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Multidimensional Data Mining by Means of
Randomly Travelling Hyper-Ellipsoids

Pavel Y. Tabakov, Kevin Duffy

Abstract—The present study presents a new approach to automatic
data clustering and classification problems in large and complex
databases and, at the same time, derives specific types of explicit rules
describing each cluster. The method works well in both sparse and
dense multidimensional data spaces. The members of the data space
can be of the same nature or represent different classes. A number
of N -dimensional ellipsoids are used for enclosing the data clouds.
Due to the geometry of an ellipsoid and its free rotation in space
the detection of clusters becomes very efficient. The method is based
on genetic algorithms that are used for the optimization of location,
orientation and geometric characteristics of the hyper-ellipsoids. The
proposed approach can serve as a basis for the development of
general knowledge systems for discovering hidden knowledge and
unexpected patterns and rules in various large databases.

Keywords—Classification, clustering, data minig, genetic algo-
rithms.

I. INTRODUCTION

W ITH the advent of information and database technolo-
gies in various applications of modern business, the

need to digest large volumes of data is now crucial. Certain
predictions and data analysis are hardly possible when using
classical statistical techniques and, in these cases, data mining
is generally useful. The number of areas in which there is
a need for data mining, and where it can be usefully and
successfully applied, is growing all the time. These techniques
are used in a wide variety of applications: sales and market-
ing, insurance companies, finance, planning and scheduling,
optimization, forecasting, network and system management,
etc. Generally speaking, any technique that helps to extract
more knowledge hidden in data is useful, so data mining
incorporates such methods as query tools, statistical tech-
niques, visualization, on-line analytical processing, case-based
learning, decision trees, association rules, neural networks,
genetic algorithms, etc. The reader is referred to references [2],
[5] for further discussions on standard data mining techniques
and applications.

Probably the first recorded scientific application of data
clustering dates back to the early 1900s when astronomers
tried to understand the relationship between the luminosity
of stars and their temperatures. Astronomers Hertzsprung and
Russell plotted a two-dimensional graph with the vertical scale
representing luminosity in multiples of the brightness of our
sun and temperature on the horizontal scale. As a result three
main clusters were discovered- white dwarfs, red giants and
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the main sequence. Presently clustering is an efficient tool
to work with a large, complex data set with many variables
and intricate internal structure. Every so often clustering is
the first technique to start with, before other tools can be
applied. The most commonly used method of cluster detection
is the K-means method (see for example [11]). It has many
variations, which are simple and quite reliable. It is easy to
use when the feature vectors (members) of a data space are of
the same class or, in other words, have some kind of natural
association. There are many other clustering techniques for use
in various disciplines such as biology, geology, archeology,
geography, marketing and many others. A comprehensive
review of different clustering techniques and publications on
the subject can be found in [14].

Notwithstanding that there is a number of different cluster-
ing techniques available, the main difficulty of their application
is not to single out a cluster but rather to decipher its intrinsic
internal nature (see for example [1]). Another difficult problem
is detection of proper cluster boundaries. For example, the K-
means method does not detect boundaries well and can fail
completely in higher dimensions. The clustering technique
proposed in this paper eliminates this problem. It is very
flexible and can easily cluster the heterogeneous data in multi-
dimensional space, separating one cluster or set from another
because such clusters are in the shape of a hyper-ellipsoid
and have proper boundaries. The ability of the ellipsoid to
arbitrarily change its shape while freely rotating in the space
makes the clustering process very efficient. Among other
advantages is the ability to regulate the cluster density and
its dimension and orientation relative to the global coordinate
system, etc. However, the biggest advantage is the ability
to represent each cluster in the form of an explicit rule.
This rule can be either simple, when the boundary conditions
and coordinates of the data are presented as one logical or
fuzzy-logical expression, or compound, when the rule can
be expressed in the form of a decision tree. In some cases
the cluster can be subdivided into smaller segments, or even
clusters resulting in a set of explicit rules.

We live in a three-dimensional world and therefore the algo-
rithms for the derivation of N -dimensional rotation matrices
and the calculation of volume of the hyper-ellipsoids are not
easily found in the literature. The published material on the
subject is mostly theoretical without any practical application.
In the present paper the reader will find simple and easy
to understand algorithms for both the derivation of rotation
matrices and the calculation of N -dimensional geometrical
characteristics of an ellipsoid.

The method allows us to obtain explicit rules describing



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1396

each cluster. When new data are added to the space these rules
can also be used for analysis without re-running the whole
program. Data clustering is an optimization problem and a
genetic algorithm is used.

II. PROBLEM FORMULATION

Every entry in a database can be considered as an ordered
n-tuple (x1, x2, . . . , xn) of real numbers in dataspace �n as
the point X or vector x representing the coordinates of the
point. All the points corresponding to all the values of the
co-ordinates are said to form an n-dimensional Euclidean
space denoted by �n. Several or all of the co-ordinates may
be normalized in range to ensure a one-one correspondence
between the points in the space and the sets of co-ordinates.

In the general case �n = R1

⋃
R2

⋃
, . . . ,

⋃
Rk, where Ri

represents a region that contains the points of set i while k is
the number of sets in the space. One set represents the data
of a similar nature, in other words, all the points in the region
belong to the same class. A distinction is made between a
space occupied by only one set of data and when there are
two or more different sets in the space. In the latter case we
might want to find not only explicit rules for each cluster
but also to separate data of one set from another, i.e. solve a
classification problem.

Clustering is considered to be the task of finding such
regions which are characterized by high population density
relatively to the surrounding regions. In clustering there are no
predefined classes whereas in classification the population is
subdivided by assigning each element or record to a predefined
class.

The approach proposed here allows the performance both of
tasks, clustering and classification (data separation) as well as
the ability to combine them easily. Moreover, if necessary, it is
possible to do classification within already detected clusters.
Obviously, in this case the cluster is detected on the basis
of density or compactness and some other geometric charac-
teristics. Because of the flexibility of the method, with the
help of the obtained rules, we can determine quite accurately
the membership of any new record given once the problem of
classification is solved. For the classification problem there are
no effective methods that are efficient for arbitrary geometry to
extract rules explicitly. Artificial neural networks of different
types are used, see for example [16]. Unfortunately, extracting
explicit rules from neural networks is not simple, see for exam-
ple [13], and moreover, the number of these rules are usually
large. Another approach is the application of evolving neural
or fuzzy-neural networks, see [15]. Unfortunately, although
these will provide explicit rules, their generalization is not
good, as they are not globally optimized. One can employ
fuzzy logic systems to extract the rules, but the number of
rules will also generally be large. For example, consider the
feature vectors (points) in Fig. 1 have three components and it
should be possible to divide the whole region V into a number
of parallelepipeds where each parallelepiped contains only
data from one class. Having a complex distribution of feature
vectors will result in a large number of rules and this will also
impact on the generalization ability of these rules. Moreover,
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Fig. 1. Data distribution in a three-dimensional space

the approach is hard to implement if the space dimension is
larger than three.

In the present study genetic algorithms (GAs) are used to
construct the explicit rules for the membership recognition of
each data type. This allows us to use the proper geometry of
the solution, which cannot be easily implemented by the other
methods. In our case a tournament selection is used together
with a two-point crossover technique.

Genetic algorithms are search algorithms that simulate the
mechanics of natural genetics for artificial systems based
on natural selection, see for example [8], [10], [12]. These
methods have been derived based on Darwin’s theory of
evolution, which can be considered as a process of continuous
change from one state of an organism to another state of the
evolved organism. The state of evolved organism can be better
or worse. If the state of the organism degrades, the organism
has less chance to survive. Thus, natural selection, where the
fittest individuals have the highest probability of survival, is
the fundamental concept in GA theory.

III. CLUSTERING

Clustering can be considered as an optimization problem
where the density of points is maximized subject to some
boundary conditions. Both for clustering and data separation
(the classification problem) the same approach is used. A
geometric form (shape) that will ensure the highest possible
density of feature points in the closed volume is selected. At
the same time this geometric shape must be very flexible in
space and should be represented mathematically as simply
as possible. It is quite obvious that an ellipsoid can meet
these requirements since it can be easily adjusted by changing
the centre, orientation and dimension of its axes. This allows
for the flexible adjustment of ellipsoids to cover the desired
domain in the best way. Each such N -dimensional ellipsoid
clearly describes one cluster via its location, density and
number of enclosed points. A population of such hyper-
ellipsoids randomly searches the space and guarantees the
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Fig. 2. Ellipsoid for data clustering/classification in a three-dimensional
space

best coverage possible. Also, due to the nature of the fitness
functions, ‘the convergence’ of the algorithm is pretty fast.

With the help of genetic algorithms the optimized param-
eters of all ellipsoids–clusters in the feature space can be
obtained. For example, for the three-dimensional case, these
parameters are the co-ordinates of the centre of the ellipsoid
xe, ye, ze, the lengths of semi-axes a, b, c and the orientation
angles in the space α, β, γ (Fig. 2). As we are solving an
optimization problem we need to determine the boundary
conditions and formulate the cost function. The boundary
conditions depend on the particular problem and include such
parameters as the geometrical limitations of the ellipsoid and
density of the data cloud. If the estimation of the required
density presents some difficulties, then the data space can be
analysed with spheres of fixed preselected dimensions. This
procedure will give us a general understanding of the data
distribution in the space. Now we maximise the volume of
each ellipsoid until the density inside reaches some minimum
predetermined value.

The foundation of a GA is its population, and the efficiency
of the algorithm depends directly on how successfully the pop-
ulation is organised. Each population consists of individuals.
One or more chromosomes may be required to specify an
individual. An individual is coded by a string and the string
is formed by a number of sub-strings or chromosomes. Each
chromosome represents one optimising variable and consists
of unchanged individual structures called genes. The location
of the gene within the chromosome determines one particular
characteristic. The initial population is generated using a
random operator. A generation (or population) as an array
of type individual is created. Using pseudo–code the type
individual can be presented as a structure as follows:

Struct individual{
int chromosome[];
float VolumeFitness;
float DensityFitness;
float ParameterSet[];
int BegXSite,

EndXSite;//crossover points

int IsPointIn;
};

individual OldPopulation[PopSize],
SubPopulation[PopSize],
Newpopulation[PopSize];

Here the array chromosome is a binary string representing one
individual and the individual represents one rule.

The standard equation of a second order hyper-surface in
Euclidean space can be represented as

λ1x
2
1 + λ2x

2
2 + . . .+ λnx

2
n = H (1)

where λ1, . . . , λn are characteristic roots. If λ1, . . . , λn and
H are all of the same sign, then such a hyper-surface is called
an N -dimensional ellipsoid or (for n > 3) hyper-ellipsoid and
its equation can be rewritten in terms of the semi-axes ai as

x2
1

a21
+

x2
2

a22
+ . . .+

x2
n

a2n
= 1 (2)

In the special case when a1 = a2 = . . . = an = a the surface
is called a hyper-sphere.

We define the density fitness for one ellipsoid-rule as
follows:

fd =
pin
Ve

(3)

where pin is the number of feature points within the ellipsoid
and Ve is the volume of the (hyper-)ellipsoid. In general, the
volume can be represented as

Ve = ξn

n∏

i=1

ai (4)

The coefficients ξ1, . . . , ξn, depend on the space dimensiona-
lity, can be calculated with the help of the gamma function:

Γ(μ) =

∫ ∞

0

xμ−1e−xdx and ξn =

√
πn

Γ
(
n+2
2

) (5)

Integrating by parts, the value of the gamma function can be
easily determined as

Γ
(μ

2

)
=

(μ

2
− 1

)
! (6)

if μ is even, otherwise, taking into account that Γ
(
1
2

)
=

√
π

and Γ(μ+ 1) = μ! the recursion formula should be used:

Γ(μ) = (μ− 1)Γ(μ− 1) (7)

By doing this the volume of the N -dimensional hyper-ellipsoid
or hyper-sphere can easily be calculated. Thus, ξ2 = π, ξ3 =
(4/3)π, ξ4 = (1/2)π2, ξ5 = (8/15)π2 and so on.

The selection operation of the genetic algorithm is based
on the density of the cluster, but only after the volume of
the ellipsoid is optimized. However, for classification this is
not as important, which will be shown later. The algorithm
to calculate the number of points inside the ellipsoid is as
follows:

a) Determine the local co-ordinate system of the ellipsoid.
Let x1, x2, . . . , xn and x̄1, x̄2, . . . , x̄n be the coordinates of
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the feature point in the global and local coordinate systems,
respectively:

xi =

n∑

k=1

tikx̄k, (i = 1, 2, . . . , n) (8)

The above formula determines the transformation from one
basis to another. The matrix

T = ||tik||n1 (9)

is called the matrix of the coordinate transformation and the
inverse transformation can be written as

x̄ = T−1x (10)

Anyone interested in more detail on the subject is referred to
[9].

While two- and three-dimensional rotation matrices are
well described in the literature, higher dimensions are not
considered often and mostly analyzed only from a theoretical
point of view. The theory involved is very complex and
difficult to understand. Nevertheless, there are real applications
of multidimensional spaces, for example in such fields as
chemistry and physics, and more recently in data mining. Next,
without going into theoretical details, we shall show how easy
an N -dimensional rotation matrices can be derived, though the
interpretation of them might not be as easy.

Every linear homogeneous transformation of N -
dimensional Euclidean space can be obtained by carrying out
a succession of rotations in any order [9]. In three-dimensional
space, rotations at angles θ1, θ2 and θ3 about the x1, x2, x3

axes in a clockwise direction when looking towards the origin
produce the following matrices (trigonometric functions sin
and cos abbreviated to s and c, respectively):

T (3)
x1

(θ1) =

∣
∣
∣
∣
∣
∣

1 0 0
0 c s
0 −s c

∣
∣
∣
∣
∣
∣
; T (3)

x2
(θ2) =

∣
∣
∣
∣
∣
∣

c 0 s
0 1 0

−s 0 c

∣
∣
∣
∣
∣
∣

T (3)
x3

(θ3) =

∣
∣
∣
∣
∣
∣

c s 0
−s c 0
0 0 1

∣
∣
∣
∣
∣
∣

(11)

It is obvious that with the rotation of only one axis the rest of
the axes change their position. In the case of three dimensions
two axes simultaneously change their position and this is
why the two-dimensional rotation matrix is embedded here.
This approach is used for higher dimensions, - the three-
dimensional matrix is embedded in every four-dimensional
matrix, the four-dimensional matrix is used for the derivation
of the five-dimensional, and so on.

The composite rotation matrix T (3) can now be calculated
as a product of the above three matrices, and thus a new co-
ordinate system can be obtained:

T (3) = T (3)
x1

× T (3)
x2

× T (3)
x3

=

∣
∣
∣
∣
∣
∣

t11 t12 t13
t21 t22 t23
t31 t32 t33

∣
∣
∣
∣
∣
∣

(12)

Now we extend the three-dimensional rotation to the four-
dimensional rotation by adding unity as a diagonal element:

T (4)
x1

(θ1) =

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 t11 t12 t13
0 t21 t22 t23
0 t31 t32 t33

∣
∣
∣
∣
∣
∣
∣
∣

T (4)
x2

(θ2) =

∣
∣
∣
∣
∣
∣
∣
∣

t11 0 t12 t13
0 1 0 0
t21 0 t22 t23
t31 0 t32 t33

∣
∣
∣
∣
∣
∣
∣
∣

(13)

T (4)
x3

(θ3) =

∣
∣
∣
∣
∣
∣
∣
∣

t11 t12 0 t13
t21 t22 0 t23
0 0 1 0
t31 t32 0 t33

∣
∣
∣
∣
∣
∣
∣
∣

T (4)
x4

(θ4) =

∣
∣
∣
∣
∣
∣
∣
∣

t11 t12 t13 0
t21 t22 t23 0
t31 t32 t33 0
0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

Furthermore, the four-dimensional rotation matrix can be
obtained as a product of the above four matrices T (4) =

T
(4)
x1 × T

(4)
x2 × T

(4)
x3 × T

(4)
x4 , or for any dimension n we can

write

T (n) =

n∏

i=1

T (n)
xi

(θ
(n)
i ) (14)

The rotation matrix T is a special orthogonal matrix that
possess some specific properties and the most important are
the following:
1)TTT = I , where I is the identity matrix;
2) DetT = 1;
3) the sum of squares of the elements in any row or columns
equals 1;
4) the dot product of any pair of rows or any pair of columns
is 0.

It should be realized that as the dimensionality of the space
increases the rotation matrices become very complicated to
comprehend, although relatively easy to compute. In this case
only a linear transformation of the co-ordinates might be used,
and though not so flexible, will do the job. Alternatively, a set
of N -dimensional spheres can be used instead, if a high ac-
curacy is not required. These simplifications also considerably
reduce the length of the chromosome string and thus make the
calculations much faster.

b) calculate the position of the point as

pos =
n∑

i=1

x̄2
i

a2i
(15)

If pos ≤ 1, then the point is within the ellipsoid.

IV. CLASSIFICATION PROBLEM

Let us consider the N -dimensional space described above
one more time. Our goal is to find explicit rules that separate
different sets of data in the space. In the simplest case we
might want to separate two different sets of data. Let R1

and R2 represent regions that contain the points of the first
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and second group, respectively, then �n = R1

⋃
R2. In the

general case the space �n can be divided into three non-
overlapping subspaces �1, �2 and �3 (�n =

⋃3
i=1 �i) where

�1 ⊆ R1, �2 ⊆ R2 and �3 ∈ (R1

⋂
R2). In the case

when �1 �= 0 then, in principle, only one rule is sufficient
to cover all feature vectors from �1. However, the geometry
of the distribution of the feature vectors constrains the efficient
analytical formulation of such a rule. This geometry and
convenience of available analytic descriptions of the region
�1 will determine the number of rules necessary to cover it.
An analogous situation is when �2 �= 0. The problem we face
is how to obtain as few as possible explicit (and hopefully
simple) rules using known or training sets of feature points.
Employing these rules we could determine the membership
of any new feature point given. It is obvious that the main
difficulty here is the subspace �3 where the “overlapping” of
class domains occurs.

The implementation of the genetic algorithm is slightly
different to the clustering problem. The specific feature of it
is the simultaneous use of two fitness values, real and integer.
The former one is used only for the selection procedure and the
latter one for the rest of the calculations. We are not required
anymore to evaluate the cluster density. For every ellipsoid-
rule we define the normalized fitness as follows:

fn =
PR1 − PR2

PR1 + PR2

(16)

where PR1 is the number of points from set R1 contained
within the ellipsoid, while PR2 is the number of points from
set R2 in the ellipsoid. In the case of more than two different
sets in the space, PR2 will represent the number of all un-
wanted points in the ellipsoid. Nevertheless, we are interested
only in those individuals that do not have any unwanted points
enclosed in the ellipsoid, and for this purpose we use an integer
value of fitness. This fitness is equal to the number of points
from the desired set in the ellipsoid providing that there are
no points from any other set inside the ellipsoid. This fitness
is used and optimized throughout the algorithm except in the
selection procedure. The above approach makes the selection
process and the overall performance of the algorithm more
effective.

V. NUMERICAL RESULTS

The proposed technique was used for discovery of specific
types of rules related to detection and extraction of explicit
potentially biologically active DNA motifs from nucleotide
databases. The detailed description and discussion of both
the problem and obtained results can be found in [18]. The
characteristic of these rules is that they represent a relation of
the strength of signals of two motifs and their mutual distance.
In the particular case the rules govern the relationship of the
TATA–box motifs in eukaryots, the signal that relates to the
[−40,+11] region relative to the transcription start site TSS
of eukaryotic promoters, and the distance of the TATA motifs
and TSS.

It is necessary to stress that recognition of the eukaryotic
promoters and thus TSS is an extremely difficult problem
which is not yet fully solved, partly because of incomplete

biological knowledge as well as highly intricate structure of
available databases [7], [17].

The total number of feature vectors used is 618 from set R1

and 1758 from set R2 and were taken from [6]. However, only
75% randomly chosen feature vectors from each set were used
for the rule extraction (training sets), while the rest were used
for the verification of the rules (test sets). Using 10 obtained
rules with the largest coverage one can achieve about 63.3%
correct recognition and 0.9% false recognition on the training
set. In order to prevent the proliferation of rules that cover
only single examples, for which it is reasonable to expect
that they will not generalize properly, the total number of
extracted rules was limited to 75. Applying all 75 rules to
the training sets we obtained 89.56% correct recognition and
0.61% false recognition. Then these rules were applied to to
the test sets where 77.21% correct and 1.12% false recognition
was achieved. When all 75 rules were applied to to the original
full sets R1 and R2, we obtained 86.4% correct recognition
and 0.74% false recognition.

It is difficult to compare these results with those obtained
by other researchers mainly because different researchers used
different training and test sets, different criteria to discern
when the reported prediction by the program indicates a
correct promoter and generally, a different methodology for
assessing prediction accuracy. Nevertheless, in order to give a
rough idea about the accuracy of the proposed rule-extracted
system in relation to the reported results of some other
promoter prediction programs, we compared our results with a
great number of those available in the literature, related to the
same TATA–box motif. Despite considerable effort to find an
effective computational tool most of available results are lack
accuracy. The highest accuracy found for a similar problem
is 77% in the training set was reported in [3]. To appreciate
a complexity of this problem as well as find the discussion
on various techniques available and their performance see, for
example, [4], [19].

VI. CONCLUSION

Automatic data clustering is an effective tool to manage
large and complex databases with many variables and intricate
internal structure. While other techniques are often necessary
for a full analysis it is usually efficient to start by clustering
the data. Often there is a need to classify the data as well
and this can be done independently or in combination with
the clustering. The method proposed here can be useful in
extracting explicit rules for both data clustering and clas-
sification in various large complex databases. As with any
method, its efficiency depends on the database considered.
The proposed approach is expected to be very efficient since
it involves a specific geometry of optimization set up for the
specific density of clusters and maximum possible volumes
of the ellipsoids. This clustering approach has been used
successfully by others [14] but the significance of this paper
is the extension of this approach to higher dimensions with an
easily implemented mathematical formalism.

For classification the aim is to minimize the number of rules
that allow maximal separation of different classes of feature
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vectors (points). Each rule is represented by a specific N -
dimensional ellipsoid in the feature (data) space.

The advantage of the method proposed here is its ability to
work in multidimensional data spaces as well as to separate
different data classes, even if the distribution of the data is
highly complex.
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[18] P.Y. Tabakov and V.B. Bajić, “Genetic Algorithms and Extraction of
Rules for Detection of Short DNA Motifs”, Int. Journal of Computers,
Systems and Signals, vol. 1, no. 1, pp. 106-117, 2000.

[19] Xiaowo Wang, Zhenyu Xuan, Xiaoyue Zhao, Yanda Li and Michael
Q. Zhang, “ High-resolution human core-promoter prediction with
CoreBoost HM”, Genome Research, vol.19, pp. 266-275, 2009.


