
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1035

Abstract—Web applications have become very complex and
crucial, especially when combined with areas such as CRM

(Customer Relationship Management) and BPR (Business Process

Reengineering), the scientific community has focused attention to
Web applications design, development, analysis, and testing, by

studying and proposing methodologies and tools. This paper

proposes an approach to automatic multi-dimensional concern
mining for Web Applications, based on concepts analysis, impact

analysis, and token-based concern identification. This approach lets

the user to analyse and traverse Web software relevant to a particular
concern (concept, goal, purpose, etc.) via multi-dimensional

separation of concerns, to document, understand and test Web

applications. This technique was developed in the context of WAAT
(Web Applications Analysis and Testing) project. A semi-automatic

tool to support this technique is currently under development.

Keywords—Concepts Analysis, Concerns Mining, Multi-
Dimensional Separation of Concerns, Impact Analysis.

I. INTRODUCTION

EB applications quality, reliability and functionality

are important factors because software glitches could

block entire businesses and determine strong embarrassments.

These factors have increased the need for methodologies, tools

and models to improve Web applications (design, analysis,

testing, and so on).

This paper focuses on legacy Web applications where

business logic is embedded into Web pages. Analyzed

applications are composed by Web documents (static, active or

dynamic) and Web objects [5]. This paper describes an

approach to help application developers to document,

understand and test Web software. Our goal is to describe a

Web application Object-Oriented model, and then define a set

of application/design slices (“points of view”) to analyze and

test the application itself, e.g., to generate a set of test cases

specific for these points of view. Several Object-Oriented Web

modeling methodologies are presented in literature (see

Section II). Web OO diagrams (such as Conallen UML [12])

used to describe applications may be very complex, large, and

rich of information. Models (above all generated ones) may

be difficult to read and comprehend, so that they may not be

Manuscript received January 27, 2005.

Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini are with

Information and Comunication Department, University of Milan. Via

Comelico 39, 20135 Milan, Italy.

{Carlo.Bellettini, Alessandro.Marchetto, Andrea.Trentini}@unimi.it

much usable as core information to document, analyze and test

applications. Our approach may be useful to slice or traverse

models for software analysis. For example, it may be very

interesting to test or reuse single components or tasks or

properties, but it may be very complex to spot the relevant

details within the whole design documentation. Software

concerns are pieces of software that are responsible for a

particular task, concept, goal, etc; while “separation of

concerns” refers to the ability to identify, encapsulate and

manipulate those software parts relevant to a particular

concern.

This paper describes a semi-automatic approach to help the

user to document, understand and test Web software by slicing

applications diagrams. Application model slicing is based on

concerns identification and grouping. Our approach describes

a set of guidelines to analyze application evolution under

different “points of view” (i.e., slices). In particular we would

like to define a concern-mining process to help the user to

generate application test cases and/or to verify their coverage

measure. Our approach is useful to identify multi-dimensional

concerns (MDSOC, [11],[18]]) in design applications, it uses

the MDSOC “dimensions of Hyperspace” concept to describe

application slices in Web software. “Hyperspace” is the

concept underlying MDSOC, it provides a powerful

composition mechanism that facilitates non-invasive software

integration and adaptation. In Hyperspaces, concerns are space

dimensions. Our concerns mining approach is based on:

concepts analysis1 [4] (as unit-base to identify concerns);

impact analysis [22] (to limit software analysis); and token-

based concerns identification (to search identified information

relationship). This technique is part of the WAAT (Web

Application Analysis and Testing) project [5],[6].

This paper is organized as follows. Section II describes

related works. Section III describes applications modeling.

Section IV describes our concerns mining approach. Section

V presents a sample. Section VI presents conclusions.

1 Concept analysis is “traditionally” used to show all possible software

modularizations in a concise lattice structure

Multi-Dimensional Concerns Mining
for Web Applications via Concept-Analysis

Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1036

II. RELATED WORKS

Several Web applications modeling approach are presented

in literature [5], the ones related to our concerns mining

technique are the OO derived, such as Conallen UML WA-

extensions[12], WARE[8], ReWeb[7], Rational Rose Web

Modeler[20], WebUml[5], and so on.

More details about Aspect Oriented programming are in [9],

while [3] presents the AspectJ famous software. [11],[18]

describe the MDSOC and HyperJ tool, while [17] studies the

relations between quality factors and MDSOC, while [13] the

relations between MDSOC and testing. [2] describes SOC

used to reduce the complexity of Web applications. [16]

presents an approach to separate Web navigation concerns and

application structure. [14] evaluates AOSD code quality

influence and presents an approach for reverse engineering

aspects, based on concern verification and aspect construction.

[15] evaluates the suitability of clone detection as a technique

for the identification of crosscutting concerns via manual

concern identification. [1] introduces aspect mining and

identification in OO. [21],[19] show an approach to aspect

mining based on dynamic analysis technique via program

traces investigation, to search recurring execution relations.

[10] applies three different separation of concerns (SOC)

mechanisms (HyperJ, AspectJ, and a lightweight lexically

based approach) to separate features in the two software

packages. This paper studies effects that various mechanisms

have on code-base structure and on restructuring process

required while performing separations.

III. WEB APPLICATIONS MODELING

In the WAAT project Web applications are modelled via

UML diagrams. The UML model used is based on class and

state diagrams. We have defined a UML meta-model [5], a

Web application model is an instance of this meta-model.

Class diagrams are used to describe application structure and

components (i.e., forms, frames, Java applets, HTML input

fields, session elements, cookies, scripts, and embedded

objects). State diagrams are used to represent behaviour and

navigational structures composed by client-server pages,

navigation links, frames sets, form inputs, scripting code flow

control, and so on. The OO application model let us define a

mapping between traditional Web application concepts (such

as static-dynamic pages, forms, Web objects, and so on) and

the MDSOC concepts. This map let us apply separation of

concerns methodologies in the Web context, for example to

analyse or test specific assets of existing software. Our

approach may be used to “slice” application models by “points

of view”.

IV. CONCERNS DEFINITION ALGORITHM

MDSOC technique is used to build application slices, where

every concern (or concerns composition) may be used to

define a software code/design slice. MDSOC is realized

through Hyperspaces: concerns space organized in multi-

dimensional structure. In this structure every dimension is a set

of disjoint concerns (i.e., they have no software units in

common). We define a semi-automatic concerns mining

approach, so concerns identification must be limited to

information extracted from applications models or source

code. For example, software functionality identification is a

semi-automatic task, because the user helps to identify

software components. We may lower user interactions by only

applying MDSOC to concerns that are automatically extracted.

When functionality information cannot be automatically

identified, than we use: variables, functions, class, Web

documents/objects, links, input-variables, and so on.

Our approach is composed by: Application Modeling

(AM, model definition), Concerns Elaboration (CE,

Hyperspaces definition through model and source code

analysis, and Hyperspaces use to reduce models and code

taken into account), Testing (T, the extracted and reduced

information may be used to define/refine test cases).

Application Modeling (AM) consists in application model

definition. We use reverse engineering techniques to define

UML diagrams for existing applications. Moreover, diagrams

may also be manually refined by the user.

Concerns Elaboration (CE) to identify, define, and extract

concerns based on application model or source code analysis,

subdivide in:

• Artifacts extraction: from application model we extract

some interesting artifacts such as class, association, variables,

methods, links, Web pages (e.g., static, dynamic, dynamically

generated), objects (e.g., database, files, reused code), and so

on. We use this knowledge to identify concerns (it may be a

limitation, i.e., concerns about functionality cannot be

completely defined without user know-how).

• Objects-attributes selection: from the selected artifacts

we define “object-attribute”2[4] couples to use in concept

analysis. We may limit the number of couples by asking user

help. Generally speaking, example of couples may be:

variables-classes, functions-attributes, and so on.

• Impact matrix definition: from the application model we

define a matrix I = [class x class]. ∀ ik,m ∈ I = 1 if ∃ class

relationship (i.e. association in class diagram between classk

and classm), 0 otherwise. The matrix is then used to decrease

analysis computational cost.

• Context matrix definition: for every couple defined we

build an objects-attributes matrix C = [object x attribute]. ∀

ck,m ∈ C = 1 if there is a def-use relationship between objectk

and attributem, 0 otherwise.

• Concept definition/visualization: we define concepts

through the C contexts matrix. We analyze this matrix

grouping the maximum number of objects that have common

attributes (by concept definition in concept-analysis). To

visualize the defined concepts we may use the concept-lattice

2 where “objects-attributes” is defined in concept-analysis theory

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1037

[4][23] structure.

• Concerns definition: we identify concerns by iteratively

grouping previously defined concepts. To define concerns we

may choose one of the following grouping strategies: “one

concern=one concept”, “one concern=one set of concepts”,

“one concern=one concept partition [4]”, and so on. We

currently use the “one concern=one set of concepts” one. We

define a new “attributes-concepts” matrix3 A = [attribute x

concept]. ∀ ak,m ∈A = 1 if attribute is contained in concept.

By recursively applying the “attributes-concepts” matrix, at

each step we build supersets of concepts (grouping concepts

that share attributes) that are used as concepts as well in the

next step.

Testing (T): to define test cases on reduced information; to

use reduced information to compute application coverage level

for a set of already available test-cases. For example, we may

define test cases from a UML model (e.g., from a statechart,

see Section III) via traditional OO techniques and then use the

reduced diagram to verify test-cases coverage (e.g., uniformly

coverage or specialized one). Otherwise we may define test-

cases directly from the reduced diagrams, because they

represent sets of application features (software fragment with

potentially independent behavior).

V. SAMPLE

“MiniLogin” is a simple Web application composed by

some PHP/HTML files, and its main functionality is to control

reserved login-password Web area.

Application Modeling (AM): we reverse engineer the

application UML model, composed by class and state

diagrams. Figure 1: MiniLogin UML Class diagram shows the

generated application class diagram (meta-model instance).

Figure 1: MiniLogin UML Class diagram

Concerns Elaboration (CE): defines MiniLogin concerns.

Artifacts extraction: we extract MiniLogin artifacts, lists of:

3 where attribute is from the C matrix, and concept was defined in the

previous “Concept definition” step

classes, variables, functions, links, and so on.

• Objects-attributes selection: we manually select couples

of objects attributes to use in concept analysis. E.g., variables-

class (named “case-A”), variables-functions, and so on.

• Impact matrix definition (due to lack of space we

exemplify only a couple of entries): “form” is related to

“member.php”, while “form” is not related to “C2.html”.

• Context matrix definition (due to lack of space we

exemplify only a couple of entries): for “case-A”

“$errorpage” is related to “member.php”, “username” is

related to “form”, and “username” is related to “member.php”,

while “username” is not related to “C2.htm”

• Concept definition/visualization: we use the context

matrix to define concepts as defined in formal concept-analysis

[4]. We may use existing tools (such as ToscanaJ [23], to

define and visualize concepts through concept-lattice). Table I

shows “case-A” concepts.

• Concerns definition: we identify concerns via concepts

grouping. We build the attributes-concepts matrix, with

attributes used (rows) and concepts (columns). A cell is = 1 if

the attribute is related to the concept (see Table II). Then we

group concepts by looking for attributes sharing (in our “case-

A”, variables). E.g., for “case-A” we group concepts into Z0-

to-Z4 groups. Where Z0={C0,C1}; Z1={C0,C2}; and

Z2/3/4={C0,C2,C3}.

Now we repeat the attributes-concepts matrix definition,

using the same attributes list, but with the newly-grouped

TABLE I

CASE-A, CONCEPTS

Concept Object Attribute

Top …all… -

C3 {username, password,

$errorpage, $combine,

$username, $password}

{member.php, Client_Page,

c1.htm}

C2 {username, password,

$combine, $username,

$password }

{member.php, Client_Page,

c2.htm, c1.htm }

C1 {username, password,

submit, reset}

{form }

C0 {username, password} {form, member.php,
Client_Page,

c1.htm, c2.htm }

Bottom - …all…

TABLE II

CASE-A, “ATTRIBUTES-CONCEPTS” MATRIX

Attribute

C0

C1

C2 C3

index.html

form 1 1

member.php 1 1 1

Client_Page 1 1

c1.htm 1 1 1

c2.htm 1 1 1

img

access.html

error.html

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1038

concepts (Z0-to-Z4) and then we group these concepts

attributes-based defining other new concepts (called ZZ0-to-

ZZ4). Then we stop because these concepts are completely

overlapped. Finally, we may define the set of concerns, where

every Cx, Zx and ZZx is a good candidate (usable for our

testing task). To reduce the number of candidates we delete

overlapped concerns (see Table III). Every defined concern

represents a clearly defined software behavior. We use these

concerns to describe the Hyperspace slicing our application,

and define the reduced diagrams.

Testing (T): from the reduced diagrams we may

automatically define test cases or we may use these diagrams

to verify coverage measures of already available test cases

(such as in the user metrics driven test cases definition process

[6]).

VI. CONCLUSIONS

We proposed a semi-automatic multi dimensional concerns

mining approach based on: concept analysis combined with a

grouping technique. This approach may help the user in slicing

applications via model analysis, and it may be used to semi-

automatically define application test cases, or test coverage

measures or also to understand software evolution. We are

currently investigating efficient pruning techniques to reduce

the number of concerns generated by our approach. We are

also working on a tool to integrate our approach in the WAAT

project.

REFERENCES

[1] A. Deursen, M. Marin, and L. Moonen, “Aspect Mining and

Refactoring”. First International Workshop on REFactoring:

Achievements, Challenges, Effects (REFACE03), Canada. November

2003.

[2] A. Reina, J. Torres, and M. Toro, “Aspect-Oriented Web Development

vs. Non Aspect-Oriented Web Development”. Workshop of nalysis of

Aspect-Oriented Software (AAOS 2003), University of Darmstadt,

Germany. July 2003.

[3] Aspectj. http://eclipse.org/aspectj

[4] B. Ganter and R.Wille, “Formal Concept Analysis”. Springer-Verlag,

Berlin, Heidelberg, New York, 1996.
[5] C. Bellettini, A. Marchetto, and A. Trentini, “WebUml: Reverse

Engineering of Web Applications”. 19th ACM Symposium on Applied

Computing (SAC 2004), Nicosia, Cyprus. March 2004.

[6] C. Bellettini, A. Marchetto, and A. Trentini, “TestUml: User-Metrics

Driven Web Applications Testing” 20th ACM Symposium on Applied

Computing. USA 2005

[7] F. Ricca and P. Tonella, “Building a Tool for the Analysis and Testing

of Web Applications: Problems and Solutions”. Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’200), Genova,

Italy. April 2001.
[8] G. A. Di Lucca, A. Fasolino, F. Faralli, and U. De Carlini, “Testing web

applications”. International Conference on Software aintenance

(ICSM’02), Montreal, Canada. October 2002.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, and J. Irwin, “Aspect-Oriented Programming”. 11th

Europeen Conf. Object-Oriented Programming, Springer Verlag. 1997.

[10] G. Murphy, A. Lai, R. Walker, and M. Robillard,. “Separating Features

in Source Code: An Exploratory Study”. 23rd International Conference

on Software Engineering, Toronto, Canada. May, 2001.
[11] Hyperj. http://www.research.ibm.com/hyperspace

[12] J. Conallen. Building Web Applications with UML. Addison-Wesley,

2000.

[13] J. Stanley and M. Sutton “Multiple Dimensions of Concern in Software

Testing”. First Workshop on Multi-Dimensional Separation of

Concerns in Object-oriented Systems (OOPSLA’99), November 1999.

[14] M. Bruntink, A. van Deursen, and T. Tourwè “An Initial Experiment in

Reverse Engineering Aspects from Existing Applications”. 11th IEEE

Working Conference on Reverse Engineering (WCRE 04), Netherlands.

November 2004.
[15] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwè, “An

Evaluation of Clone Detection Techniques for Identifying Cross-Cutting

Concerns”. IEEE International Conference on Software Maintenance

(ICSM 04), 2004.

[16] M. Han and C. Hofmeister, “Separating and Representing Navigation

Concerns in Web Applications”. Lehigh University, Technical Reports,

2004

[17] N. Noda and T. Kishi, “On Aspect-Oriented Design Applying Multi-

Dimensional Separation of Concerns on Designing Quality Attributes”.
First Workshop on Multi-Dimensional Separation of Concerns in

Object-oriented Systems (OOPSLA’99), November 1999.

[18] P. Tarr, H. Ossher, W. Harrison, J. Stanley, and M. Sutton, “N-degrees

of separation: Multi-Dimensional Separation of Concerns”. 21st

International Conference on SoftwareEngineering, IEEE Computer

Society Press, 1999.

[19] P. Tonella and M. Ceccato, “Aspect Mining through the Formal

Concept Analysis of Execution Traces”. 11th IEEE Working

Conference on Reverse Engineering (WCRE 04), Netherlands.
November 2004.

[20] Rational Rose Web Modeler, http://www.rational.com

[21] S. Breu and J. Krinke. “Aspect Mining Using Event Traces”. 19th.

Conference on Automated Software Engineering 2004 (ASE 04), Linz,

Austria. September 2004.

[22] T. Apiwattanapong, A. Orso and M.J. Harrold, “Efficient and Precise

Dynamic Impact Analysis Using Execute-After Sequences” 27th IEEE

and ACM SIGSOFT International Conference on Software Engineering

(ICSE 2005). USA. 2005

[23] ToscanaJ, http://toscanaj.sourceforge.net/

TABLE III

CASE-A, CONCERNS (EVERY ROW)

Concept Object Attribute

C3 {username, password,

$errorpage, $combine,

$username, $password}

{member.php, Client_Page,

c1.htm}

C2 {username, password,

$combine, $username,
$password }

{member.php, Client_Page,

c2.htm, c1.htm }

C1 {username, password,

submit, reset}

{form }

C0 {username, password} {form, member.php,

Client_Page,

c1.htm, c2.htm }

Z2 {username, password,

$errorpage, $combine,

$username, $password}

{form, member.php,

Client_Page, c1.htm, c2.htm}

Z0 {username, password,

submit, reset}

{form, member.php,

Client_Page, c1.htm, c2.htm }

ZZ0 {username, password,

$errorpage, $combine,

$username, $password,

submit, reset}

{form, member.php,

Client_Page, c1.htm, c2.htm }

