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 
Abstract—The paper presents new results concerning selection of 

optimal information fusion formula for ensembles of C-OTDR 
channels. The goal of information fusion is to create an integral 
classificator designed for effective classification of seismoacoustic 
target events. The LPBoost (LP-β and LP-B variants), the Multiple 
Kernel Learning, and Weighing of Inversely as Lipschitz Constants 
(WILC) approaches were compared. The WILC is a brand new 
approach to optimal fusion of Lipschitz Classifiers Ensembles. 
Results of practical usage are presented. 
 

Keywords—Lipschitz Classifier, Classifiers Ensembles, 
LPBoost, C-OTDR systems, ν-OTDR systems.  

I. INTRODUCTION 

PPLICATION of the C-OTDR (Coherent Optical Time 
Domain Reflectometer) technology to decide various 

problems of extended objects remote monitoring is currently 
being evaluated as a very promising approach [1], [2]. In 
particular, this technology can be effectively used to monitor 
oil and gas pipelines, controlling technological processes and 
identifying unauthorized activities in close proximity of the 
monitored objects. Simplistically, a C-OTDR -system consists 
of an infrared laser, an optical fiber and a processing unit. The 
laser sends the probing signals through the optical fiber which 
is buried in the vicinity of the monitoring object. The 
processing unit is designed for comprehensive processing of 
the backscattered signals, which are called speckle-structures. 
The main item of the C-OTDR technology is a comprehensive 
analysis of the Rayleigh backscattered radiation 
characteristics, which transforms into an energetically 
weakened pulse and propagates constantly in the direction 
opposite to the direction of a pulsed laser flow. The reflected 
signal is created by the presence of static impurities in the 
optical fiber body and defects in the microstructure. Signals 
scattered by the centers coherently and randomly interfere 
with each other, forming so-called speckle patterns. Speckle 
patterns corresponding to different sections of the optical 
fibers are recorded and accumulated in the data center. The 
slightest change of the reflectance index value of the fiber, 
which occurred in a particular place, radically changes the 
speckle pattern corresponding exactly to this place of the fiber. 
These changes are reliably detected by the data center. The 
local changes in refractive index occur under the impact of 

 
Andrey V. Timofeev is with the LPP “EqualiZoom”, Astana, 010000, 

Kazakhstan (phone: +7-911-191-42-67; e-mail: 
timofeev.andrey@gmail.com).  

temperature or due to mechanical action on the optical fiber 
surface. Let us call the optical fiber buried in the soil to a 
depth of 50-100 cm, a fiber optical sensor (FOS). Mechanical 
stress on the FOS surface is caused by seismic acoustic waves. 
These waves are generated of the sources of elastic vibrations 
(SEV) which located in vicinity of laying the FOS. Upon 
reaching the FOS, seismoacoustic wave causes a local 
longitudinal microstrain on its surface. Those microstrains in 
turn, cause a change in the local refractive index of light in a 
relatively small sector of the FOS. As a result, the speckle 
pattern, which corresponds to this sector, changes 
significantly. Thus, the FOS quite accurately reflects the state 
of the seismoacoustic field in its vicinity.  

An alternative to the C-OTDR approach is an approach 
based on the use of photon counting. Those systems are named 
as Photon-counting OTDR or ν-OTDR. Systems of this kind 
provide the good spatial resolution and long FOS. But ν-
OTDR systems provide just greater size of monitoring cycle in 
contrast to C-OTDR monitoring systems. However this 
drawback is gradually eliminated. 

The seismoacoustic field contains information about events 
that occur in the surface layers of the ground near the FOS. 
This field is created by structural waves, which generated due 
to mechanical effects on the soil or as a result of a seismic 
activity. Walking or running man, traffic, earthworks, 
including hand digging are typical sources of the 
seismoacoustic emission (structural acoustic wave). In this 
case, the frequency range of the seismoacoustic waves is in the 
interval of 0 Hz to 1000 Hz. The information, which is 
required for correct identify the type of SEV, is concentrated 
in the frequency range of 0 Hz to 500 Hz, while 95% of the 
meaningful information is in even the more narrow range of 0 
Hz - 350 Hz. The spectral characteristics of the target signals 
which lie above and below this frequency range carry 
information only about the individual characteristics of the 
SEV. The SEV, which are subjects of interest for remote C-
OTDR monitoring will be called a target SEV (TSEV). For the 
convenience of data processing, the entire FOS length is 
broken to successive portions (sites) each has length around 
10-15 m. The data from those sites is processed separately. 
These sites will be called C-OTDR channels or just channels. 
Width of the channel depends on the probe pulse length. In 
practice, TSEV has its own small size and assumed point. Due 
to the nature of the elastic oscillation, the wave from a point 
source of seismoacoustic emission is usually detected 
simultaneously in several C-OTDR channels. At the same 
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time, due to strongly anisotropic medium of the elastic 
vibrations propagation, the structure of the oscillations 
(speckle patterns) varies considerably between different C-
OTDR channels. In each channel a time-frequency 
characteristics of the speckle pattern are largely reflect a time-
frequency structure of the SEV, which occur in vicinity of the 
corresponding channel. The oscillation energy is considerably 
attenuated and distorted during propagation in the 
environment. Intensity of attenuation and distortion depend on 
the average absorption factor of the medium and on the 
distance from the oscillation point to the location of channel. 
C-OTDR monitoring systems perform three major tasks in the 
following sequence: a)vTask “D” (Detection) – detection of 
the TSEV; b) Task “E” (Estimation) – estimate of the location 
of the TSEV; c) Task “C” (Classification) – classification of 
detected TSEV by means of assigning it to one of D priori 
given classes. In the multichannel case, the task “C” has to be 
solved by creation the method of effective multichannel data 
fusion. There are number of various approaches to effective 
multichannel data fusion for task “C” (classification). This 
paper describes results of a comparing various multichannel 
data fusion approaches for TSEV classification including a 
brand new approach which based on weighing of inversely as 
Lipschitz Constants (WILC) and it allows to improve the 
generalization ability of the classification system.  

II. DESIGNATIONS AND RESEARCH OBJECTIVE 

Let us denote  
 C-OTDR channels. ( )

k
Ch   is k-th C-OTDR channel, 

where a tuple ( , )
k k k

R   , here 
k

 is an absorption 

coefficient of k-th channel, 
k

R is a length of k-th channel. 

 Feature. A tuple  ,Z d  is a compact feature space where

Z  is a set of feature values, d  is a metric of Z , data of 

all channels belongs to Z ;  

 Set of SEV classes. A set   is a finite set of indexes of 

SEV-classes, D   .  

 Training Set.   , | 1,...
T i i

Z i N Z ,   ,
i i

Z N  , 

 
1 2

, , ...,
i i i mi

Z  z z z , i
  , each of  , 1, ...,

ki
Z k m z , 

corresponds to ( )
k

Ch  , and to i
 ;  

 True index of SEV class. A *

   is a true index of the 

SEV-class to which the samples 
kz  belong, thus 

*  is an 

index of a target class. 
 Samples to classify. A set  

1 2
, , ...,

m
Z  z z z  is feature 

sample set; each of  , 1, ...,
k

Z k m z , corresponds to 

( )
k

Ch  ; in another words, we obtain the feature sample 
k

z  

from k-th channel ( )
k

Ch  . 

 Lipschitz Margin Classifier. Let 
   f | , 1, ..., ; ,

k k
k m   z  be a binary Lipschitz Margin 

classifier (LMC) [7], [8] with Lipschitz Constant (LC) 
k

L

;  f ( | ) : , \
k k

Z   z  (concept: one against all); so, 

classifier f ( | )
k
   divides the feature space  ,Z d  into two 

classes   and \ ;     f | | ,
k k k k k

f R z z  here 

  1
|

k k
f R z  is discriminate (stochastic) functions (so-

called score-parameters, which shows similarity degree of 

a sample kz  regarding to class   ; discriminant 

function  |
k k

f  z  explicitly dependent on the index 

hypothesis to be tested   and implicitly on the index of 

the target class * ;
k

R  is the classification decision-

making rule   :  |kk k k
R Arg Max f


 


 z ; let us denote 

  - set of LMC  | ,
k k

f  z  parameters, which needs to 

be tuned during of training process; otherwise, set   will 
be denoted as LMCP or LMCP  ; 

 Ensemble of LMC.   ( | ) f | 1, ...,
k k

Z k m  F z  is an 

ensemble of the LMC; 
 { }: , \ZF

q
q q® Q  is an integral classifier on the ensemble 

( | )ZF ;   ( | ) ,F Z


  FF R

  :  ( | )Arg Max F Z


  


 FR  is output of integral 

classifier  ( | )F Z F ;  

  ( | )F Z F  - discriminate function on the classifiers 

ensemble ( | )ZF ,    ( | ) |
k k k

k

F Z f    F z , where

1, 0
k k

k
k

    ; coefficients  
k

  are determined by 

various methods, which are object of our investigation. 
So, there exist m statistical independent C-OTDR channels.

 ( ) | 1, ...,
k

Ch k m Ch . Each of those channels depends of 

external (environmental) parameters tuple ( , )
k k k

R   . 

Simply speaking, these channels transmit signals from sources 
of elastic vibrations (SEV) to FOS. Thus signals 

 , 1, ...,
kk

Z k m z  are outputs of C-OTDR channels Ch . The 

tuple 
k

  defines the effectiveness of channel ( )
k

Ch   for signal 

transmission.  
The signals Z  are contain relevant information about SEV 

time-frequency parameters. Every two channels ( )
k

Ch   and 

( )
p

Ch   distort the SEV time-frequency parameters by 

differently because of external parameters 
k

  and 
p

  are 

different. Accordingly we suppose every two different 

samples 
k

z  and 
p

z  are statistically independent if k p . For 

each C-OTDR channel ( )
k

Ch   are used appropriate D binary 

classifiers  f | ,
k i k
 z i  . Each LMC  f |

k i k
 z  is binary 

classifier, which divides the feature space  ,Z d  into two 
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classes 
i

  and \
i

 .  

So, we need to classify of the SEV type using observation 
Z  of C-OTDR channels Ch . An obvious approach to solving 

this problem is to use the ensemble of LMC ( ( | )ZF ). But 
the problem of effective multichannel data fusion arises. There 
are number of various approaches to multichannel data fusion.  

The goal of this paper is to compare some data fusion 
methods effectiveness. A number of known approaches and 
one a brand new method were studied. The brand new method 
is based on use of Lipschitz constants of LMC's. 

III. SOME APPROACHES TO C-OTDR MULTICHANNEL DATA 

FUSION FOR MULTICLASS CLASSIFICATION OF TSEV 

So the classification problem TSEV is reduced to the task of 
creating an effective multiclass classificator (MC) which is 
based on a LMC classifiers ensemble. We remark that an 
ensemble of classifiers is a set of classifiers whose individual 
decisions are combined in some way (typically by weighted or 
unweighted voting) to classify new examples [6]. At any rate a 
MC learning method choice is a dominant problem. Usually 
the problem of learning a MC from training data is often 
addressed by means of kernel method (KM) [3], [4]. In this 
case each kernel corresponds to an appropriate channel of the 
set Ch . For brevity we will not describe the baseline of this 
well-known method but we are going to pay attention to some 
KM modifications which are designed to work with LMC 
classifiers ensembles.  

For the sake of simplicity, we will consider as a LMC a 
classic SVM [9]. By definition a SVM discriminant function 

 | ,
k k

f  z  depends on the parameters NR   (N is a power 

of the training set
T

Z ) and 1b R . Here α is a normal vector to 

the hyperplane, /b   is the perpendicular distance from the 

hyperplane to the origin, thus we have  , b  , and each 

tuple   defines the hyperplane in the feature space.  

A. Multiple Kernel Learning (MKL) 

In contrast to baseline kernels selection (“averaging 
kernels” and “product kernels” [5], [10]), MKL kernel 
selection is to learn a kernel combination during the training 
phase of the algorithm. So, the MKL objective is to optimize 
jointly over a linear combination of kernels 

 

    ( ) ( )

1
, k ,i j

k

m

kk ki kjZ Z 


 k z z with LMCP  , b  .  

 

Here  ( )

1 2
, , ...,

i

i i mi
Z  z z z ,  ( )

1 2
, , ...,

j

j j mj
Z  z z z ,

1

1, 0
m

k k

k

 


  . MKL was originally introduced in [8]. Let us 

denote       
1 2

( ) k , , k , , ..., k ,
i i i i N

N
K Z Z Z Z Z Z Z R  ,

1, ..., .i m  The final decision has form

   
,1

( )  
Tm

MKL k kk
F Z K Z bArg Max

  


 




  . The choice of 

parameters MKL is made by using for each   the following 
scheme: 
 

 
   

, ,

, ,

1

,1

,1 1

min

     

sb.t. 1, 0

0.5

,

+
b

m

k k

k

m T

k kk

N m T

i k k ii k

K

C D b K Z

 

 

  

  

 

  

  





 

 













   

 

   , max 0,1D t t   ,  ,
Ti i

Z   Z . In other words, in MKL 

case we optimize jointly the convex hull of kernels. Here for 
each θ we have the same LMCP  , b     for different k. 

B. LP-Boost (LP-β)  

So, we will consider a case when classifiers  |
k k

f  z  of 

ensemble  ( | )F Z F  are not trained jointly, but coefficients 

 k
  are determined jointly. Here we have a situation where 

LMCP tuples  are different for different k. This method is 

called the β-LP-Boost [11], and here the final decision has the 
form  

 

   1 , ,( )  
m T

LP k kk k kF Z Arg Max K Z b  


 


  . 

 
The training phase comes down to an optimal choice of 

parameters  
k

 . This choice is performed by using standard 

optimization method (linear programming - LP) according to: 
 

, ,
1

1
min ,                                    

N

i

iN  
 

 

   
  
  
  

 
under the condition:  
 

  
  

1

'', '',
' ''

', ',

1

k ,

arg max k , ,              

m

k k ik

k k i k k

k k

m

ik

Z Z b

Z Z b
 

 

  

  






 

  




 

1, ..., ,i N
1

1, 0, 1, .. .
m

k k

k

k m 


    

 
here   - slack variables,   - regularization constant, which is  

chosen using Cross Validation (CV). In frame of this approach 
not need provide the normalization of kernels  k

k
 . 

Moreover, features for which 0
k

   need not to be computed 

for the final decision function. 

C. LP-Boost (LP-B) 

Another version of LP approach to choice  k
  was called 

B-LP-Boost [12]. In this case, each class has its own weight 
vector. So, we have (m x D) weighting matrix B. The final 
decision has the form: 
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   
1 , ,

( )  
m T

LPB kk k k k
F Z Arg Max K Z bB

 






 

 
 
Choice of parameters k

 we make in such way: 

 

, ,
1

1
min ,                                             

N

i

iN  
 

 

   
  
  
  

 
under the condition: 
 

  
  

1

'', '',1

'

', ',

''

k ,

k , ,                      

m

k ik

m

k i k kk

k k k

k i

Z Z b

Z Z b

B

B  


 





  





 

  




 

1,..., ; ' '',i N   
1

 ,m: 1, 0, 1, .. .
m

k

k

kB k mB 


    
 
 
  

 
Here   are slack variables,   - regularization constant,   is 

chosen using CV. Here we have a linear programming 
problem too, but this problem is more expensive because of 
dimension increasing. 

D. MKL Weighing of Inversely as Lipschitz Constants 
(WILC- MKL) 

Let us consider the brand new modification of the MKL that 
differ from classical MKL by method choice of linear 
combination parameters. The motivation of this approach is 
using some intrinsic properties of LMC. The fact is that value 
of Lipschitz Constant significantly determines of the LMC 
properties. Simply speaking, the Lipschitz classifier decision 
function has to a small Lipschitz constant. This feature comes 
from well-known regularization principle, which recommends 
avoid using discriminative functions with a high variation. So, 
LMC’s with small LC are more preferable for providing of 
stable classification process. In other words, classifiers with 
small LC provide the greater generalization ability of 

classification system. Hence, in formula of  ( | )F Z F  

LMC’s with small LC must get weight coefficients with 
bigger value. Let us call this approach to modification of MKL 
as Weighing of Inversely as to value of the Lipschitz Constant 
(WILC) or WILC-MKL. In frame of WILC-MKL approach to 
LMC-ensemble ( | )ZF we have the following discriminative 

function: 
 

   ,1 ,( )  .   
m T

WILC k kk kF Z Arg Max K Z b  


  


 
 

 

Here 

  1
1 1

, , , ,1
 1, ...,

m

k k j jj
k mL L    


 


  ,

, ,
0

k k    , 

 

, ,1
1

m

k kk   


 , 
,k

L  is Lipschitz Constant of discrimination 

function  T

k
K Z b   . Thus, using WILC-MKL, we make 

attempt to improve the generalization ability of MKL by 
considering information about variation characteristics of 
classifiers discrimination functions. As it was shown in series 

of practical experiments, usage of WILC-MKL allows 
considerably improve the performance of LMC-ensemble in 
some practical cases. 

IV. RESULTS OF PRACTICAL USAGE 

All of above described methods were used for multichannel 
TSEV classification in C-OTDR system of railways 
monitoring. This system was successfully installed on the 
railways test area (RTA) of Kazakhstan Railways Company 
(JSC NC “KTZ”) in September of 2014, and this system 
continues to operate. The RTA is located at a distance of 10 
km from Astana City. The FOS which has been installed on 
RTA has length around 2000 m, depth of the FOS laying is 50 
сm approximately, and FOS offset from rails is 5 m. 
Parameters of the C-OTDR system: a) duration of the probe 
pulse is 50-200 ns; b) period of probe pulse ~ 50-300 μs; c) 
laser wavelength - 1550 nm.  

In this case, the main problem is to fusion of multichannel 
data to classify the TSEV with maximum accuracy. As was 
said above, for each C-OTDR channel ( )kCh   are used 

appropriate D binary classifiers  f | ,
k i k
 z i

  . Each LMC 

 f |
k i k
 z  is binary classifier, which divides the feature space 

 ,Z d  into two classes 
i

  and \
i

 . Each LMC  f
k
  was 

trained independently, and each LMC uses the same set of 

features in the space  ,Z d . The  ,Z d  is the ordinary 

GMM-vector space [13]. We describe the procedure for 
calculation of the GMM-vectors very briefly. On feature 
extraction phase for each speckle pattern obtained in the 
probing period T for each of the channel are built Linear-
Frequency Spaced Filterbank Cepstrum Coefficients (LFCC). 
In our case these features are based on 10 linear filter-banks 
(from 0.1 to 500 Hz) derived cepstra. Thus, 10 static and 10 
first-order delta coefficients were used, giving the feature 
order m = 20. Further, approximation of the probability 
distribution function of the feature vectors (LFCC) by semi-
parametric multivariate probability distribution model, so-
called Gaussian Mixture Models (GMM), was carried. 
Presently, the GMM is one of the principal methods of 
modeling broadband acoustic emission sources (including 
TSEV) for their robust identification. The GMM of TSEV 
feature vectors distribution is a weighted sum of J components 
densities [13] and given by the equation   ( ),T

s s s
P x x  w B  

where x is a random m-vector,  
1
, ... J

s s sJ
w w R w ,  

 

    
1

( ) , ... ,J

s s sJ
x B x B x R B

    

   

1/ 2 1/ 2

,

1

2

1
exp

2
                              

m

si si
s i

T

si si si

B x

x x



 





  

    
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In general, diagonal covariance matrices 
si

  are used to 

limit the model size. The model parameters 
s
  characterize a 

SEV in the form of a probabilistic density function. During 
training, those parameters are determined by the well-known 
expectation maximization (EM) algorithm [13]. In the 
described experiments value J was equal to 1024. Thus, for 
identification of TSEV class, each TSEV is modeled by a 
GMM-vector and is referred to as his model parameters Z  . 

The classic SVM with Bhattacharyya-kernel [2] was used as 
the LMC. 

 
TABLE I 

THE PRACTICAL DETECTION RESULTS 

Method Type of TSEV Accuracy 
Volume of 
training set 

MKL 

"hand digging the soil" 76% 60 

"chiselling ground scrap" 79% 60 

“pedestrian" 78% 80 

"group of pedestrians " 79% 30 

"passenger car" 79% 50 

"train" 100% 150 

"heavy equipment excavator" 81% 20 

"easy excavation equipment" 83% 20 

"shrew digging the ground” 81% 30 

LP-β 
"hand digging the soil" 81% 60 

"chiselling ground scrap" 83% 60 

 

“pedestrian" 81% 80 

"group of pedestrians " 83% 30 

"passenger car" 80% 50 

"train" 100% 150 

"heavy equipment excavator" 85% 20 

"easy excavation equipment" 86% 20 

"shrew digging the ground” 84% 30 

LP-B 

"hand digging the soil" 82% 60 

"chiselling ground scrap" 85% 60 

“pedestrian" 79% 80 

"group of pedestrians " 84% 30 

"passenger car" 81% 50 

"train" 100% 150 

"heavy equipment excavator" 86% 20 

"easy excavation equipment" 88% 20 

"shrew digging the ground” 88% 30 

WILC-
MKL 

"hand digging the soil" 81% 60 

"chiselling ground scrap" 82% 60 

“pedestrian" 78% 80 

"group of pedestrians " 83% 30 

"passenger car" 84% 50 

"train" 100% 150 

"heavy equipment excavator" 84% 20 

"easy excavation equipment" 87% 20 

"shrew digging the ground” 86% 30 

 
Priori defined target classes of TSEV, which collectively 

makes up a finite set . For example, in case of railways 
monitoring the array   consists of the following TSEV 
classes: “train”, "hand digging the soil", "chiseling ground 
scrap", "pedestrian", "group of pedestrian", "passenger car", 

"heavy equipment excavator", "easy excavation equipment". 
Five alternative approaches for multichannel data fusion were 
compared on stage of TSEV classification. In particular, 
MKL, LP-β, LP-B, and WILC-MKL approaches were used. 
The results of using these methods as parts of the C-OTDR 
system are presented in Table I. 

In the process of using the method WILC-MKL values of 
Lipschitz Constants were evaluated numerically for each LMC 
from ensemble ( | )ZF . The volumes of training sets were 

equal for each of various data fusion approaches, but those 
volumes were different for various TSEV types. Presented 
results prove that LP (β and B) are more effective with respect 
to MKL, and WILC-MKL approaches. At the same time, 
WILC-MKL is more effective compared to MKL, but the LP-
B is the best approach for a fusion of multichannel data in C-
OTDR monitoring systems. It is important: the LP-B approach 
requires more computing resources than the WILC-MKL 
approach, wherein the accuracies of those methods are close. 
That is why the WILC-MLK approach is preferable from the 
practical point of view. 

V. CONCLUSION 

This paper describes results of comparison of various 
multichannel data fusion approaches for TSEV classification 
including MKL, LP-β, LP-B, and WILC-MKL. The practical 
usage of these approaches proves better effectiveness (in sense 
of accuracy) of LP-B approach to fusion of multichannel data 
for classification of TSEV type. A brand new approach, 
WILC-MKL, was suggested for multichannel data fusion. This 
approach is simple to use (it requires less computing resources 
than LP-B) and performs well in a C-OTDR classification 
subsystem.  
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