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Abstract—Because of importance of energy, optimization of 
power generation systems is necessary. Gas turbine cycles are 
suitable manner for fast power generation, but their efficiency is 
partly low. In order to achieving higher efficiencies, some 
propositions are preferred such as recovery of heat from exhaust 
gases in a regenerator, utilization of intercooler in a multistage 
compressor, steam injection to combustion chamber and etc. 
However thermodynamic optimization of gas turbine cycle, even 
with above components, is necessary. In this article multi-objective 
genetic algorithms are employed for Pareto approach optimization of 
Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multi-
objective optimization a number of conflicting objective functions 
are to be optimized simultaneously. The important objective 
functions that have been considered for optimization are entropy 
generation of RIGT cycle (Ns) derives using Exergy Analysis and 
Gouy-Stodola theorem, thermal efficiency and the net output power 
of RIGT Cycle. These objectives are usually conflicting with each 
other. The design variables consist of thermodynamic parameters 
such as compressor pressure ratio (Rp), excess air in combustion 
(EA), turbine inlet temperature (TIT) and inlet air temperature (T0). 
At the first stage single objective optimization has been investigated 
and the method of Non-dominated Sorting Genetic Algorithm 
(NSGA-II) has been used for multi-objective optimization. 
Optimization procedures are performed for two and three objective 
functions and the results are compared for RIGT Cycle. In order to 
investigate the optimal thermodynamic behavior of two objectives, 
different set, each including two objectives of output parameters, are 
considered individually. For each set Pareto front are depicted. The 
sets of selected decision variables based on this Pareto front, will 
cause the best possible combination of corresponding objective 
functions. There is no superiority for the points on the Pareto front 
figure, but they are superior to any other point. In the case of  three  
objective  optimization  the results  are given in tables.. 
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Parameters, Optimization, Genetic Algorithm, Multi-Objective. 

I. INTRODUCTION 
N most real-world problems, several goals must be satisfied 

simultaneously in order to obtain an optimal solution. The 
multiple objectives are typically conflicting and no 
commensurable, and must be satisfied simultaneously. For 
example, we might want to be able to maximize the output 
shaft power of a Turbo shaft engine while minimizing the fuel 
consumption. Actually, multi-objective optimization is very 
different than the single-objective optimization. In single 
objective optimization, one attempts to obtain the best design 
or decision, which usually the global minimum or the global 
maximum depending on the optimization problem is that of 
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minimization or maximization. In multiple objective 
optimization, there may not exist one solution which is best 
(global minimum or maximum) with respect to all objectives. 
In multi-objective optimization problem, there exist a set of 
solutions which are superior to the rest of solution in the 
search space when all objectives are considered but are 
inferior to other solution in the space in one or more 
objectives. These solutions are known as Pareto-optimal 
solutions or no dominated solutions. Since none of the 
solution in the no dominated set is absolutely better than any 
other, any one of them is an acceptable solution [1]. 

      There are many methods to solve multi-objective 
problems. In this paper we use the Non-dominated Sorting 
Genetic Algorithm (NSGA-II). NSGA-II proposed in Srinivas 
and Deb [2]. In this paper, an optimal set of design variables 
in a gas turbine power plant, namely, compressor pressure 
ratio (Rp), excess air in combustion(EA), turbine inlet 
temperature (TIT or T6),and inlet air temperature(T0) are used 
by Pareto approach to multi objective optimization. Our 
considerable objective functions are net output power of cycle 
(Wnet), cycle thermal efficiency ( T) and cycle entropy 
generation (Ns). our goal is to optimize  this objective 
functions, with regarding suitable practical constraints, using 
NSGA-II. Procedure for Paper Submission 

II.MULTI-OBJECTIVE OPTIMIZATION 

Multi-objective optimization, which is also called 
multicriteria optimization or vector optimization, has been 
defined as finding a vector of decision variables satisfying 
constraints to give acceptable values to all objective functions 
[3,4]. In general, it can be mathematically defined as: 

 find the vector 
* * * *

1 2[ , ,..., ]TnX x x x to optimize: 

1 2( ) [ ( ), ( ),..., ( )] (1)T
kF X f x f x f x
Subject to m inequality constraints 

( ) 0, 1,..., (2)ig X i m
and p equality constraints 

( ) 0, 1,..., (3)jh X i p

Where 
* nX  is the vector of decision or design variables, 

and ( ) kF X  is the vector of objective functions, which  
must each be either minimized or maximized. However, 
without loss of generality, it is assumed that all objective 
functions are to be minimized. Such multi-objective 
minimization based on Pareto approach can be conducted 
using some definitions: 
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- Definition of Pareto dominance 

     A vector 1 2[ , ,..., ] k
kU u u u  is dominant to vector    

1 2[ , ,..., ] k
kV v v v  (denoted byU V ) if and only 

if 1,2,..., , 1,2,..., :i i j ji k u v j k u v . In 

other words, there is at least one ju  which is smaller than 

jv whilst the remaining 
,u s  is either smaller or equal to 

corresponding
,v s .

- Definition of Pareto optimality 

     A point 
*X (  is a feasible region in 

n

satisfying Equations (2) and (3)) is said to be Pareto optimal 
(minimal) with respect to all X  if and only if 

*( ) ( )F X F X  . Alternatively, it can be readily restated 

as 1,2,...,i k , X {
*X }

*( ) ( )i if X f X *1,2,..., : ( ) ( )i ij k f X f X  . In 

other words, the solution 
*X is said to be Pareto optimal 

(minimal) if no other solution can be found to dominate
*X

using the definition of Pareto dominance. 

-Definition of a Pareto set 
     For a given MOP, a Pareto set *  is a set in the decision 

variable space consisting of all the Pareto optimal vectors 
* X : ( ) ( )X F X F X

. In other words, 
there is no other X as a vector of decision variables in 
that dominates any *X .

- Definition of a Pareto front 
     For a given MOP, the Pareto front *f is a set of vector 

of objective functions which are obtained using the vectors of                     
decision variables in the Pareto set * , that is 

* *
1 2( ( ), ( ),..., ( )) :kf f X f X f X X . In other words, the 

Pareto front *f  is a set of the vectors of objective functions 
mapped from * .

Different algorithms have been widely used for multi 
objective optimization because of their natural properties 
suited for these types of problems. The NSGA-II is one of 
these algorithms. In order to show this algorithm more clearly, 
some basics of NSGA-II are represented. In Fig. 1 
demonstrated now selects individuals from the entire 
population Rt to construct the next parent population Rt+1. 
The entire population Rt is simply the current parent 
population Pt plus its offspring population Qt which is created 
from the parent population Pt by using usual genetic 
operators. The selection is based on non-dominated sorting 
procedure which is used to classify the entire population Rt 

according to increasing order of dominance [1]. 

Fig. 1 Basics of NSGA-II procedure [1] 

Thus, the best Pareto fronts from the top of the sorted list is 
chosen to create the new parent population Pt+1 which is half 
the size of the entire population Rt. So, it should be noted that 
all the individuals of a certain front cannot be modified in the 
new parent population because of space, as shown in Figure. 
1. To choose an exact number of individuals of that particular 
front, a crowded comparison operator is used in NSGA-II to 
find the best solutions to complete the new parent population. 
The crowded comparison procedure is based on density 
estimation of solutions surrounding a particular solution in a 
population or front. So, the solutions of a Pareto front are first 
sorted in each objective direction in the ascending order of 
that objective value. The crowding distance is then assigned 
equal to the half of the perimeter of the enclosing hyper box. 
Other objectives are sorted too and the overall crowding 
distance is calculated as the sum of the crowding distances 
from all objectives. The less crowded non-dominated 
individuals of that particular Pareto front are then selected to 
fill the new parent population. It is important to know that in a 
two-objective Pareto optimization, if the solutions of a Pareto 
front are sorted in a decreasing order of importance to one 
objective, these solutions are then automatically ordered in an 
increasing order of importance to the second objective. In 
other words, the hyper-boxes surrounding an individual 
solution remain unchanged in the objective-wise sorting 
procedure of the crowding distance of NSGA-II in the two-
objective Pareto optimization problem. However, in multi-
objective Pareto optimization problem with more than two 
objectives, such sorting procedure of individuals based on 
each objective in this algorithm will cause different enclosing 
hyper boxes. Therefore, the overall crowding distance of an 
individual computed in this way may not exactly reflect the 
true measure of diversity or crowding property for the multi-
objective Pareto optimization problems with more than two 
objectives. 
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III.THE GAS TURBINE POWER PLANT 
A schematic of RISIGT cycle is given in figure1. The 

system consists of a two-stage intercooled air compress or, a 
regenerator, a combustion chamber and a gas turbine. 

Fig. 2   RISIGT cycle [5] 

The incoming air has a pressure of 1.013 bars. Turbine and 
compressor have an isentropic efficiency of 87 and 85 percent, 
respectively. The regenerative heat exchanger has an 
effectiveness of 75%. Combustion chamber adiabatic 
efficiency is 98%.the pressure drop through the air preheater 
is 4% of the inlet pressure for both flow streams and through 
the combustion chamber is 3% of the inlet pressure. It is 2% 
for intercooler. The fuel (natural gas, type C, C1.5H5), is 
injected at environment temperature and pressure slightly 
more than environment pressure. In our cycle, overall 
compressor pressure ratio is Rp = P4/P1 and for each stage, 
pressure ratios are RP1 and RP2, respectively. 

Temperature of hot air exiting from first stage reduces to 
compressor inlet air temperature, due to heat extraction in 
intercooler. We know that for two-stage compressor, 
minimum work consumption occurs when two pressure ratios 
are equal .So pressure ratio can be written as: 

5.0

112 d
R

RR p
pp                                                      (4) 

IV. ASSUMPTIONS

Our assumptions are:  
a) Air, combustion product and gaseous fuel are ideal gas 

with temperature dependent Cp =  CP (T).  
b) Fuel is natural gas with C1.5H5 chemical formula. 
c) Pressure drops in regenerator, intercooler and 

combustion chamber are considered. 
d) Compressor and turbine isentropic efficiencies and 

regenerator effectiveness are c , t and  , respectively.  
e) Combustion chamber is not adiabatic, and combustion 

efficiency is b
f) Gaseous fuel injected to combustion chamber at its 

incoming flow temperature and pressure.  
g) our optimization criterion is minimizing entropy 

generation and maximizing cycle output power and 
thermodynamic efficiency.  

h) we use Gouy-Stodola theorem to achieve entropy 
generation in cycle. 

V. OPTIMIZATION PROBLEM
Our goal, as mentioned before, is to  

Minimize     Ns     (Rp, TIT, EA, T0) 
Maximize            (Rp, TIT, EA, T0) 
Maximize    Wnet  (Rp, TIT,EA,T0) 
Simultaneously. 

VI. CONSTRAINTS

In each engineering problem, some constraints are exerted 
on problem from environment, processes and available 
sources, which must be considered because of acceptance of 
results. This limitations call Constraint functions or 
Constraints. They show relation between design variables and 
constant parameters. These relations write in equal or 
nonequal and linear or nonlinear form. In our study, according 
to selection of Rp, TIT,EA,T0 as design parameters, suitable 
practical constraints must exert on objective function. These 
constraints are selected regarding to responsible references 
and sources. Our linear constraints are: 

• Compression ratios between 3 to 15 are used at modern 
gas turbine cycles. Higher amount of this parameter is used 
for propulsive gas turbine cycles. In common power stations, 
compression ratio is bounded between 11 to 16. So, for 
considering wide range of compression ratios, we select it as 
follow: 1  rp  50  

• Constraint of maximum temperature of cycle, is 
metallurgical nor thermodynamically. Presently maximum 
turbine inlet temperature is about 1250 to 1340 0C. In modern 
gas turbine cycles, this temperature is about 1500 0C 
.Therefore: 

1000  TIT  1700 K  
• Selected domain for excess air is according to reference 

[6] is: 1  EA  4  
• For inlet air temperature, according to climatic conditions, 

we have: 263  T0  323 K   
This objective function is limited with two nonlinear 

constraints, too. First, in order to ease in natural displacement 
of exhaust gases (produced in combustion process) in stacks 
due to inequality of densities, and ecological considerations, 
we have [7]: Exh (Non Lin. Fun. of Des Par).  T0(23) Also, 
because of presence of some compositions such as Nitrogen, 
Sulfur and etc in combustion productions, and for avoiding 
formation of corrosive materials such as sulfuric acid, nitric 
acid, etc, we must restrain formation of water drops in cycle 
exhaust. For this purpose we consider this constraint as [8, 9]: 
Exh (Non Lin. Fun. of Des Par).  Tdewpoint which T 
dewpoint is the dew point of combustion products. Finally, 
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according to these constraints, desired nonlinear objective 
function is optimized using genetic algorithm in MATLAB. 
Results are shown in form of diagrams and tables. 

VII. RESULTS 

The results of the single-objective optimizations are 
summarized in Table 1. 

TABLE  I 
VALUES OF DECISION VARIABLES AND OBJECTIVE FUNCTIONS

NS = 0.0683 

RP = 36.7464 

T0 = 263.0094 

T6 = 1700 

EA = 4 

Wnet = 723.0595 

RP = 49.6249 

T0 = 263.05325 

T6 = 1699.2 

EA = 1.0029 

T = 47.47 % 

RP = 36.1870 

T0 = 263.0074 

T6 = 1699.5 

EA = 1.003 

      Some Pareto fronts of each pair of two objectives have 
been shown through Figures 3-5. 
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Fig. 3 Pareto front of net power output and entropy generation in 2-
objective optimization.

Figure 3 demonstrates changes of dimensionless entropy 
generation (Ns) with net power output. According to this 
figure, the result curve (Wnet vs Ns) is nearly linear and 
depending on the problem, designer selects an optimum point. 
Maximum and minimum amount of Ns and Wnet are (0.0707, 
7.675) and (608.1, 723.5), respectively, which satisfies single 
objective optimization. 
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Fig. 4 Pareto front of thermal efficiency and entropy generation in 2-
objective optimization. 

Changes in entropy generation with thermal efficiency are 
shown in figure 4. According to this figure, due to increase in 
Ns, thermal efficiency has a few changes. So, the first points 
are the best for design. As it shown in figures 3 and 4, if cycle 
entropy generation was important, it's not prefer to use A and 
more. Objective functions in this point are 0.71, 622.5, and 
45.91, respectively for cycle entropy generation, net power 
output and thermal efficiency. 
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Fig. 5 Pareto front of thermal efficiency and net power output in 2-
objective optimization 
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Figure. 5 shows variation of thermal efficiency and net 
power output. Interval variations are (47.31, 47.46) and 
(7140.4, 725.1) for thermal efficiency and net power output, 
respectively.  
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Fig. 6 Pareto front of thermal efficiency, net power output and 
entropy generation in 3-objective optimization 

Figure 6 shows changes in entropy generation, net power 
output and thermal efficiency, which are optimized 
simultaneously. Change interval for entropy generation, net 
power output and thermal efficiency are (0.0731, 7.8061), 
(595.0422, 724.6081), (45.1607, 47.45), respectively. Point A 
is preferred as a best point for design. Our constraints are: 

TABLE  II
VALUES OF DECISION VARIABLES FOR THREE OBJECTIVE OPTIMIZATION

28.443 < RP < 49.927 263.063 < T0 < 264.059 

1698.5 < T6 < 1700 1.0014 < EA < 4 
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Fig. 7  Pareto front of net power output and entropy generation in 2-
objective optimization
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Fig. 8 Pareto front of thermal efficiency and net power output in 2-
objective optimization 

In figures 7 and 8, results from optimization with 2 and 3 
objective functions are compared with together. In figure 7, 
objective functions are net power output and entropy 
generation. In figure 8, these are net power output and thermal 
efficiency. According to these figures, we can satisfy the 
results optimization of three objective function conditions. 
Also, as it shown, results of two objective function problems 
are the boundary of three objective function optimization. 

VIII. CONCLUSION
The work presented in this paper provided a provided a 

multi objective GA (non-dominated sorting genetic algorithm, 
NSGAII) to obtain pareto based optimization of the 
performance of a Brayton Cycle. Applying the exergy analysis 
and Goua-Stodola theorem, three objective functions, namely 
entropy generation of RIGT cycle (Ns), thermal efficiency and 
the net output   power were determined in terms of four design 
variables (Compressor pressure ratio, Excess air  in 
combustion, turbine inlet temperature and inlet air 
temperature). Simultaneous optimization of three outputs 
revealed some interesting features among optimal objective 
functions and decision variables involved in the 
thermodynamic cycle of proposed system that would have not 
been obtained without the use of a multi-objective 
optimization approach. It was also demonstrated that two 
extreme points in the pareto included those of single objective 
optimization results. Further it has been shown that the results 
of three objective optimization include those of two objective 
optimization in terms of  pareto frontiers and provide 
consequently more choices for optimal design. 
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