
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:6, 2009

1315

Abstract— The flash memory has many advantages such as low

power consumption, strong shock resistance, fast I/O and
non-volatility. And it is increasingly used in the mobile storage device.
The YAFFS, one of the NAND flash file system, is widely used in the
embedded device. However, the existing YAFFS takes long time to
mount the file system because it scans whole spare areas in all pages of
NAND flash memory. In order to solve this problem, we propose a
new content-based flash file system using a mounting time reduction
technique. The proposed method only scans partial spare areas of
some special pages by using content-based block management. The
experimental results show that the proposed method reduces the
average mounting time by 87.2% comparing with JFFS2 and 69.9%
comparing with YAFFS.

Keywords—NAND Flash Memory, Mounting Time, YAFFS,
JFFS2, Content-based Block management.

I. INTRODUCTION
LASH memory increasingly becomes a popular storage
medium in mobile devices, because it provides solid state

storage with high reliability and high density at a relatively low
cost[1]. Besides, the smaller size is the more suitable for mobile
devices. However flash memory is 5~10 times more expensive
than hard disk. The reading speed of the flash memory is very
fast, but its erasing and writing speed is relatively slow [2].

Two popular types of flash memory are NOR flash memory
and NAND flash memory. NOR flash memory offers faster
reading speed and random access capabilities. It makes NOR
flash memory suitable for code storage in devices such as PDAs
and cell phones. However, with NOR flash memory
technology, write and erase functions are slow compared to
NAND flash memory. NOR flash memory also has a larger
memory cell size than that of NAND flash memory so that it
limits scaling capabilities and achievable bit density compared
to NAND flash memory [3].

Flash memory is composed of blocks and pages. Entire flash
memory is divided into blocks and each block is divided by the
same number of pages. For small block, it consists of 32 pages
and each page has a size of 512 bytes. On the other hand, for
large block, it consists of 64 pages and each page has a size of
2048 bytes [3]. Fig. 1 shows the structure of the NAND flash
memory.

Won-Hee Cho and Geun Hyung Lee are with the Department of Electronic
Engineering, Inha University, Incheon, Rep. of Korea (e-mail: {chowon,
ghlee}@iesl.inha.ac.kr).

Deok-Hwan Kim is with Department of Electronic Engineering, Inha
University, Incheon, Rep. of Korea (corresponding author to provide phone: +
82-32-860-7424; fax: 82-32-868-3654; e-mail: deokhwan@ inha.ac.kr).

Fig. 1 The structure of 1the NAND flash memory

Microsoft Flash File System is a flash native file system
using linked-list data structure for NOR flash memory [4].
Later, Log-structured File System (LFS) structure [5] was
adopted to flash memory file system. JFFS is the first flash
memory file system which adopts LFS structure based on NOR
flash memory [6]. Later, it was upgraded to JFFS2. It used in
Linux operating system. JFFS2 was then later extended to
support NAND flash memory, but it could not show optimized
performance because NAND flash memory has different
characteristics. Thus YAFFS (Yet Another Flash File System)
was designed for NAND flash memory[9][10]. YAFFS is
another log-structured flash file system which is optimized for
NAND flash memory. It shows a better I/O performance than
JFFS. However, YAFFS has an inherent mounting time
problem since its mounting time increases rapidly as the size of
flash memory becomes large.

In this paper, we propose a content-based flash file system
using mounting time reduction technique. It only scans partial
spare areas of some special pages, which includes header, by
using content-based block management. The remainder of this
paper is organized as follows: in section II. We review the
NAND flash memory file system (YAFFS), and in Section III,
we present the content-based block management for mounting
time reduction. The experiments and the conclusion are in
section IV and section V, respectively.

1 This research was financially supported by the Ministry of Knowledge

Economy(MKE) and Korea Industrial Technology Foundation (KOTEF) through the
Human Resource Training Project for Strategic Technology, and ETRI SoC Industry
Promotion Center, Human Resource Development Project for IT SoC Architect, and the
Korea Research Foundation Grant funded by the Korean Government" (KRF-2008-
313-D00822).

Mounting Time Reduction using Content-Based
Block Management for NAND Flash File System

Won-Hee Cho, GeunHyung Lee, and Deok-Hwan Kim

F

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:6, 2009

1316

II. YAFFS (YET ANOTHER FLASH FILE SYSTEM)
In the YAFFS, each page has data or metadata of file system.

When the file system is mounted, it reads all metadata such as
the header information in NAND flash memory and builds the
binary tree structure of file system in memory [7]. Page is
called the chunk and the chunk is composed of data area and
spare area.

Fig. 2 The structure of the YAFFS

Fig. 2 shows the structure of the YAFFS in the case that a file

is stored into two blocks. The file header information is stored
in data area of the first page (chunkID 0) of each block,
respectively. The header in data area is composed of file name,
size, modify time and top directory. Unless chunkID is 0, data
area of the page is filled with file data. The spare area of the
page consists of chunkID, block status, page status, ECC area
and tag, etc. Page status has an identifier representing valid or
invalid page. Tag area consists of data size, file version and
inodeID, etc.

III. DESIGN AND IMPLEMENTATION OF CONTENT-BASED
BLOCK MANAGEMENT FILE SYSTEM

The flash memory has different features compared with
existing storage medium [8]. These features can be described as
the following attributes. First, flash memory's physical inability
is to prevent data from overwriting in same addresses. So,
outplace update is indispensable for flash memory. Second,
flash memory has an erasing limitation. Therefore,
wear-leveling is another function for expanding the life time of
flash memory. Recent flash file system such as YAFFS, JFFS2
provides such functions. However, their mounting time
increase rapidly according as the size of flash memory
increases.

In this paper, we present content-based YAFFS using
content-based block management in order to reduce its
mounting time.

1. Content-Based Block Management
Content-based YAFFS divides the block into pure, mixed

and free types. The pure block is completely filled with file
data. Mixed block is filled with one or more files and/or empty
pages. Free block is composed of empty page only.

The YAFFS file system needs to read the whole spare areas
to check the block type. On the other hand, content-based

YAFFS determines the block type when writing the file. For
example, suppose that a NAND flash memory is with total
capacity of 512Mbyte, and it is composed of the block size of
128Kbyte and the page size of 2Kbyte. When 4.4Mbyte mp3
file is written, 35 pure blocks and 1 mixed block are created by
applying formula (1).

, (1)
Where is the number of pure block, is the number of

mixed block, is the file size, is the block size.

Fig. 3 The structure of the pure block

Fig. 3 shows the structure of the pure block. The header
information is stored in the first page of the block. For the
content-based block management, the block type field in
reserved area of spare area of first page is set to “00”.

Fig. 4 shows the structure of the mixed block. Two headers
information are stored in the pages of the block. In this case the
block type field is set to “01”. The difference between pure
block and mixed block is the number of headers. Pure block has
only one header whereas mixed block has two or several
headers. Therefore, by only scanning the spare area of first
page, we can easily determine the block type.

Fig. 4 The structure of the mixed block

2. Mounting Time Reduction
During the mounting time, series of data stored in the flash

memory needs to be processed to produce the meaningful data.
However, due to the limitation of flash memory, we can’t

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:6, 2009

1317

reserve any space for this purpose. So, whenever file system is
mounted, the open file table needs to be constructed through the
file information in the header and Meta data in the spare area of
every page of all blocks. Because of this, we can see that very
long time is required to mount the file system.

In this paper, we propose a mounting time reduction
technique by storing block type field in the spare area of the
first page. It reduces the mounting time because we can build
up the open file table by only scanning the header and spare
area of the first page of each block.

Fig. 5 shows the mounting time of standard YAFFS. Since
the block contents are unknown, spare areas of all pages in the
block must be scanned to determine the block type. If we
assume the scanning time of a spare area of the page as T, the
mounting time will take more than or equal to 5*T. In
content-based YAFFS, pure block or mixed block can be
identified through the block type field as shown in Fig.6. For
the pure block, the same file is stored in the same block. In this
case, the mounting time will be 1*T. Likewise, for the mixed
block, the same file can be stored in several blocks. In this case,
mounting time will be the number of blocks in this file*T.

Page

Page

Page

Page

Header

Spare

Spare

Spare

Spare

Spare

YAFFS

Scanning
Time : 5*T

Fig. 5 Mounting time of the YAFFS

Fig. 6 Mounting time of the content-based YAFFS

After scanning, each block is managed by one of three linked

lists. Fig. 7 shows the flow chart for content-based block
management.

Fig. 7 Identification of block types

IV. EXPERIMENT
In this section, we compare the proposed method with other

standard file systems like the YAFFS and JFFS2 in terms of
mounting time. We conducted two experiments on Linux
2.6.17 environment. We simulated IPTV environment using
standalone desktop and USB flash memory.

In the first experiment, we compared average mounting time
of the proposed content-based YAFFS and the standard file
systems using various small files. We measured the average
mounting time by scanning the spare areas of the blocks in the
flash memory. We used empty file and variable files of sizes
with the range from 64Kbytes to 32Mbytes.

Fig. 8 Average mounting time for JFFS2, YAFFS and content-based
YAFFS using various small files

Fig. 8 shows the average mounting time for JFFS, YAFFS

and content-based YAFFS using various small files. The result
shows that the average mounting time of content-based YAFFS
is 87% and 69% less than those of JFFS and YAFFS,
respectively.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:6, 2009

1318

Fig. 9 Average mounting time for JFFS2, YAFFS and content-based
YAFFS using large multimedia files

Fig. 9 shows the average mounting time for JFFS, YAFFS

and content-based YAFFS using large multimedia files
Empty file and various multimedia files of sizes with the

range from 4Mbytes to 734 Mbytes are used. The file with size
of 734Mbytes is widely used multimedia contents for 1 hour
VOD service. The result shows that the average mounting time
of content-based YAFFS is 94% and 80% less than those of
JFFS and YAFFS, respectively. Besides, it shows that the
enhancement ratio of the mounting time increases as the file
size increases.

V. CONCLUSION
In this paper, we proposed content-based YAFFS to

accelerate the mounting speed of the file system. Our
experiments show that the performance of the proposed method
is much enhanced when the large multimedia files are used.
Therefore, we anticipate that the content-based YAFFS can be
applied to the storage system for IPTV.

In the future work, we will apply the content-based YAFFS
to real IPTV environments which uses network file stream
service.

REFERENCES
[1] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B.Marsh, and J.A.Tauber,

"Storage Alternatives for Mobile Computers, "In Proceedings of the 1st
Symposium on Operating Systems Design and Implementation, pp.25-37,
1994.

[2] K.H Park, J.S Yang, J.H Chang and D-H. Kim, "Anticipatory I/O
Management for Clustered Flash Translation Layer in NAND
FlashMemory, "ETRI Journal Vol. 30 No. 6, 2008.

[3] Samsung Electronics Co., "NAND Flash Memory & SmartMedia." Data
Book, 2002.

[4] D. Woodhouse, "JFFS: The Journaling Flash File System,"Technical
Paper of RedHat inc. Oct. 2001.

[5] M. Rosenblum and J. K. Ousterhout, "The Design and Implementation of
a Log-Structured File System, "ACM Transaction on Computer System,
Vol 10, No. 1, pp.26-52, 1992.

[6] A. Kawaguchi, S. Nishioka, and H. Motoda, "A Flash-Memory Based File
System, " In Proceedings of Usenix Technical Conference, New Orleans,
Louisiana , pp.155-164, Jan. 1995.

[7] YAFFS Spec, http://www.aleph1.co.uk/yaffs/yaffs .html.
[8] Intel Coporation, "Understanding the Flash TranslationLayer (FTL)

specification" 1997.

[9] H.J Kim, Y.J Won, "Mobile Multimedia file System for NAND Flash
based Storage Device, " Consumer communications and Networking
Conference, Volume 1, pp. 208-212, Jan.2006.

[10] S.H Kim, Y.K Cho, "The Design and Implementation of Flash
[11] Cryptographic File System Based on YAFFS, "Information Science and

Security Conference, No. 10, pp.62-65, Jan. 2008.

Wonhee Cho was born in Ulsan, Korea in June 27, 1985. He received the BS
degree in computer and information technology from the Myong-Ji University,
Korea, in 2007, and the MS degree in electronic engineering from Inha
University, Incheon, Korea, in 2009. His current research interests include
intelligent algorithm in storage system, automotive software technology.

GeunHyung Lee was born in Incheon, Korea in July 7, 1983. He received the
BS degree in computer engineering from the Inha University, Korea, in 2008,
and the MS degree in electronic engineering from Inha University, Incheon,
Korea, in 2010. His current research interests include intelligent algorithm in
storage system, automotive software technology.

Deok-Hwan Kim is corresponding author. He received the BS degree in
computer science and statistics from Seoul National University, Korea in 1987
and the MS and PhD degrees in computer engineering from Korea Advanced
Institute of Science and Technology, Daejeon, Korea, in 1995 and 2003,
respectively. From March 1987 to Feb. 1997, he was with LG Electronics, as a
senior engineer. From Jan. 2004 to Feb. 2005, he was with University of
Arizona, Tucson, in a postdoctoral position to work on multimedia systems and
embedded software. Currently, he is an associate professor in the School of
Electronic Engineering at Inha University, Incheon, Korea. His research
interests include embedded systems, intelligent storage systems, multimedia
system, and data mining.

