the correlation coefficients between polyline 

subsets and replaces the polylines with their average, 

introducing quick manipulation with the plots. Correlation 

between variables is plotted as a bar between the ranges, 

pointing upwards or downwards, indicating positive or 

negative correlation. Lesh and Mitzenmacher [31] propose an 

interactive data summarization where the results of an 

exhaustive search for manipulations that would change the 

summary are identified. Frequency plots [32] calculate and 

highlight the frequency regions for each dimension, a very 

useful technique for exploration of clusters but less efficient 

for the whole data structure. Using fuzzy rules Berthold and 

Hall [33] apply a similar approach and Andrienko and 

Andrienko [34] utilize envelopes and ellipse plots. These 

approaches divide each dimension’s range of values into 

frequency intervals and convey the information on 

independent variables. Envelopes or polygons are representing 

clusters in the parallel coordinate approach by Novotny [35]

combined with clusters displayed as striped textures.

Parallel coordinates are also augmented by additional 

information displays or interactive tools, such as histograms, 

frequency or density information, glyphs and coupled 

visualizations. Average shifted histograms visualize density 

plots with parallel coordinates [36]-[37] aiming to remove the 

problem of dimension’s bins or frequency intervals. This 

approach is extended by painting pixels of polylines with 

intensity proportional to the pixel’s record overlap [38]. Artero 

et al. [39] create an interactive parallel coordinates frequency 

and density plot by computing frequency and density 

information from the data and mapping data density to the 

intensity of parallel coordinate polylines. Together with the 

constraint that denser lines cannot be drawn on top of less 

dense lines, this creates a visualization in which the clusters 

can be detected. Visual data mining displays [40] use cluster 

centroids placed on top of the parallel coordinates and tracked 

statistical measures displayed as static or animated glyphs in a 

separate coordinate system. SpringView [41] explores coupled 

multiple views of radviz and parallel coordinates and applies 

brushing, color and data clustering to facilitate data 

exploration and reduce clutter. Parallel coordinates have also 

been interactively linked with star glyphs, scatter plots and 

dimensional stacking [42]-[45], among others.
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In Figure 3 we show the over-plotting or occlusion that 

occurs when we visualize the set of 585 unique TCC genes 

that are differentially expressed in SV40T line at week 6 

and/or week 20. We display all of the 15 dimensions of this 

data set and order them by first listing the SV40T lines 

followed by the WT lines. We cannot notice any significant 

differences across the dimensions, although we can detect that 

majority of the records have low to mid values. There are only 

a few records whose signal values were high. In the center of 

the display we notice a dip in the expressions, which is due to 

the switch from the SV40T dimensions to the WT dimensions

and is not a true pattern in the data set.

Fig. 3 Parallel coordinates of the 585 early changing genes of the TCC data

B. Radviz

Radial display technique places dimensional anchors 

(dimensions) around the perimeter of a circle and utilizes 

spring constants to represent relational values among points is 

the technique known as radviz (radial visualization). As shown 

in Figure 4, radviz utilizes spring constants to represent 

relational values among points. A record is represented as a 

vector ( )imi xx ,...,1  on m dimensions and its position is 

determined by the pull of the position vectors (dimensions) 

( )mSS ,...,1 .  The record in Figure 4 has m=8 dimensions ordered 

on the circle in counter-clockwise equidistant fashion. Each 

position vector points from (0,0) to the corresponding fixed 

point on the perimeter of a unit circle. The values of each 

dimension are usually normalized to a 0 to 1 range to 

eliminate any effects of the variable minimum and maximum 

values in the range. Each data point is displayed at the point 

where the sum of all spring forces equals zero and the stiffness 

of each spring is proportional to the value of the 

corresponding dimension. The point ends up at the position 

where the spring forces are in equilibrium:

( ) 0
,1

=!"
=

ij
mj

ij xuS (1)

The position of the data point depends largely on the 

arrangement of dimensions around the circle; however, data 

items with similar values are always placed close together. 

The technique has been complemented by dimension ordering 

approaches, where the dimension order is determined by the 

structure of the data or the inherent class separation [46]-

[47],[41].

Fig. 4 Example of radviz spring forces of an 8-dimensional record

One of the major disadvantages of radviz is the overlap of 

points that occurs not only when the records have identical 

values on the displayed dimensions, but also when the records 

are scaled. For example, records (1,1,1,1,1,1) and 

(10,10,10,10,10,10) would appear at the same point in the 

center of the circle (they are pulled by all dimensions equally).

Dimension ordering and placement of dimensions away from 

the radial layout minimizes this problem, but does not 

completely solve it. We developed an approach that utilizes 

the third dimension to organize the data when overlap occurs.

Fig. 5 Radviz display of the 585 early changing genes of the TCC data’s 

SV40T line

When we examine the radviz display of the SV40T line on 

the 585 early differentially expressed genes of the TCC data 

set, we noticed that majority of them are either in the center 

(pulled equally by all dimensions) or positioned towards the 

bottom of the visualization. We can conclude that the signal 

values at the 30-week time point are relatively large and that 

our genes are more likely upregulated. When we show the UP 

or DOWN regulation for the genes as the record color, we can 

confirm this.  
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C. Intrinsic Dimensionality

The goal of intrinsic dimensionality [6] is to measure how 

visualizations deal with n dimensions when displayed on the 

screen. This information guides our decision when selecting a 

visualization appropriate for a data set at hand.

One of the main issues is the point overlap, also called 

occlusion or over-plotting, and the loss of data in projection. 

Given an n-dimensional space, the intrinsic dimension (ID) of 

a visualization is the largest k for which a set of k unit vectors 

can be uniquely identified (perceived) in the visualization. We 

consider 10 and 100 unit vectors (its dimensional values are 0 

or 1) in 2D and 3D to produce scatter plots in 10- and 100-

dimensional space. The intrinsic dimension of a 2D scatter 

plot is 2 and 3D is 3. The intrinsic coordinate dimension

(ICD) of a visualization is the largest k for which the 

coordinates of any vector in that space can be uniquely 

identified in the visualization. The intrinsic coordinate 

dimension for the 2D scatter plot is 2, and for the 3D scatter 

plot it is 2 as well (the projected point may come from several 

points projecting to a line in 3D). If we drew the parallel 

coordinates plot using the 10- and 100-dimensional unit vector 

datasets, we would be able to identify 10 and 100 intrinsic 

dimensions. Each of the coordinate values can be uniquely 

identified and thus we also have a 10- and 100- dimensional 

intrinsic coordinate dimension in the parallel coordinate plot. 

The intrinsic dimension for the radviz display is 10 and 100, 

respectively. The intrinsic coordinate dimension is not 

identifiable in general, if the point is not on the boundary of 

the circle.

D. Multidimensional Visualizations Tools

Our focus is to present a few of the most powerful 

multidimensional tools from the information visualization

domain that are available in the public, non-commercial 

domain and must include at least a parallel coordinates and a 

projection display (such as radviz). We do not include the 

techniques that are static, for example, tools that work through 

a browser and do not allow the user to select or in some other 

way interact with the data. This step also excludes Matlab, R 

project and others. Selection enables the user to select and 

highlight items in the visualization(s) and we find this to be an 

important feature of a visualization tool. Navigation of the 

visual space includes focus and context techniques, allowing 

scrolling, panning, zoom, rotation, etc. We prefer to utilize

tools that provide multiple coordinated plots, where the 

selection, for example, is propagated or linked from the scatter 

plot to the parallel coordinates and other displays as this 

provides for a richer exploration environment. We focus on 

general and bioinformatics data analysis tools and exclude the 

tools that are geared specifically towards hierarchical or time-

series data.

XmdvTool [25] is an exploratory tool that provides a

brushing-and-linking concept where the data can be brushed

(in m dimensions) in one plot and it is propagated to the other 

visualizations displaying the same data set. Xmdv includes the 

implementation of hierarchical PC to overcome the difficulty 

of interpretation in large data sets in addition to scatter plots, 

star glyphs, dimensional stacking and pixel-oriented display.

Xmdv also allows the axes to be moved to different positions, 

providing an insight into additional data relationships.

Hierarchical Clustering Explorer [48] is a tool specifically 

geared towards microarray experiment data sets. It includes 

coordinated plots of parallel coordinate-like space, histograms 

and scatter plots (or projections onto the 2D space). The users 

can order records in histograms or in scatterplots, depending 

on the number of dimensions.

Orange is an open-source component-based data mining 

and visualization suite [49]. It provides several visualization 

and data mining techniques, including radviz, polyviz, parallel 

coordinates and data-driven arrangement of dimensions in 

both (based on class data). The interface provides objects that 

identify the workflow and processes the data go through (the 

user can drag and connect them on the display). Clicking on 

the object provides an interface to the settings and parameters 

and execution of the underlying functionality. The suite does 

not provide coordinated plots, but does allow linking of 

dependent activities (different visualizations, data mining 

algorithms, etc.). 

IV. SELF-ORGANIZING MAP

A. Algorithm and Extensions

Self-organizing map (SOM) is an unsupervised neural 

network that facilitates mapping of a set of n-dimensional 

vectors to a two-dimensional topographic map [7]. Training of 

the unsupervised neural network is data-driven, without a 

target condition, therefore, the output of a SOM algorithm

represents the relationships among the input vectors. It is a 

summarization technique that attempts to reduce the 

complexity of the data set by displaying clusters of the data in 

a grid. Its widespread use is attributed to its simplicity.

The learning of the SOM is the process in which we form a 

nonlinear projection of the records onto a map. The self-

organizing grid or map consists of an array of output nodes 

(neurons), each of them associated with an m-dimensional 

weight vector mi (corresponding to the m dimensions of the 

input data set). Initial values of mi may be randomly selected, 

preferably from the data set. Each record is positioned on the 

map, one by one, until the data set is exhausted. The 

assignment of weight vectors is formed in an unsupervised 

learning process, and the records are randomly drawn from the 

input distribution and presented to the network one at a time.

A record is mapped onto the SOM by calculating the 

similarity between the input vector and node i’s weight vector 

mi. Each node i receives the same input vector and produces a 

single similarity value. The input record maps onto the best-

matching (winning) node c, based on the largest similarity or 

the smallest distance (depending on the implementation). The 

weight vectors of nodes topologically close to the winning 

node (up to a certain geometric distance) adjust their weight 

vectors, “learning” something about the input. The adjustment 

depends on the size of the neighborhood, the value of the 

neighboring function and the learning function. This results in 

a local relaxation or smoothing of the neighborhood, which 
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with continued learning leads to global ordering. This process 

is repeated until the output map converges to a stable or 

organized state when the average error falls below a pre-

specified value or a certain number of iterations have been 

reached. The self-organizing process works by repeated 

refinement and progressively smaller values of the learning 

function.

Most SOMs are visualized on a rectangular display of 

output nodes, although hexagonal and irregular grids are also 

used. Numerous SOM algorithms and extensions have been 

developed in a multitude of fields, which include biomedical 

applications. Investigations include self-adaptive and 

incremental learning neural networks (SANN) that would 

replace the static topology networks [50]-[51], tree-structured 

SOM network architecture [52], alternate neural-network 

based projections [53]-[56]. Some of these approaches aim to 

determine the shape and size of the self-organizing structure 

during the learning process and are targeted towards specific 

domains. One of the seminal applications of SOMs in the 

biomedical arena was the work by Tamayo et al. [4] in which 

SOMs were used to find the classes in 828 genes of the Yeast 

cell cycle.

B. Combining SOM with Multidimensional Visualizations

1) 3D PC and 3D Radviz Algorithms

The dimensionally capable nature of multidimensional 

visualization plots results in displays of large, multi-

dimensional data sets. These techniques have their drawbacks 

(for example, a parallel coordinates plot results in unwanted 

inter-dimensional blobs of edges) and we overcome them by 

combining them with SOMs.

Fig. 6 Primary and secondary mapping steps of our 3D PC algorithm 

Original SOM algorithm only has one mapping step at 

which the output node for the record is determined. Our 

algorithms consist of the primary and secondary mapping 

steps that help us merge the SOM and multidimensional 

visualization. For the 3D parallel coordinates we first start by 

replacing the original dimensional axes by grids of output 

nodes and then proceed with a two-step mapping process (Fig. 

6). Primary mapping determines the location for a record on 

the dimensional axis, just as in the original step. The main 

difference is that instead of mapping to the value’s position on 

the axis, we map to a primary bin that has been created by the 

grid in the y dimension. The second step is secondary mapping

where the single grid cell is replaced by the single-

dimensional set of SOM output nodes to which the record can 

map. The output node is chosen based on the Euclidean 

distance between the record and the representative weight 

vectors of the output grid (Fig 6.). The neighborhood, learning 

function, repetition of this process and adjustment of 

neighboring nodes for all of the records adjusts these grids in 

three dimensions and places the records with similar 

dimensional values closer together. The neighborhood 

function works in three dimensions: y and z (grid output 

nodes) and x (horizontally) across the grids. We stop the 

process after the learning stops or after we pass a learning 

threshold.

The organization of records into the three PC dimensions 

provides a larger surface on which the records’ polylines can 

be organized, which helps remove some of the overlap, but 

does not completely eliminate it. There are cases where 

additional approaches have to be taken to deduce the structure 

of the data displayed. One of the options we provide is the 

option of bundling records. We represent the records plotted in 

a 3D PC plot mathematically in the form of Bezier curves 

(replacing polylines). This breed of curve interpolation utilizes 

a series of appropriately placed control points to guide the 

direction of the curve. When the edges are bundled, we are 

actually grouping the control points together. To set the 

number of bundles in the y and z directions, we implemented 

partitioning of the plane into a number of partitions. The 

second option we provide is force-directed record placement.

This approach utilizes weight vectors used for self-

organization along the grids. Using these weights, nodes are 

either pushed apart or pulled together, depending upon their 

similarity. 

Fig. 7 Binned radviz surface and secondary mapping into the third dimension

For the 3D radviz we first start by placing the records based 

on the original radviz algorithm. The main difference is that 

instead of positioning it in the exact position, we grid the 

radviz surface and position the record into its primary bin (Fig. 

7). The position is then augmented in the secondary mapping

step, where we build a single-dimensional SOM at each radviz 

grid cell into the third dimension. The same process is 

repeated for all of the records, adjusting the neighborhood 

based on the neighborhood function and learning functions 

and stopping after no learning takes place (or it falls below a 
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certain threshold). The neighborhood function affects the three 

dimensions (x, y, z) as all of the neighboring output nodes are 

adjusted.         

2) Application to the TCC Data Set

We show the results of our techniques on the TCC data set 

of 585 records. Figure 8 shows the binned parallel coordinates 

plot of the 585 records that are differentially expressed early 

(weeks 6 and 20). We are displaying one replicate at the 3, 6, 

20 and 30 week points (in order from left to right) of the 

SV40T line. The data is colored by the 30 week time point

(the dimension furthest to the right). If we compare it to the 

original parallel coordinates plot, it is less cluttered, as the 

records have been collapsed into the bins (10 bins were create 

for each dimension). The points appear to distribute evenly on 

each dimension. There is a lot of occlusion and the only way 

that structure like this can be explored further is by utilizing

brushing, selection, filtering and similar interaction techniques 

to explore the properties of the data set. 

Our next step was to explore the projection using the 3D 

PC, which position a grid of 10x10 output nodes at each of the 

dimensional axes (Fig. 9). We can start discovering more 

structure – not all the records that have the same dimensional 

continue to stay together in the third dimension. We can 

observe that while some of the records have higher 

dimensional values, most of them do not stay at the high value 

across all dimensions but rather project onto the low or 

medium dimensional values in majority of the dimensions.

Fig. 8 Example of binned classic parallel coordinates – 585 records of 

the SV40T set, 4 time points. Colored by week 30 values.

Fig. 9 The records shown with the SOM grids replacing dimensional

axes. Colored by week 30.

Our next step is to apply the bundling approach to the data (Figure 

10). This process separates the data into two distinct groups; one at 

the top and one at the bottom of the dimensional values. When we 

reexamine that these 585 records belong to the two groups of records 

that are differentially expressed at the 6 and/or 20 week time point, 

we could expect that this type of organization is going to occur. This 

is especially due to the small number of overlapping records (27) that 

are differentially expressed at both time points. We explore this 

visualization by using the selection, brushing and rotational tools. 

Fig. 10 Creating bundles of records that represent record clusters

The next visualization displays the bundling and force-directed 

placement of records (Figure 11). Record edges are pulled together 

whenever the output nodes contain similar weight vectors. This helps 

to further reduce the clutter and provide a cleaner set of data patterns 

to be interactively explored.  

Fig 11 Force-directed record placement and bundling of the records. 

Fig. 12 3D Radviz projection of the eight dimensions of the SV40T line, 

extending from the primary positioning of the records in radviz (Fig. 5)

We proceed by exploring the data in the 3D radviz 

visualization. We already showed the classic radviz on the 585 

record data set (Fig. 5), and the 3D radviz approach moves the 

records into the third dimension (Fig. 12). The pull is driven 

by the self-organization of the selected data - all of the eight 

dimensions of the SV40T set (a set of duplicates for each of 

the four time points). We color the records by one of the 30 

week time points, creating a color map from red (low) to blue 

(high) values. The distribution of signal values of the data is 

not uniform, and there are more values at the lower end of the 

range. The records are positioned with regards to all eight of 

their SV40T dimensions, thus placing the records with low 
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values on all of the dimensions at the “ceiling” and higher end 

of the range at the “floor.” We use the selection (brushing), 

filtering, rotation and zoom tools to interact with the data.

V. CONCLUSIONS AND FUTURE WORK

We emphasize the importance of multidimensional 

visualization tools in the knowledge discovery process of 

microarray and other life science data. We list today’s most 

powerful free public tools that provide coordinated multiple-

view visualizations. We discuss the details of two 

visualization techniques: parallel coordinates and radviz, 

which we combine with the self-organizing map projection to

showcase novel data exploration methods. We are currently 

extending the capabilities of our tools for larger data sets, 

implementing them in parallelized versions. As with all 

software packages, their thorough evaluation is an ongoing 

process and we continue our designs based on the feedback 

from life scientists that are using these techniques in their 

everyday work.
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