
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:5, 2020

219

Multi-Objective Optimal Design of a Cascade
Control System for a Class of Underactuated

Mechanical Systems
Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract—This paper presents a multi-objective optimal design of
a cascade control system for an underactuated mechanical system.
Cascade control structures usually include two control algorithms
(inner and outer). To design such a control system properly, the
following conflicting objectives should be considered at the same
time: 1) the inner closed-loop control must be faster than the outer
one, 2) the inner loop should fast reject any disturbance and prevent
it from propagating to the outer loop, 3) the controlled system
should be insensitive to measurement noise, and 4) the controlled
system should be driven by optimal energy. Such a control problem
can be formulated as a multi-objective optimization problem such
that the optimal trade-offs among these design goals are found.
To authors best knowledge, such a problem has not been studied
in multi-objective settings so far. In this work, an underactuated
mechanical system consisting of a rotary servo motor and a ball
and beam is used for the computer simulations, the setup parameters
of the inner and outer control systems are tuned by NSGA-II
(Non-dominated Sorting Genetic Algorithm), and the dominancy
concept is used to find the optimal design points. The solution of
this problem is not a single optimal cascade control, but rather a set
of optimal cascade controllers (called Pareto set) which represent the
optimal trade-offs among the selected design criteria. The function
evaluation of the Pareto set is called the Pareto front. The solution
set is introduced to the decision-maker who can choose any point
to implement. The simulation results in terms of Pareto front and
time responses to external signals show the competing nature among
the design objectives. The presented study may become the basis for
multi-objective optimal design of multi-loop control systems.

Keywords—Cascade control, multi-loop control systems,
multi-objective optimization, optimal control.

I. INTRODUCTION

CASCADE control techniques improve significantly,

in some applications, the performance of feedback

controllers. Unlike single feedback control loops, cascade

control strategies can act quickly to prevent external

excitations from propagating through the process and making

the controlled variable deviate from its desired level [1].

This important benefit has made these control methods very

attractive to many applications such as chemical process

industries and mechanical systems. However, the performance

of the cascade control systems largely relays on the tuning

of the setup parameters of both inner and outer loops [2].

Moreover, the tuning process should often satisfy multiple

and often conflicting objectives. One of the main objectives

in designing cascade controllers is to make the inner loop fast

and responsive to minimize the effect of upsets on the primary
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controlled variable [1]. Other objectives such as robustness

against unavoidable measurements’ noise and energy-saving

are also of high importance.
Cascade controllers have been in focus for a long time. For

instance, in [2] a PID-based inner and outer control loops were

designed and tuned by Maclaurin series and compared with

those obtained by frequency and ITAE (integral-time-absolute

error) methods. Also, in [3], a two-degree-of-freedom PID

controller was designed to ensure the stability of cascade

control. The outer loop gains were designed to automatically

adjust their values when the inner loop controller changes.

Nonlinear cascade controllers have been also found in

the literature. For instance, an inner static and dynamic

sliding-mode controls were designed in [4] and tested on

a ball-beam system using both simplified and complete

mathematical models of the system. Therein, the authors

indicated that an outer loop linear controller can be

implemented to further improve the stability of the system.
In this work, we discuss the design of optimal

cascade controllers exploiting the concept of Multi-objective

Optimization (MOP). This method allows us to optimize the

design objectives simultaneously. The design problem is 4×4,

four objectives and four design parameters. Details about the

MOP can be found in Section II. Section III introduces the

general structure of a two-level cascade control system. A

numerical example of a ball-beam system is presented in

Section IV. The multi-objective control problem is formulated

in Section V. The optimization results are discussed in Section

VI. Section VII is dedicated to concluding marks.

II. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization problems (MOPs) have

received much attention recently because of their enormous

applications. A MOP can be stated as:

min
k∈Q

{F(k)}, (1)

where F is the map that consists of the objective functions

fi : Q → R1 under consideration.

F : Q → Rk, F(k) = [f1(k), . . . , fk(k)]. (2)

k ∈ Q is a q-dimensional vector of design parameters. The

domain Q ⊂ Rq can, in general, be expressed by inequality

and equality constraints:

Q = {k ∈ Rq | gi(k) ≤ 0, i = 1, . . . , l,
and hj(k) = 0, j = 1, . . . ,m}. (3)
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where there are l inequality and m equality constraints.

The solution of MOPs forms a set known as the Pareto set

and the corresponding set of the objective values is called the

Pareto front. The dominancy concept [5] is used to find the

optimal solution. The MOPs are solved using multi-objective

optimization algorithms. These methods can be classified

into scalarization, Pareto, and non-scalarization non-Pareto

methods [6].

The scalarization methods such as the weighted sum,

goal attainment, and lexicographic approach require a

transformation of the MOP into a single optimization

problem (SOP [5]), normally by using coefficients, exponents,

constraint limits, etc.; and then methods for single-objective

optimization are utilized to search for a single solution.

Computationally, these methods find a unique solution

efficiently and converge quickly. However, these methods

cannot discover the global Pareto solution for non-convex

problems. Also, it is not always obvious for the designer to

know how to choose the weighting factors for the scalarization

[7].

Unlike the scalarization methods, the Pareto methods

do not aggregate the elements of the objectives into a

single fitness function. They keep the objectives separate

all the time during the optimization process. Therefore,

they can handle all conflicting design criteria independently,

and compromise them simultaneously. The Pareto methods

provide the decision-maker with a set of solutions such

that every solution in the set expresses a different trade-off

among the functions in the objective space. Then, the

decision-maker can select any point from this set. Compared

to the scalarization approaches, the Pareto methods can

successfully find the optimal or near-optimal solution set,

but they are computationally more expensive. Examples of

algorithms that fall under this category are the MOGA

(Multiple Objective Genetic Algorithm), PSO (Particle

Swarm Optimization), NSGA-II (Non-dominated Sorting

Genetic Algorithm), SPEA2 (Strength Pareto Evolutionary

Algorithm), and NPGA-II (Niched Pareto Genetic Algorithm).

Mainstream evolutionary algorithms for MOPs include genetic

algorithm (GA), multi-objective particle swarm optimization

(MOPSO), and strength Pareto evolutionary algorithm

(SPEA). Deterministic methods such as set oriented methods

with subdivision techniques and multi-objective algorithms

based on simple cell mapping (SCM) can be also used to find

the solution set [6].

The ε−constraint and VEGA (Vector Evaluated Genetic

Algorithm) approaches do not belong to either the scalarization

or Pareto methods. In the ε−constraint method, one of the

cost functions is selected to be optimized and the rest

of the functions in the objective space are converted into

constraints by setting an upper bound to each of them. The

VEGA works almost in the same way as the single objective

genetic algorithm, but with a modified selection process. A

comprehensive survey of the methods used for solving MOPs

can be found in [8], [9], [10]. Cascade control systems can be

optimally designed by using any one of these techniques.

Control systems’ design problems are complex and

non-convex, therefore evolutionary algorithms are methods

of choice [11]. They outperform classical direct and

gradient-based methods which suffer from the following

problems when dealing with non-linear, non-convex, and

complex problems: 1) the convergence to an optimal solution

depends on the initial solution supplied by the user, and 2)

most algorithms tend to get stuck at a local or sub-optimal

solution. On the other side, evolutionary algorithms are

computationally expensive [12]. However, this cost can be

justified if a more accurate solution is desired and the

optimization is conducted offline. The most widely used

multi-objective optimization algorithm is the NSGA-II [13],

[14]. It yields a better Pareto front as compared to SPEA2

and PESA-II (Pareto Envelope based Selection Algorithm)

[15]. Therefore in this paper, we use the NSGA-II to solve

the multi-objective control problem.

III. CASCADE CONTROL SYSTEM

Consider the general representation of a two-level cascade

control system shown in Fig. 1. The plant under control is

comprised of two subsystems with transfer functions G1(s)
and G2(s). An inner CI(s) and outer CO(s) control loops

are used to drive the systems to their desired states. Here

Xd(s) and Xo(s) are the desired and the actual output of

the outer subsystem, respectively. While, XId(s), which is

computed by the outer control algorithm to attain Xd(s), and

XI(s) are respectively the desired and the actual output of the

inner subsystem. The inner and outer load disturbances are

denoted by DI(s) and DO(s), respectively. The measurement

noises affecting the inner and outer feedback sensors are

denoted by NI(s) and NO(s), respectively. The control

system design aims to alleviate the impacts of these unwanted

signals, minimize the tracking error for both control loops,

make the speed of response of the inner closed-loop system

faster than that of the outer one, and reduce the amount of

consumed control energy. To this end, these objectives should

be quantitatively described.

When deriving the design objectives, we will assume that

the inner and outer closed-loop subsystems control the desired

signals perfectly. This simplifies the control design and the

mathematical expressions of the fitness functions that will

be used later in the multi-objective optimization. Using this

assumption, understanding that the design is carried out in the

frequency domain, and dropping the complex variable s from

the inputs and outputs, the relationship between the controlled

variable, XI and the load disturbance is denoted DI ; the

tracking error of the inner closed-loop system E2 and XId;

and XI and inner stochastic noise NI read

XI/DI = G1/(1 + CIG1), (4)

E2/XId = 1/(1 + CIG1), (5)

XI/NI = (−CIG1)/(1 + CIG1), (6)

from these equations, we notice that for better tracking,

and disturbance and noise attenuation, the ∞−norm of the

following objectives should be minimized

f1 = sup
ω1<ω<ω2

σ(‖E2/XId‖∞), (7)
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Fig. 1 Block diagram of the two-level cascade control system

f2 = sup
ω3<ω<ω4

σ(‖XI/NI‖∞). (8)

where σ is the largest singular value among the transfer

functions. The symbol sup indicates the largest gain among

the gain vector elements is minimized to account for the

worst-case scenario. The variables ω1 , ω2, ω3, and ω4 define

the frequency ranges at which the noise and disturbance occur.

Assuming the dynamics of the inner loop which includes

CI(s) and GI(s) is negligible (inner control loop is perfect),

similar relationships between XO and DO; the tracking error

of the outer closed-loop system E1 and Xd; and Xo and inner

stochastic noise No can be found as follows

Xo/DO = G2/(1 + CoG2), (9)

E1/Xd = 1/(1 + CoG2), (10)

Xo/No = (−CoG2)/(1 + CoG2), (11)

similarly, we note that for better outer loop tracking, and

disturbance and noise attenuation, the norm of the following

functions should be minimized

f3 = sup
ω1<ω<ω2

σ(‖E1/Xd‖∞), (12)

f4 = sup
ω3<ω<ω4

σ(‖Xo/No‖∞). (13)

To ensure that the dynamics of the inner loop is faster

than that of the outer loop, the closed-loop poles of the inner

closed-loop system must be placed on the s-plane to the left

of those of outer closed subsystem. This can be achieved by

defining two variables λI and λo as follows:

λI = max(real(eig(1 + CIG1 = 0))), (14)

λo = max(real(eig(1 + CoG2 = 0))), (15)

here, eig denotes the mathematical operation that results in

the eigenvalues of the corresponding equation, real extracts

the real part from the poles, and max returns the maximum

pole. That is, these two equations return the locations of the

inner and outer closed-loop dominant poles, which dictate the

system speed of response. Therefore, λI has to be less than

λo or the ratio λo/λI must be less than 1 to guarantee that

the inner closed-loop reacts faster than the outer one.

To save the amount of control energy, we minimize the

Frobenius norm, ‖.‖F , of the outer and inner control gains

f5 = ‖k‖F , (16)

where, k is a vector containing the setup parameters of the

control algorithms.

IV. NUMERICAL EXAMPLE

Consider the ball and beam system shown in Fig. 2. The

system is comprised of two plants: the rotary servo motor

and the ball and beam. The DC servo motor described by the

following transfer function

G1(s) =
Θl(s)

U(s)
=

K

s (τs+ 1)
, (17)

Fig. 2 Ball and beam system

where Θl(s) is the Laplace transform of the load shaft

position θ(t), U(s) is the Laplace transform of the motor input

voltage u(t), K = 1.53 rad/(V.s) is the steady-state gain,

and τ = 0.0253 s is the time constant. A linearized model

that describes the position of the ball, X(s), relative to the

angle of the servo load gear reads

G2(s) =
X(s)

Θl(s))
=

Kb

s2
. (18)

Here, Kb = 0.419 m/(rad.s2).
Now consider the general cascade control shown in Fig.

1 with G1(s) and G2(s) represent the dynamics of the DC

motor and the ball-beam system, respectively. The output of

the outer system, Xo, is the actual position of the ball and the

output of the inner one, XI , is the actual position of the load

shaft, Θl(s). The desired position of the ball is denoted by

Xd and the desired shaft angle is represented by XId. NO(s)
is a random noise affecting the reading of the potentiometer

sensor that measures the ball position, while NI(s) is the

measurement noise in the DC motor angle estimation. An

external excitation that alters the position of the motor’s shaft
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is denoted by DI(s) while that affects the position of the ball

on the beam is denoted by DO(s). The inner loop implements

an ideal PD (Proportional-derivative) controller to manage the

position of the servo motor shaft. The controller dynamics can

be described by the following transfer function

CI(s) =
U(s)

E2(s)
= Kpi +Kdis, (19)

where, Kpi and Kdi are the respectively the proportional and

the derivative gains. The characteristic equation of the inner

loop system, AI(s), is given by

AI(s) = s2 +
1 +KKdi

τ
s+

KKpi

τ
, (20)

the dominant pole of the inner closed-loop system can be

found from

λI = max(real(eig(AI(s) = 0))). (21)

Stability analysis suggests that Kpi > 0 and Kdi > −1/K for

the closed-loop system to be stable. We assume that the inner

loop controller can perfectly track the desired shaft angle. With

that in mind, we choose a dynamic PD controller for the outer

loop

CO(s) =
XId(s)

E1(s)
= Kdo(Kpo + s), (22)

here, Kpo and Kdo are the setup parameters of the control

system. As stated above, if we assume that the inner loop can

manage the dynamics of the servo motor and move the shaft

to the desired position, XId(s) (s), that will bring the ball

to its desired location Xd(s). Using this assumption, we set

the closed-loop transfer function of the inner system (servo

motor under PD controller) to unity. Then, the closed-loop

characteristic equation of the outer loop system, Ao(s), is

given by

Ao(s) = s2 +KbKdos+KbKdoKpo. (23)

as a result,the pole that dominates the dynamics of the outer

control loop is given by

λo = max(real(eig(Ao(s) = 0))). (24)

For the outer loop to be stable, Kpo and Kdo must be greater

than zero. These tunable gains in addition to those of the inner

controller will be tuned and the optima trade-offs among the

design requirements will be found.

V. MULTI-OBJECTIVE OPTIMAL DESIGN

In the multi-objective optimal design, we take the elements

of the inner and outer control algorithms as the design

parameters. That is k of (1) and (16) is given by k =
[Kpi,Kdi,Kpo,Kdo]. The design space for the parameters is

chosen as follows,

Q =
{
k ∈ [0.1, 50]× [−0.6, 1]× [0, 5]× [0.1, 19] � R4

}
.

(25)

We notice that these ranges satisfy the stability requirements

stated in (20) and (23). The MOP is stated as,

min
k∈Q

{F1, F2, ‖k‖F , r}, (26)

where, F1 = (f1+f3)/2 is the objective that aims to enhance

the tracking error and disturbance attenuation of the inner and

outer closed-loop subsystems as shown in (7) and (12). The

function F2 = (f2+f4)/2 combines the fitness functions in (8)

and (13) and represents the ∞−norm of the transfer functions

relating the output of either the inner or outer control system

to the measurement noise. Measurement noises are typically

dominated by high frequencies while load disturbances are

dominated by low frequencies [13]. Therefore, in this paper,

we assume the frequency of the noises is in the range ω ∈
[100, 105] rad/s, while that of the disturbance belongs to ω ∈
[0.0001, 2] rad/s.

Minimizing these norms ensures that the tracking error is

small; the closed-loop system is insensitive to unavoidable

measurements’ noise and disturbances; and the control energy

consumption is optimal. Furthermore, we need the response

of the inner controlled system to be faster than the outer one.

To this end, we minimize r given by the following equation

r = λo/λI . (27)

Small values of r indicate that the inner closed-loop system is

faster than the outer one, which is one of the important design

requirements in cascade control loops.

To solve this multi-optimization problem, the nondominated

sorting genetic algorithm (NSGA-II) is used. The reader can

refer to [16] for more details about this algorithm. According

to the Matlab documentation, the population size can be set

in different ways and the default population size is 15 times

the number of the design variables nvars. Also, the maximum

number of generations should not exceed 200×nvars. In this

study, the population size is set to 400, and the number of

generation is set to 400.

VI. RESULTS AND DISCUSSION

Different projections of the Pareto front and Pareto set,

poles’ map of the inner and outer closed-loop subsystems,

and the controlled system response to disturbance and

measurement noise at different objective values are discussed

here.

The optimization problem at hand is 4×4. That is, 4 design

parameters and 4 objectives. The Pareto set which contains the

optimal values of the decision variables is depicted in Fig. 3

and different projections of the corresponding Pareto fronts are

plotted in Figs. 4 and 5. The color in these figures is mapped

to the value of ‖k‖F with red denotes the highest value, and

dark blue denotes the lowest value. This coloring adds a 3D

projection to these figures. It also shows the corresponding

design variables form the Pareto set for each point on the

Pareto front. The Pareto set shows that large control energy

consumption is associated with high Kpi and Kdo × Kpo

values. The figure also shows that most of the optimal values

of Kpo and Kdo are con concentrated on the right side of the

graph. However, the optimal values of Kpi and Kdi spread

between their specified stable ranges. This can be explained
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by examining (19) and (22) where the proportional gain in the

latter equation is scaled by Kdo . Empty regions indicate the

non-existence of optimal solutions that satisfy the optimization

constraints.

The Pareto front in Fig. 4 demonstrates a competing

relationship between F1 and ‖k‖F , and between F2 and ‖k‖F .

Meaning, large control energy is needed to achieve small

tracking errors and better disturbance rejections (see Fig. 4

(a)). On the other side, better attenuation of the measurement

noise can be only achieved when the control energy is small

(see Fig. 4 (b)). That is to say, the objective of minimizing

the effect of measurement noise is also conflicting with that

of reducing the impact of external disturbance as shown in

Fig. 5 (a)). The figure also shows that after F1 = 0.3, F2 goes

up and then decrease as F1 increases. This occurs because of

the size of the objective space which includes 4 conflicting

objectives. These conflicting relationships have been reported

in many control books [17], [18], [19]. This stresses the fact

that the design of control systems should be conducted in

multi-objective settings to account for the all the trade-offs

among the design targets. Another conflicting relationship

between objectives can be found in Fig. 5 (b). It can be

noticed that the goal of making the dynamics of the inner

closed-loop system faster than that of the outer closed-loop

system is in non-agreement with that of energy consumption.

The pole maps of the inner and outer controlled systems are

shown in Fig. 6. As indicated by the color code and the scale

of the Re(s)-axis, the poles of the inner closed-loop system

are located to the left of those of the outer controlled system.

In other words, the objective to make the dynamics of the outer

loop dominates that of the inner closed-loop was successfully

achieved the MOP algorithm.

The responses of the inner and outer closed-loop systems

at different values of r are shown in Figs. 7 and 8 when

di(t) = do(t) = 0.5sin(t). Here, di(t) and do(t) are the

inverse Laplace of DI(s) and DO(s) labeled in Fig. 1. We

assume that external disturbances on the inner and outer loop

are low-frequency signals with period T = 2π seconds which

agrees with frequency range selected in Section V. In Fig.

7, although the response of the inner closed-loop system is

almost two times that of the outer system, the tracking error

is bad since the inner loop is not fast enough to prevent the

propagation of the disturbance to the outer loop. While in Fig.

8, the dynamics of the inner subsystem is approximately 14
times faster than that of the outer subsystem and the result

is better tracking error since the inner controlled system is

fast enough to reduce the effect of the upsets on the system

response. It is worth mentioning that the later response occurs

at the expense of the controlled energy.

To get more insight into the ability of the system to reject

unwanted signals, the time response of the controlled system

xo(t), which denotes the inverse Laplace of XO(s) shown

in Fig. 1, is graphed at the minimum and maximum value

of the first design objective, F1. Here, the load disturbances

are modeled by the harmonic signal, di(t) = do(t) =
0.5sin(t). As expected and evident from Fig. 9, the best

and worst disturbance rejection occur respectively at min(F1)

and max(F1). It should be indicated here that high control

energy is required to achieve a small tracking error and

better disturbance rejection. This can be readily observed

from Fig. 10 where the large values of ‖k‖F result in better

steady-state errors and repudiation of external disturbances.

On the other side, small values of ‖k‖F are appealing for

better rejection of measurement noise as shown in Fig. 11.

In Fig. 11 (a), F2 = 0.0260 and ‖k‖F = 8.1890, while

F2 = 0.3129 and ‖k‖F = 52.5521 in Fig. 11 (b). The

outer and inner measurement noises are assumed to be white

noise WN signals with 0.1 variance and zero mean; that is

ni(t) = no(t) = WN . White noise covers a wide spectrum of

frequencies and is used frequently in testing controlled system

behavior against sensor noises [20], [13].

VII. CONCLUSIONS

We have studied the multi-objective optimal design of a

two cascaded controller based on two PD controllers. A

numerical example which consists of a servo DC motor and

ball-beam system is used. The optimization problem with

4 design parameters and 4 conflicting objective functions is

solved with the NSGA-II algorithm. The Pareto set and front

are obtained. The Pareto set includes multiple design options

from which the decision-maker can choose to implement. The

results show there are many optimal trade-offs among load

disturbance rejection, measurement noise repudiation, control

energy expenditure, tracking error reduction, and relative speed

of response of the inner loop subsystem with respect to the

outer one. Also, the pole maps of the control loops demonstrate

that the inner closes-loop system has a faster dynamic than

that of the outer controlled system. Future work will include

designing optimal cascade controllers for systems that can

be broken down into inner and outer dynamics; for example

aeroelastic structures or aircraft wings with different numbers

of ailerons.

Fig. 3 Projections of the Pareto set: (a) Kdi versus Kpi, (b) Kdo versus
Kpo. The color code indicates the level of ‖k‖F , where red denotes the

highest value, and dark blue denotes the smallest
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Fig. 4 Projections of the Pareto front: (a) F1 versus ‖k‖F , (b) F2 versus
‖k‖F . The color code indicates the level of ‖k‖F , where red denotes the

highest value, and dark blue denotes the smallest.

Fig. 5 Projections of the Pareto front: (a) r versus ‖k‖F , (b) F2 versus
F1. The color code indicates the level of ‖k‖F , where red denotes the

highest value, and dark blue denotes the smallest

Fig. 6 Pole maps,on the y-axis is the imaginary part of the pole, Im(s),
and the x-axis is the real part of the pole, Re(s): (a) Pole map of the inner
closed-loop system, (b) Pole map of the outer closed-loop system. The color
code indicates the level of ‖k‖F , where red denotes the highest value, and

dark blue denotes the smallest

Fig. 7 Outer and inner controlled systems’ responses when r = 0.5 (a)
Response of the outer closed-loop system xo(t) versus time, (b) Response

of the inner closed-loop system xo(t) versus time. Red solid line: reference
signal, Black solid line: actual system, response response with

di(t) = do(t) = 0.5sin(t)

Fig. 8 Outer and inner controlled systems’ responses when r = 0.07 (a)
Response of the outer closed-loop system xo(t) versus time, (b) Response

of the inner closed-loop system xo(t) versus time. Red solid line: reference
signal, Black solid line: actual system, response response with

di(t) = do(t) = 0.5sin(t)

Fig. 9 Ball position versus time. (a) Controlled system response at
min(F1),(b) Controlled system response at max (F1). Red solid line:

reference signal xd(t), black solid line: system response with
di(t) = do(t) = 0, blue dotted line: system response with

di(t) = do(t) = 0.5sin(t)
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Fig. 10 Ball position versus time. (a) Controlled system response at
min(‖k‖F ),(b) Controlled system response at max (‖k‖F ). Red solid line:

reference signal xd(t), black solid line: system response with
di(t) = do(t) = 0, blue dotted line: system response with

di(t) = do(t) = 0.5sin(t)

Fig. 11 Ball position versus time. (a) Controlled system response at min(F2),
(b) Controlled system response at max (F2). Red solid line: reference signal

xd(t), black solid line: system response with ni(t) = no(t) = 0, blue
dotted line: system response with ni(t) = no(t) = WN
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