
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1771

Moving Towards Positive Security Model For Web
Application Firewall

Asrul H. Yaacob, Nazrul M. Ahmad, Nurul N. Ahmad and Mardeni Roslee

Abstract— The proliferation of web application and the perva-
siveness of mobile technology make web-based attacks even more
attractive and even easier to launch. Web Application Firewall (WAF)
is an intermediate tool between web server and users that provides
comprehensive protection for web application. WAF is a negative
security model where the detection and prevention mechanisms are
based on predefined or user-defined attack signatures and patterns.
However, WAF alone is not adequate to offer best defensive system
against web vulnerabilities that are increasing in number and com-
plexity daily. This paper presents a methodology to automatically
design a positive security based model which identifies and allows
only legitimate web queries. The paper shows a true positive rate of
more than 90% can be achieved.

Keywords— Intrusion Detection System, Positive Security Model,
Web application Firewall

I. INTRODUCTION

W ITH the increased number of Internet’s users, many
applications have been designed to provide more and

more services. Applications ranging from simple web site to a
complex word editing application are now available in Internet.
With the proliferation of the applications, everyone can create
their own web site and web application with a few clicks.
Several applications are more vulnerable to attack than the oth-
ers. This is due to the fact that the applications are developed
by community which includes both highly experienced and
new programmers. The increased number of vulnerabilities
is consistent with the number of applications deployed [1].
By exploiting vulnerability in the application, the attacker
is able to do things, which by default are not authorised
such as modifying the content of web pages, deleting tables
in database or even distributing malwares. Thus, it is very
important to protect the web application. The efforts taken by
several organisation such as SANS and OWASP contributes to
the decrease of incidents [1].

As reported in [2], [3], the top vulnerabilities in web
application are SQL injection (SQLi) and cross-site scripting
(XSS). These two types of vulnerabilities are caused by a
common mistake in application development: improper saniti-
sation of user-supplied input [1]. As users control the input, the
developers need to check before using it. In SQLi, an attacker
uses the input to send SQL command to directly interact with
the backend database. This makes possible for the attacker to

Asrul H. Yaacob and Nazrul M. Muhaimin are with Faculty of Informa-
tion Science and Technology (FIST), Multimedia University (MMU), Jalan
Ayer Keroh Lama, 75450 Melaka, Malaysia. (phone: +606-2523680; email:
{asrulhadi.yaacob, nazrul.muhaimin}@mmu.edu.my)

Nurul N. Ahmad and Mardeni Roslee are with Faculty of En-
gineering (FoE), Multimedia University (MMU), Jalan Multimedia,
63100 Cyberjaya, Selangor, Malaysia. (email: {nurulnadia.ahmad, mar-
deni.roslee}@mmu.edu.my)

retrieve sensitive information or even modify the database. In
XSS, an attacker sends or stores a malicious script. Contrary
to SQLi, the victim of the attack is not the application but the
users of that application. Using this mechanism, attacker may
distribute malwares to the visitor of the infected web. One of
the ways to avoid the attacks, web developer needs to be more
careful [4].

One approach to mitigate the problem is by using Web
Application Firewall (WAF). It is considered as a subset of
Intrusion Detection System (IDS), focusing mainly on the
detection of attacks for web application. WAF has capability
to perform the detection in two techniques: signature-based
and anomaly-based. A signature-based WAF detects the attack
by comparing the request to a database of known attack
signature. As the latter offers the possibility to detect known
and unknown attacks, researchers focus more on this technique
compared to the former one. Various techniques have been
investigated [5]–[10].

A signature-based WAF is a set of rules to identify the
attacks, either known or unknown. The process of identifying
the attacks is known as negative security or black listing model
[11]. Most of the researches focus on designing WAF based on
this model. The model needs to be updated when a new attack
or a variant of old attack surfaces. Alternatively, in positive
security or white listing model, a set of normal requests is
created. Using this model, the list is updated if and only if the
web application is updated. As the positive security model
recognises only the normal request, the negative security
model is also need to identify correctly the attack. Thus, the
combination of both models should give the best result for
WAF in terms of accuracy and speed of detection.

The objectives of this study are to investigate the possibility
of constructing an automated positive security model and to
measure the performance in identifying legitimate request.
In this paper, the positive security model is constructed by
using the log of our official web server. It is then used to
classify the requests into either legitimate or attacks. The main
contribution of this paper is the methodology to automatically
construct a positive security model that can be used in WAF.

The remainder of this paper is structured as follow: Section
II focuses on Hyper Text Transfer Protocol (HTTP) and the
details of SQLi. Section III presents the background of WAF
and both of the models used; positive and negative models.
The description of our basic model and the methodology in
building an automated positive security model is presented
in section IV. The experiments and results are described in
section V. The last section contains the conclusion and future
work.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1772

II. THE PROTOCOL & THE THREATS

A. The Protocol

Hypertext transfer protocol (HTTP) is the main protocol
to access web application [12]. It is based on client-server
architecture. A web client or browser sends a request to a web
server. The server receives the request and replies to the client
accordingly. HTTP request format and example are depicted
in Fig. 1 and Fig. 2 respectively. On the other hand, the format
and example of HTTP reply are depicted in Fig. 3 and Fig. 4
respectively.

��������	
��

��������� �������	��

��������
 �������	�
 ��������������

��������� �������	��

������������

����� �� ��� �� ������

�
��� � ���

�
��� � ���

�

����� �!���"#

Fig. 1 HTTP Request Format

�������	
����� ������������

���������	�����������
����� ������!�����"�#�
�� $������%�"����&�����'
(��%�)������*�+�""��,�'�-*� �����$.�/���"�����0
) �������&��$��"�����.��'�123�3.��'�4 ��������
����%
) ����5� ��������+��2���"���2�� $
) �����������������(62��.��'�4
) �����$�%�����/67�44,1�2����4.��'�823.��'�9

:5�

Fig. 2 HTTP Request Example

��������	

� ���	��
�� ���	
������	� ���	��
��

������������ �������������

�����������
 ������������
 ��	�
�	��������

������������ �������������

��	�
�	�����

��

�
 �

�
 �

�

�����!"#���$%

Fig. 3 HTTP Reply Format

��������������	
���������

������������������������������� �

�!"�!��#$�%&���������'()��*
+�!,��#%%�$��-�%./��0
1.������-�%./��0��02�$
1.���������0�&������ 3��$.����4��/�!
	��$�#��"�����5�.�6����5�76���
1.���%��.���	��$�#��"�
1.�������,$�����7��&�5�

�#�#�'8.��!�$!������/*

Fig. 4 HTTP Reply Example

Based on the Fig. 2, the method used to obtain the web
page is GET. This is the most common and the default request
method. This method also is used when users click on a link
of a web page. With this request method, the DATA field is
generally empty as there is no user-supplied data. If there is a
need to transmit data from users, two request methods can be
used; GET and POST. In the former request method, the data
is encoded in the Uniform Resource Identifier (URI) part or
the request. In the later request method, the data from users
in encoded in the DATA field.

The information in the HEADER part is generated by
browser, as shown in the Fig. 2, where the request is from
Mozilla browser. It contains the information related to the
request and the session such as cookies and the capabilities
of the browser or server. This information is used by browser
and server to communicate better and to identify the user.
Generally, users do not need to modify or know the content
of the header. The same goes for the header part of the reply
message from the server.

To identify an attack towards web application, it is important
to know the information that can be modified by the attacker.
The easiest way to transmit the attack is with the URI. The
information in the URI includes the location, the name as well
as the parameters for a resource as depicted in Fig. 5. The
parameters, if any, are normally generated by web application
at the server side. In some cases, the user input will form the
parameters of the URI. Based on the parameters submitted, a
different result is send by the web application.

����

���	
�������������������������������	��������������������
�

�������� ���������	

Fig. 5 URI Example

Using a modified and often malicious value of parameters,
a vulnerable web application can be attacked. The attacker can
directly types the URI that contains a malicious parameters in
the browser that resulted a GET request method. Specialised
tools can also be used to submit a more sophisticated attack
using POST. In this case, the parameters are normally in DATA
part of the request. Detecting an attack submitted using GET
method is easier than detecting an attack using POST method.
This is because URI is normally recorded in a log file while
the DATA part of the request is not stored.

B. The Threats

The submitted parameters are used by the web application at
server side. The respond from the server may vary depending
on the value of the parameters. Developers are expected to
check the input before using it. Since the query can be
modified by attackers, there is a high probability that the
parameters contains malicious data. Two major attacks related
to this are SQLi and XSS.

It is common to have a database connected to the server
and the parameters are used to form an SQL query. In Fig. 5,
parameter id or Itemid may be used in a program as shown in
Algorithm 1. The value of id generated by the web application
is valid thus forming the expected SQL query. In case of
SQLi, the attacker provides an id containing malicious SQL
query. One of the possible value for id is ’1; DROP TABLE
content_table’. If the web application is vulnerable and the
code is executed, the table content_table will be deleted. Other
examples of SQLi can be found in [13].

The parameters can also be used to display a dynamic
message to the visitor. If the parameters are not verified, it
is possible to submit a malicious message to another visitor.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1773

Algorithm 1 Example of vulnerable SQL query

SELECT contents
FROM content_table
WHERE id=$_GET[’id’];

An example of PHP code vulnerable to XSS is presented in
Algorithm 2. If the parameter name is set correctly to a person
name, e.g. ’code.php?name=guest’, then everything is run as
expected. However, if the attacker launches an XSS attack us-
ing ’code.php?name=guest<script>alert(’attacked’)</script>’,
then a popup windows will be executed.

Algorithm 2 Example of code vulnerable to XSS

<?php
$name = $_GET[’name’];
echo "Welcome $name
";
echo "Go to

Home";
?>

Both of the attack describe previously sent the malicious
content to the web server. The target of SQLi attacks is the web
server whereas the target of XSS is another user. A successful
SQLi attack leads to server compromise. In order to prevent
the attack, malicious codes need to be block before reaching
the server. In XSS, the server will act as an intermediate
system in an attack towards the end user. The malicious codes
need to be block before relaying it to the end users.

III. WEB APPLICATION FIREWALL

A. Definition

Web application becomes one of the main platforms for
the attackers to gain access to the system. In order to protect
web application, the administrator can deploy WAF. The
main functionality of WAF is to protect the web application
from attacks or intrusions. WAF inspects both incoming and
outgoing traffic to web server [14]. The concept of intrusion
detection is widely covered under IDS and IPS researches.
Thus, most of the researches apply the same concepts in
developing WAF. The researches in WAF are mainly on the
detection technique based on anomaly and negative security
model.

In order to inspect web traffic, WAF operates in one of the
following modes: reverse proxy, transparent proxy and host-
based. In reverse proxy mode, the WAF is place between the
web client and web server. The clients use the address of the
WAF as the web server and all the requests are forwarded to
WAF. This enables the WAF to inspect the requests and based
on the result, WAF will forwards if it is legitimate or will drop
if it is an attack. In transparent proxy mode, the functionality is
the same as reverse proxy except that the web server address is
used directly and WAF is transparent to the users. Both reverse
and transparent proxy may require a separate device. In host-
based mode, WAF is part of the web server and normally

function as a module. All the requests are first analysed by
WAF module and then followed by the web server module.

Two approaches are used to detect the attacks; signature-
based and anomaly-based. The former is used to identify a
known attacks and a regular updates of signatures is required
whereas the later is used to identify unknown or new attacks
which will be the deviation of the model constructed in the
initial attacks-free learning phase. Both of the approaches will
identify the attack instead of legitimate web requests. This
model is known as negative security model where the focus
is on the attacks. Another security model is positive security
model where the focus is on legitimate web requests.

B. Negative Security Model – Blacklisting
A negative security model focuses in the detection of

attacks. In signature-based detection approaches, it defines
the signatures of attacks. This list is also known as blacklist.
Construction of blacklist requires an expert domain to analyse
a known attack. Generally, the patterns in the blacklist are
generic and with some customisation can be used for all web
application. Every web request needs to be compared to all
the patterns in the blacklist before it can be considered attack-
free. The process of verification depends on the size of the
blacklist and often it is time consuming [15].

Defining the patterns in negative security model can be
a very complex task. Even though the basic model is quite
generic, web administrator still needs to customise the model
accordingly. Applying the generic model to a web application
without customisation normally will result into a high false
positive rate [7]. The customisation also needs a domain
expert, as there is no automated process that could help. A
common way to define the model is to use regular expression
but such move to define the attack imposes some risks [16].

The blacklist also needs to be updated regularly and the fre-
quency of updates depends on the vendors. Thus, the accuracy
of detection depends on the updates rate [15]. Even though
the blacklist is updated on time, it is still not a complete list
of all possible attacks. Attackers can used various techniques
in order to evade the detection [7]. The evasion techniques
like white space diversity, fragmentation, segmentation and
encodings can be used in SQLi [17].

Since the signature-based detection cannot detect unknown
attacks until it is updated, many of the researchers focus on the
anomaly-based detection technique. This technique consists
on modelling a normal behaviour and detects the deviation
as an attack [18]. Thus, new attacks can be identified if it
is significantly deviates from normal behaviour. Nevertheless,
this technique still needs to be used together with signature-
based technique due to lower detection rate and throughput
[19].

C. Positive Security Model – Whitelisting
Another model in WAF is positive security model. In this

model, the focus is on the legitimate or valid requests. A
whitelist is constructed based on the model of legitimate
request. It is then used to classify the incoming request. A
request that is not in the whitelist is considered as an attack.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1774

The size of whitelist is smaller compared to blacklist as it
only contains the model of legitimate request. Even though
every requests needs to be analysed, the result is known at
the first match again one of the signatures or patterns. Thus,
one of the advantages of this model compared to the negative
security model is that legitimate requests will be processed
faster. Since the majority of the requests are legitimate [20],
the time spends in analysis is lesser.

In order to create the whitelist, the same approaches as
previous could be used. The signature of legitimate requests
can be constructed manually as mentioned in [7]. In this case,
the whitelist contains all the valid resources in the forms
of strings or regular expressions. It is also possible to use
an advanced technique such as in [18] to create a model of
legitimate requests. The whitelist only needs to be updated if
the web application changes significantly, which will occurs
less frequently compared to negative security model. For
a large-scale web application, it is simply not possible to
manually define the whitelist containing every single page
and possible parameters, as it is too complicated. Thus, in
order to use positive security model, it is desirable to have an
automated ways to create the whitelist.

IV. AUTOMATED WHITELIST MODEL

A. Basic Model

Assuming that the web server is already functional, it is pos-
sible to automatically create a model based on the information
in the log file. A standard log file contains the required infor-
mation to create the model. The more information we have
in the log file, the more reliable model could be constructed.
From the log, we extract the following information:

• IP address of the client
• Requested URI
• Referrer
• Response size
• Response status code

As the main source of information is the log file, the model
created can be considered very basic. It is impossible to have
a complete analysis, as the most of the information on the
HEADER and the DATA part is not present. The model created
will be able to identify a normal request mainly based on
the URI. As illustrated in Fig. 6, the model together with
identification module is used together in order to protect web
server.

������ ������
��	
� ��	��������� �	�	��

�����	

�	��	��
������
 ��
�������
���
�������

��
 �
��	��	�
����� �	�
���	� 	
!	

��
�������

Fig. 6 Usage of Basic Model

From the log file, the information is extracted and saved into
a database. The URI is separated into smaller part: location,
name and parameters. The model in this paper consists of a list

of valid URI extracted from the log. Any URI that is not in the
list is considered as an unknown request. A further analysis
is needed to determine if the request is malicious or not. We
have identify three cases where the model will classify the
request as unknown:

1) Low hit: A URI with a low request number will not
satisfy the required we set even though it is a valid one.

2) New resources: The model identifies the URI as un-
known when a new web page or resource added as in
basic model only known URIs are included.

3) Attack scenario. As stated in A., attacker needs to
modify the parameters and sent the modified URI in
order to launch an attack. In this case, the model will
be able to identify the request as unknown.

B. Building the Model

The model is built based on a URI that is considered normal.
In this paper, we are building a model that contains a complete
and valid URI obtained from log. A valid and normal URI is
requested by normal and trusted users whereas a malicious
URI is requested by the attackers. By identifying a trusted
user, it is possible to determine either URI is valid or not.
Since the information about the user is not in the log, we use
the client’s IP and referrer as an alternative. Also included in
the model the URI for static resources.

1) Static Resource: A webpage contains dynamic and static
resources. Dynamic resources changes based on the parameters
given. A scripting or programming language is used to create
dynamic resources. Example of dynamic resources includes
pages generated with PHP. Whereas, static resources do not
change and normally do not required any parameter. Example
of static resources includes images, CSS file and javascript
file. One of the characteristics of static resources is fixed size.
Based on this criteria, we include in the model, the URI that
always return the same response size.

2) Trusted Machine : As user information is not included
in the log, there is a need to identify a valid and trusted
user based on others information. In this case, the IP of the
user can be used. If a trusted and valid user using the same
computer whenever he want to connect to the server, then
the computer is consider trusted. An example is the computer
of the web administrator. If it is possible to differentiate the
administrator’s machine from others, then the URI send by
that machine can be included in the model.

3) Trusted Referrer : It is trivial to include URI of static
resource and URI from trusted machine in the model. A less
trivial one is to include URI from a trusted referrer. A referrer
is the URI of a resource. Most of the time, it is a web page’s
URI. Assuming a user is viewing a web page and he click on
a link, both of the URI are normally transmitted to the server.
The URI of the link is placed in the URI part of the request
message, whereas the URI of the web page is transmitted
in the HEADER part of the request. A normal web browser
formats the request message with correct information. Based
on referrer from the log, it is possible to identify the valid URI.
Assuming the attackers may forge the referrer information, not
all referrer may be trusted. A trusted referrer must be selected

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1775

in order to ensure the validity of the URI. It is important to
identify the referrer before adding the URI in the model. A
trusted referrer must have a high number of:

• resources if refer to: that means the referrer contains
many links to the other resources in the same server. The
links can be images, another web page or javascripts

• client having it as a referrer: that means many clients
visited the page (referrer) and follow the links in the page

From this list of referrers, only the top-n of the referrer is
considered as trusted referrer. It is then possible to added URI
having the trusted referrer to the model. The referrer itself can
be added to the model if it is from the same server.

All the URI to be included in the model can be automatically
extracted from the web server’s log, even if there are attacks
recorded in the log. The model can be updated by the
administrator as needed. Once the model is created, it can
be used until a new web application is used.

V. EXPERIMENT AND RESULTS

To test the performance of our model, we used the log file
for our faculty web server. The log contains 7008 records from
two web applications. A manual verification and classification
was done for all the records. This verification is important as
it is used as a based for our model. The request is classified
into normal request, attack and deadlink. A deadlink request
is a request to a deleted resource. From the log, the number of
distinct URI is 758. The distribution between normal request,
attack and deadlink is shown in Table I and Table II.

TABLE I
DISTRIBUTION OF OVERALL RECORDS

Number Percent
Normal 6940 99.03
Attack 61 0.87

Dead Link 7 0.10
Total 7008 100.00

TABLE II
DISTRIBUTION OF DISTINCT URI

Number Percent
Normal 758 94.75
Attack 36 4.50

Dead Link 6 0.75
Total 800 100.00

Our model is created using the log file based on the concepts
describe in Section B.. Since the objective of positive security
model is to identify a normal request, we classify the record
to either manual or unknown. The result is then compared
to the manual verification. Only the requests classified as
normal are compared. As our focus is more on the trusted
referrer, only the local machine, i.e. 127.0.0.1, is considered
as trusted machine. Overall result is shown in Table III. The
result shows that both static and trusted machine contribute a
little in forming the model. The classification of URI is mostly
based on the URI from trusted referrer. This could changes if
we include more machine in the trusted machine.

The total number of requests identified as normal by our
model is not simply the sum of the three techniques. Several

TABLE III
OVERALL RESULT

Normal Unknown TP Rate (%)
Static resource 585 6423 8.429

Trusted machine 356 6652 5.130
Trusted referrer 5932 106 85.476

Total 6309 699 90.908

URI may be identified as valid by more than one technique.
Corollary, the total number of unknown is less than the
sum of the three techniques. URI that is not identified by
one techniques may be identified by others techniques. By
combining the three techniques, our model is able to identify
correctly 90.908% of the normal requests.

The result in Table III is obtained by limiting the number
of trusted referrer, by resources and by client, to the top 20
referrers only. The actual number referrer is not exactly 2×N
as there may be the same referrer in both lists. For top 20,
it is about 12% of the total 238 referrers identified from the
log file. Table IV show the result of identification, by trusted
referrer and overall, when the number of trusted referrer is
varied. The last row shows the maximum true positive rate
for our model since we include every referrers in the trusted
referrer.

TABLE IV
TRUSTED REFERRER

Top-N No of referrer Trusted referrer Overall
No % No %

20 29 5932 85.476 6309 90.908
30 45 5967 85.980 6332 91.239
50 66 5984 86.225 6349 91.484

100 138 6072 87.493 6437 92.752
300 238 6128 88.300 6493 93.559

The overall result show the rate of identification by the
model. Table V show the number of URI contains in the
model. This URI need to be compared with the number of
URI manually identified, Table II. Only trusted referrer is
shown since it provide the majority of the identification. From
this table, we know that the model covers only about 40% of
the valid requests. Even though the model only covers less
than half of the valid requests, the true positive rate is more
than 90%. This is mainly because of the remaining URIs not
included in the model are a low hit request or infrequently
accessed. Another indication about the low hit resources is to
look at the difference in the increase rate of the model and the
overall identification. An increase of 10% in the completeness
of the model only increases 2% in the overall identification.

TABLE V
COMPLETENESS OF MODEL

Top-N Trusted referrer
No %

20 299 39.45
30 321 42.35
50 338 44.59
100 378 49.87
300 410 54.09

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1776

VI. CONCLUSIONS

In this paper we present a method to build an automatically
a whitelist of valid HTTP request to be used in a positive
security model in WAF. The previous log of web server is
used to create the model. The result show that it is possible to
have identify correctly the valid request with identification rate
more than 90%. The model should help to reduce the work
to identify an attack, as the number of unknown request will
be less than 10%. Even though the model created only covers
about 40% of valid request, the performance in identifying a
normal request is satisfying.

Since the model is created based on the log, it is not able
to identify a new resources added to the web application. Our
future work will be to integrating a generic URI capable to
identify a new resources based on the current URI pattern
generated from web application. Another area of improvement
includes the detection of low hit resources.

REFERENCES

[1] T. Scholte, D. Balzarotti, and E. Kirda, “Have things changed now? An
empirical study on input validation vulnerabilities in web applications,”
Computers & Security, vol. 31, no. 3, pp. 344–356, May 2012.

[2] OWASP, “OWASP Top 10 Application Security Risks - 2010,” OWASP
The Open Web Application Security Project, Tech. Rep., 2010.

[3] WhiteHat Security, “WhiteHat Website Security Statistic Report - Winter
2011,” WhiteHat Security, Tech. Rep., 2011.

[4] Symantec Corp., “Symantec Internet Security Threat Report,” Symantec
Inc., Tech. Rep., 2011.

[5] H. T. Nguyen, C. Torrano-Gimenez, G. Alvarez, S. Petrović, and
K. Franke, “Application of the Generic Feature Selection Measure in
Detection of Web Attacks,” in Computational Intelligence in Security
for Information Systems, ser. Lecture Notes in Computer Science, vol.
6694. Springer, 2011, pp. 25–32.

[6] M. F. Abdollah, A. H. Yaacob, S. Shahib, I. Mohamad, and M. F.
Iskandar, “Revealing the Influence of Feature Selection for Fast Attack
Detection,” International Journal of Computer Science and Network
Security, vol. 8, no. 8, pp. 107–115, 2007.

[7] A. Moosa, “Artificial Neural Network based Web Application Firewall
for SQL Injection,” World Academy of Science, Engineering and Tech-
nology, no. 64, pp. 12–21, 2010.

[8] V. Alarcon-Aquino, C. A. Oropeza-Clavel, J. Rodriguez-Asomoza,
O. Starostenko, and R. Rosas-Romero, Intrusion Detection and Clas-
sification of Attacks in High-Level Network Protocols Using Recurrent
Neural Networks. Springer Netherlands, 2010, pp. 129–134.

[9] A. H. Yaacob, I. K. T. Tan, S. F. Chien, and H. K. Tan, “ARIMA Based
Network Anomaly Detection,” in 2010 Second International Conference
on Communication Software and Networks, no. 1. Ieee, 2010, pp. 205–
209.

[10] A. Gulve, “Survey On Intrusion Detection System,” International Jour-
nal Of, vol. 4, no. 1, pp. 7–13, 2011.

[11] A. Razzaq, A. Hur, M. Masood, K. Latif, H. F. Ahmad, and H. Taka-
hashi, “Foundation of Semantic Rule Engine to Protect Web Application
Attacks,” in Autonomous Decentralized Systems (ISADS), 2011 10th
International Symposium on. Ieee, 2011, pp. 95–102.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “RFC 2616, Hypertext Transfer Protocol – HTTP/1.1,”
1999.

[13] F. S. Rietta and G. Way, “Application layer intrusion detection for
SQL injection,” in Proceedings of the 44th annual southeast regional
conference on ACMSE 44. ACM Press, 2006, p. 531.

[14] S. Stankovic and D. Simic, “A Holistic Approach to Securing Web
Applications,” Journal of Computing, vol. 2, no. 1, pp. 16–20, Jan. 2010.

[15] R. Koch, “Towards Next-Generation Intrusion Detection,” in Cyber
Conflict (ICCC), 2011 3rd International, 2011, pp. 1–18.

[16] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered
harmful in client-side XSS filters,” in Proceedings of the 19th interna-
tional conference on World wide web - WWW ’10. New York, New
York, USA: ACM Press, Apr. 2010, p. 91.

[17] O. Maor and A. Shulman, “SQL Injection Signature Evasion Whitepa-
per,” 2004.

[18] C. Torrano-Gimenez, A. Perez-Villegas, and G. Alvarez, “A Self-
learning Anomaly-Based Web Application Firewall,” in Computational
Intelligence in Security for Information Systems, ser. Advances in
Intelligent and Soft Computing, A. Herrero, P. Gastaldo, R. Zunino,
and E. Corchado, Eds. Springer Berlin / Heidelberg, 2009, vol. 63, pp.
85–92.

[19] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Computers & Security, vol. 28, no. 1-2, pp.
18–28, Feb. 2009.

[20] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
2012.

