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Abstract—In this paper a multi-objective nonlinear programming 

model of cellular manufacturing system is presented which minimize 
the intercell movements and maximize the sum of reliability of cells. 
We present a genetic approach for finding efficient solutions to the 
problem of cell formation for products having multiple routings. 
These methods find the non-dominated solutions and according to 
decision makers prefer, the best solution will be chosen.  
 

Keywords—Cellular Manufacturing, Genetic Algorithm, Multi-
objective, Life-Cycle.  
 

I. INTRODUCTION 
UE to the present competitive market, and rapid variation 
of customer's need, companies need to produce a large 

variety of products in small lot sizes at a competitive price just 
in time.  

Managers who are faced with this rapid variation should 
change their strategy based on mass or batch production (job 
shop or flow shop) to flexible manufacturing systems. Mass 
production includes a small variety of parts with high volume 
of demand but batch production consists of a large variety of 
parts with low volume of demand. At the present, companies 
need to be flexible such as job shop and produce on time such 
as flow shop. Hence group technology is an alternative to 
overcome these difficulties and it is a good strategy to cope 
with the challenges of todays global environmental. Cellular 
manufacturing systems (CMS) are the result of direct 
application of group technology philosophy. Parts whit similar 
processing requirements such as machines, tools, route and/or 
geometrical shapes are classified to part families. Machine 
cells contain groups of functionally dissimilar machine types; 
each machine cell processes a part family.  

The advantage of CMS has been addressed by numerous 
researchers such as reduction of set up times, reduction of 
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material handling costs, reduction of in-process inventory, and 
reduction of cycle times, improvement of shop floor control 
and improvement of production efficiency. There have been 
many efforts towards the design of manufacturing cells based 
on the selection of part families and machine groups, 
considering only a single criterion such as follow: 

1.  Minimizing inter-cell movements 
2. Maximizing parts and/or machines similarities (or     

minimizing dissimilarities) 
3. Obtaining the block diagonal form of the part-machine 

incidence matrix 
4. Minimizing cell load unbalances 
5. Minimizing number of exceptional elements 

There has been pressure on the manufacturing industries 
in the global market competition to consider more than 
one criterion such as minimizing material handling cost, 
shorter delivery time, shorter setup time and etc.  

In this paper, we consider the bi-criterion, multiple route 
cell formation problems via an implementation of a genetic 
algorithm. The two criteria that we consider are minimization 
of intercell movements and maximization sum of  reliability of 
cells. The method that we propose seeks to generate efficient 
solutions and according to the decision maker prefers, the best 
solution will be selected.  

II. THE MULTI-OBJECTIVE CELL FORMATION PROBLEM 
A.  Back Ground Information on Multi-Objective 

Optimization  

A general multi-objective optimization problem can be defined as 
follows [15]  

Min/max y = f(x) = (f1(x), f2(x)… fn(x)) 
 Subject to  
x = (x1, x2, …,xn ) є X 
y = (y1, y2… yn ) є Y 
Where x is the decision vector, y is the objective vector, X 

is the parameter space and Y is the objective space.  
A single solution (a decision vector) that results in an 

optimal objective vector does not generally exist for the 
general multi-objective optimization problem. Instead, there 
exists a set of Pareto-optimal decision vectors that form the 
Pareto set of solutions. A decision vector constitutes a Pareto-
optimal solution if there is no other decision vector for the 
problem considered that provides a better performance than 
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(dominates) this solution with respect to all objectives 
considered. Formally, a decision vector a is said to dominate 
decision vector b if and only if (assuming a minimization 
problem and without loss of generality). 

{ } { } .)()(:,...,2,1)()(:,...,2,1 bfafnibfafni iiii ≺∈∃∨≤∈∀

 The aim of multi-objective optimization methods is to find a 
set of non-dominated solutions that provide a reasonable 
approximation of the Pareto set of solutions. 

It should be noted that the non-dominated set of solutions 
produced by multi-objective optimization methods does not 
necessarily correspond to the actual Pareto set of solutions, 
which, for most real-life cases of multi-objective optimization, 
is not known in advance. It is the task of the decision maker to 
choose a non-dominated solution that fits best his/her 
considerations by considering all potential trade-offs. 

B.  Problem Description and Literature Review 
One of the areas of production research that has attracted 

considerable attention over the last decades is Cellular 
Manufacturing (CM). CM is the application of an 
organizational approach called Group Technology (GT) [2] at 
the shop floor production level. The aim of CM is to bring the 
benefits of mass production lines to the job-shop 
manufacturing environment. Theoretically, this can be 
achieved by grouping together machines into cells that process 
specific product families.  

CM has been shown to provide considerable cost benefits to 
practical manufacturing environments [14]. Despite the advent 
of new production design techniques such as Just in Time 
(JIT) systems and Agile manufacturing, CM is still considered 
to be a useful design principle since its application requires 
limited capital investment. The cell-formation problem is the 
central problem during the design of a new CM production 
system. It aims to find a grouping of machines into cells and 
parts into associated families that optimizes a single or a 
number of desired objectives. The cell-formation problem is a 
difficult NP-hard [8] grouping problem that has attracted 
considerable research attention over the last decades, at least 
for the single-objective case [11], [3]. However, Wemmerlov 
and Johnson [14] report that realistic cell-design processes are 
multi-objective in nature, involving a number of conflicting 
objectives. The inefficiency of traditional optimization 
methods in the solution of non-trivial instances of multi-
objective problems means that there has been little research on 
the solution of the multi-objective version of the cell-
formation problem. 

Formally, the multi-objective cell-formation problem can be 
described as follows.  

Given a number of parts and a number of machines 
necessary for the manufacturing of parts, a grouping of 
machines into cells and parts into associated families needs to 
be identified that will simultaneously optimize a number of 
conflicting objectives based on the principles of cellular 
manufacturing. 

The cell-formation problem, even in its simplest form, is a 
difficult combinatorial grouping problem. Lee and Garcia-

Diaz [9] indicate that the number of non-empty partitions of n 
objects becomes impossible to enumerate as the size of the 
problem increases, especially if the size of partitions is not 
pre-specified.  

The existence of multiple objectives increases the 
complexity of the problem, limiting the use of traditional 
optimization methodologies to small-sized instances. In 
addition, these methodologies (analytic and heuristics) do not 
provide a natural mechanism for the simultaneous generation 
of multiple solutions. The reviews of Mansouri et al. [10] and 
Dimopoulos [4] clearly indicate that the majority of reported 
applications attempt to overcome this deficit by aggregating 
all objectives considered into a single objective using 
weighting schemes. While this mechanism allows existing 
methodologies that have been designed for the solution of 
single-objective cell-formation problems to be used in multi-
objective problem instances, they do not provide the basis for 
an informed choice to the decision maker 

Typical examples of this approach are the mathematical 
programming methodologies of Wei and Gaither [13], Boctor 
[1] and Ho and Moodie [7]. 

In this paper we treat the case where each part has more 
than one process plan and where each solution is evaluated 
according to two objective functions. The first seeks to reduce 
the intercell movements. The second seeks to increase sum of 
reliability of cells.   

Among the factors influencing the performance of CMS are 
the structure of the machine–part matrix, the stability of the 
product mix in the manufacturing system, and the reliability of 
the machines in manufacturing cells [12]. Reliability plays an 
important role in the overall performance of CMS. 
Traditionally, cell formation and work allocation are 
performed assuming all the machines to be 100% reliable, 
which is never the case. Machine failures cause the greatest 
impact on due date and other performance criteria even if 
there is the option of rerouting the parts to alternative 
workstations. Machines are a major component of CMS and 
often it is not possible to handle machine breakdowns as 
quickly as the production requirements dictate. In addition, the 
disturbances caused by these breakdowns lead to scheduling 
problems, which decrease the productivity of the entire 
manufacturing operations. This issue points out an important 
need for the consideration of machine reliability in the design 
process of CMS, especially in light of the increasing 
complexity of such systems in recent years. 

III. MODELING THE PROBLEM VIA GENETIC ALGORITHM  
Genetic algorithms are powerful and broadly applicable 

stochastic search and optimization technique based on 
principles from evolution theory. The usual form of genetic 
algorithm was described by Goldberg [5]. Genetic algorithms 
are stochastic search techniques based on the mechanism of 
natural selection and natural genetics. Genetic algorithms, 
differing from conventional search techniques, start with an 
initial set of random solutions called population. Each 
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individual in population is called a chromosome, representing 
a solution to be the problem at hand. The chromosomes 
evolve through successive iterations, called generation. The 
chromosomes are evaluated using some measures of fitness. 
The enumeration procedure is capable of solving only small 
and medium-sized problems. We introduce, in this section, a 
GA which was proved to be an efficient technique for solving 
large cell formation problems. The suggested GA finds 
efficiency frontier for the bi-objective model. In this paper we 
have two types of chromosome, the machine-cell and part-
route chromosomes. The machine-cell chromosome is of 
dimension m and each gene indicates whether or not a 
machine belongs to a given cell. The part-route chromosome 
is of dimension n and shows which routing is used for each 
part.  

A numerical example of these representations is given in 
Table I. The first machine-cell chromosome of Table I states 
that the solution has 5 cell which represented by 7, 1, 3,4 and 
5, also cell 1 will be composed of machines 3 , 8 and 12-13, 
the second cell indicated by “3” will contain machines 4-7 and 
14-15, and so on. Furthermore, the first part-route 
chromosome says that part 1 uses the third routing, part 2 uses 
the second routing and part 3 uses the second routing, and so 
on.  

 
TABLE I 

CELLULAR AND PART-ROUTINGS CONFIGURATION 
Machine-cell 
chromosome 

Part-route chromosome 

771333317451133 322133213121333313111221122122 
652222812111566 113231213323111123113331222333 
 

The initial populations are generated randomly and should 
respect a minimum diversity threshold, as suggested by 
Grefensette [6]. The minimum threshold was fixed at 0.9. The 
parent population selected with normalization method, in this 
method individuals of the population are chosen which their 
fitness are not less than average fitness of the population. 
Then individuals selected from parent population randomly 
for creation of a new generation. The next generation 
produced with the following operations: 

(A). Crossover: An exchange between portions of two 
chromosomes. 

(B). Mutation: A random modification of chromosomes. 
(C). Reproduction: copying chromosomes according to the 

fitness function. 
The crossover method, sometime called the one-point 

method, consists in replacing a section of the first 
chromosome by the corresponding section of the second. To 
determine the part of the first chromosome that should be 
kept, we use a random number (from 1-30 for the part-route 
chromosome and from 1-15 for the machine-cell 
chromosome). In the example of Table II, a machine-cell 
crossover, the number 6 was selected. The six first genes of 
this chromosome are kept and the chromosome completed 
with the 9 last genes of the second chromosome. 

TABLE II  
CROSSOVER METHOD ILLUSTRATED 

Chromosome 1 Chromosome 2 Crossover 
771333317451133 652222812111566 771333812111566 

 
The mutation method consists in selecting one chromosome 

from parent population then two random genes are selected 
and replaced. And finally in reproduction the best 
chromosomes according to fitness function are copied in the 
next generation. We also use improvement methods in our 
algorithm, the local improvement for the part-route 
chromosome is as follow, in a 30 gene chromosome the 
procedure consists of subdividing each part-route 
chromosome into six blocks of five genes, in making a 
random selection of one of these blocks, and of modifying 
each gene in two different cycle ways as illustrated in Table 
III. This procedure is repeated three times. The six new 
chromosomes that are so created are evaluated and if one of 
them is superior to the initial chromosome, it will replace that 
chromosome.  

 
TABLE III 

EXAMPLE OF THE IMPROVEMENT METHOD 
Selected block Transformation 1 Transformation 2 

23212 31323 12131 
 

After some experimentation, the sizes of the population of 
machine-cell and part-route chromosome were fixed at 100 
also 85% of the next generation is made from crossover, 10% 
with mutation and 5% with reproduction. 
We use the following notation: 

i   index of the machines (i=1, …,m) 

j   index of the parts (j=1,…,n) 

k   index of the cells (k=1,…,c) 

l   index of the routes (l=1,…,r) 

Nj   demand for part j in the time horizon considered. 

Xik  incidence matrix indicating if machine i is in 

cell k, xik = 1 if machine i is in cell k, and = 

0 otherwise, 

rjl  incidence matrix specifying the routing used 

for part j rjl = 1 if part j used route l and = 0 

otherwise. 

ri
'  reliability of machine i . 

Rk
'   reliability of cell k .  

Yil   incidence matrix indicating if machine i is on route l.  

Zjk   incidence matrix assign part j to cell k.  

 rik
'   reliability of part j in cell k.  

The functions considered are as follows: 

Minimization of the intercell movements 
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These are the constraints:  

Each machine may belong to only one cell. 

1
1

=∑
=

c

k
ikx  For i =1,2,…,m 

Each part may use only one route. 

1
1

=∑
=

r

l
jlr  For j = 1,2,…,n 

IV. NUMERICAL EXAMPLE 
A numerical example of this problem which contains 15 

machines, 30 parts and 3 routes is considered in this problem. 
To implement the described procedure, we coded the 

algorithm in Borland Delphi, Version 7 for Windows XP. 
Computations were carried out using Intel Pentium Pro 200 
MHz computer. In Table IV we find the workload required for 
each machine i and each part j. The demand for each part is 
given in Table V and reliability of machines are generated in 
random mode as follow, 

7%,40%,63%,17%,55%,11%,44%,66%,6%,31%,82%,7%,7
%,44% and 4% 

Table VI presents the results obtained using the weighted-
sum approach. The 10 results were obtained by systematically 
varying the weights (w1, w2) over the interval [0, 1] by 
increments of 0.1. Note that Table VI contain some results 
that do not efficient solutions. As we have pointed out, this 
occurs because the genetic heuristic does not guarantee a truly 
optimal solution at each iteration of the method proposed. 
These non-efficient solutions would, of course, be eliminated 
before presenting the results to a decision-maker. 

V. CONCLUSION 
In this paper we propose a new approach to the machine 

cell formation problem when the parts may follow alternative 
routes with the multi-objective of minimizing intercell 
movements and maximizing the reliability. An efficient 
genetic algorithm was implemented to solve the model. The 
computational experiences carried out show that the proposed 
approach can handle medium to large size problems with 
reasonable computing effort.  

 
TABLE VI 

RESULTS OF EXPERIMENT 
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TABLE IV 

 
 

(A) MACHINE – PART WORKLOADS FOR THE FIRST ROUTING 

 
 

(B) MACHINE – PART WORKLOADS FOR THE SECOND ROUTING 

(C) MACHINE – PART WORKLOADS FOR THE THIRD ROUTING 

 
 

TABLE V 
DEMAND FOR EACH PART 

 


