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Abstract—Cerebellar ataxia is a steadily progressive 

neurodegenerative disease associated with loss of motor control, 

leaving patients unable to walk, talk, or perform activities of daily 

living. Direct motor instruction in cerebella ataxia patients has limited 

effectiveness, presumably because an inappropriate closed-loop 

cerebellar response to the inevitable observed error confounds motor 

learning mechanisms. Could the use of EEG based BCI provide 

advanced biofeedback to improve motor imagery and provide a 

“backdoor” to improving motor performance in ataxia patients? In 

order to determine the feasibility of using EEG-based BCI control in 

this population, we compare the ability to modulate mu-band power 

(8-12 Hz) by performing a cued motor imagery task in an ataxia 

patient and healthy control. 

 

Keywords—Cerebellar ataxia, Electroencephalogram, 

brain-computer interface, motor imagery.  

I. INTRODUCTION 

EREBELLAR ataxia is a rare neurodegenerative disease 

associated with loss of motor control. Some independence 

could be restored through the use of a brain-computer interface 

(BCI), which has been used to decode brain signals to drive a 

computer controller, a wheelchair joystick, or even a prosthetic 

arm for other patients with motor impairments. 

BCIs use electrophysiological measures of brain function to 

enable individuals to communicate directly with their external 

world, bypassing normal neuromuscular pathways. 

Recently, noninvasive BCIs have used a variety of 

electroencephalogram (EEG) based features to communicate 

the intent of the user, such as slow cortical potentials and 

event-related desynchronization via motor imagery. This 

noninvasive EEG-BCI has been a highly active research topic 

in neuroscience, engineering, and signal processing. One of the 

reasons for this development is the remarkable advances of BCI 

systems with respect to usability, information transfer, and 

robustness for which modern machine learning and signal 

processing techniques have been instrumental [1]. 

One of the most important characteristics of the EEG 

recorded over the sensorimotor cortex is linked to possible 

modulation of EEG rhythms through simple motor imagery, 

e.g., imagining a flexion of the right or left elbow. A widely 

used rhythm for control is the “mu” rhythm (8-12 Hz). The 

reason for utilizing this is that it shows an increase in power 

during relaxation (event-related synchronization, ERS), and 

similarly, a decrease during real and imaginary motor 
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movement performance (event-related desynchronization, 

ERD) [2]. This characteristic can be utilized to control a cursor 

in at least one dimension. The two electrodes shown to have the 

largest weight of mu rhythm are located at C3 and C4 or 

adjacent positions, but recruitment of more electrodes could be 

necessary for control of more sophisticated movements. 

EEG mapping may be distorted in the setting of neurologic 

disease, which may affect the ability of ataxia patients to use 

EEG-based BCI. EEG is a rough measure of neural activity, 

based on the voltages generated by the firing of large 

populations of neurons, as recorded over time from the scalp at 

discrete sites. Although the literature states that the EEG 

pattern is “normal” in cerebellar degeneration, this presumably 

refers to the lack of heightened epileptogenic potential, which 

does not necessarily indicate that the EEG is comparable to that 

of unaffected individuals. We hypothesize that cortical regions 

of the corticocerebellar circuit may show functional 

abnormalities when they are connected to areas of primary 

cerebellar degeneration. The strong interconnections between 

the cerebellum and the cerebral cortex most likely contribute to 

the distortion in the processing of sensory feedback. 

Electrophysiological studies in ataxia are rarely performed as 

early EEG studies were reportedly normal [3], [4]. There are, 

however, some disease-specific differences in visual evoked 

potentials, [5] and auditory evoked potentials, [6] suggestive of 

white matter disease located outside of the cerebellum and its 

direct connections. Seizures are not a common clinical 

manifestation, except in certain rare subtypes, such as 

acetazolamide-responsive paroxysmal ataxia [7]; EEG findings 

are consistent with the epileptic phenotype. 

Electrophysiological biomarker studies in other 

non-epileptic brain conditions demonstrate that EEG measures 

are useful for detecting clinically relevant, disease-specific 

differences [8]. However, electrophysiological studies in ataxia 

are not routinely performed in the clinical setting, given that 

early EEG studies were reportedly normal [9]. There are, 

however, some disease-specific differences in visual evoked 

potentials, auditory evoked potentials, and auditory brain stem 

response suggesting that there may be white matter disease 

located outside of the cerebellum and its direct connections.  

There is some evidence that motor imagery is affected in 

cerebellar ataxia. In a study of people with unilateral cerebellar 

stroke, patients attempting motor imagery showed decreased 

motor evoked potential facilitation in the associated motor 

cortex [10]. In a second study, patients that had apparently 

recovered from a unilateral cerebellar stroke showed a marked 

slowing of motor performance in both hands (ipsi- and 

contralateral to lesion). This effect was accompanied by a 
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similar slowing of motor imagery, suggesting that the 

cerebellum, traditionally implicated in the control of motor 

execution, is also involved in nonexecutive motor functions 

such as the planning and internal simulation of movements 

[11]. 

 

 

                               (a)                                             (b) 

Fig. 1 The event related spectral power (ERSP) differences between 

the averages of the two task condition for the control (a) and ataxia (b) 

subjects from the C3 electrode 

 

 

 (a) 

 

 

(b) 

Fig. 2 (a) Pairwise correlation of bandpass-filtered signals between each 

electrode and C3/C4. Increasing ataxia severity (FSFA scores [0-5] 

listed in the top row) is associated with broadened spatial distribution of 

correlation, (b) Linear regression of mean correlation against FSFA, R2 

= 0.525 

 

In order to demonstrate feasibility in this first study of 

non-invasive, EEG-based BCI in cerebellar ataxia, we assessed 

the ability to modulate mu-band power during a cued motor 

imagery task. We also examined possible differences in 

performance associated with ataxia, as these differences might 

necessitate modification in BCI decoding algorithms. 

II. METHODS 

Four cerebellar ataxia patients (Functional Staging for 

Ataxia FSFA score 1-5 [12]) and five control subjects provided 

informed, written consent according to a research protocol 

approved by the Johns Hopkins University Institutional Review 

Boards. Subjects had never previously used an EEG-based BCI 

interface. 

During each trial, subjects were visually cued either to enter 

a state of relaxation (target appears at the top of a computer 

screen) or to imagine motor movement (target appears at the 

bottom). A three-state (move up, move down, remain still) 

EEG-based BCI was used to control the position of a cursor in 

one dimension on a computer screen. EEG Signals were 

acquired using a QuickCap 64-channel EEG cap (modified 

10-20 system, referenced between Cz and CPz, and grounded 

anteriorly to Fz; Compumedics, El Paso, TX). The amplifier 

and signal processing modules were connected through 

client-server architecture, with a Neuroscan SynAmps2 

64-channel amplifier system from Compumedics (El Paso, TX) 

acting as the server, and the signal processing module running 

on a separate client computer. Data were sampled at 250 Hz, 

with a band-pass filter applied between 0.1 and 30 Hz, and 

transmitted over a TCP/IP protocol to the client PC for storage 

and real-time signal processing using a custom BCI platform. 

EEG signals were spatially filtered using common average 

referencing. The C3 and C4 electrodes, which generally 

overlap with the hand-area of the primary motor cortex, were 

then used in an autoregressive (AR) model to determine the 

power spectrum [13] as  
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where E denotes the electrode of interest, 
ka  denote the AR 

coefficients, is the order of AR model, and is an independent 

identically distributed stochastic sequence sith zero means and 

variance 2σ  [14]. Here, K was set to 15. In addition, Burg's 

spectral estimation method was used to estimate the 

time-varying AR coefficients. Then, the power spectral density 

(in dB) of the AR processes was obtained by 
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and the mu-band (8-12 Hz) power was determined at time 

instants 
kt  as the mean of )(P µω , where, µω  denotes the 

mu-band frequency range. 

The sum of the mu band power of the C3 and C4 electrodes 

were used to train a two stage hierarchical linear classifier. A 

gating classifier G was designed to identify significant 

modulations of power due to intention, which is given by 
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where 
1Gw  

2Gw , 
GB , and 

GT  are the weights, bias, and 

threshold, respectively, as determined online. A second 

movement classifier was designed to distinguish between the 

relaxation and the motor imagery task, 
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where 
1Gw  

2Gw , 
MB , and 

MT  are he weights, bias, and 

threshold, respectively, as determined online. Finally, the 

output of classifiers was the product of the two classifiers, 
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where +1 corresponds to relaxation, -1 to motor imagery, and 0 

to no task. If the cursor reached a target 7 steps away from the 

center where trials start, within 15 seconds, the trial was 

considered a success. To achieve a trial success case, the sum of 

)( kF t  over all 
kt  within that trial must equal +7 in the 

relaxation trials, and -7 in the motor imagery trials before 15 

seconds elapse. Subjects underwent 16 trials each set (8 

relaxation and 8 movement imagery trials), with a 

pseudo-randomized order of presentation within each set. 

To determine spatial correlation, the signal amplitude over 

the duration of the experiment was band-pass filtered 

(Butterworth) from 8-12 Hz. Correlations between the 

time-domain signals at each channel were taken pairwise with 

C3, then C4. To determine spectral correlation, the Spearman 

correlation between the mu-band power and successive 1 Hz 

bins was taken. 

III. RESULTS 

Our primary endpoint was to evaluate the possibility that 

ataxia patients could achieve control of a BCI using cued motor 

imagery. Indeed, subjects were able to achieve mean trial 

success of greater than 13.21% (chance performance rate) on 

their first session. Chance performance was calculated as the 

probability of reaching the target based on an equal probability 

of performing any of the three possible movements with each 

step, up to the maximum allowable 30 steps. The average 

successful chance trial duration was determined as the first 

moment of chance successes rates for the allowable step counts. 

Fig. 1 suggests that the representative ataxia patient and 

control subject show an increased difference in power in the 

mu-band (8-12 Hz), between relaxation and motor imagery. 

Darker shades of red represent an increase in power during the 

relaxation task over the motor imagery task at the same time 

point and frequency band within the trial. The blue trace on the 

left indicates average power of each frequency. The bottom 

blue trace indicate minimum power over the range of 

frequencies at each time point, while the bottom green trace 

indicates maximum power at each time point. This difference is 

greater in the control subject as compared to the ataxia patient. 

Although trials continued on beyond 4 seconds, the power 

difference between the two tasks is not as obvious, due to the 

inability of subjects to maintain the required imagination 

throughout the task duration. The ataxia subject had higher 

power activity in low frequency bands, which is most likely due 

to movement artifacts.  
 

 

 (a) 

 

 

(b) 

Fig. 3 (a) C3/C4 mean power shift ± SEM. Ataxia patients show 

decreased amplitude and lack of frequency specificity, (b) C3/C4 

mean spectral power correlation with mu band ± SEM. Ataxia patients 

show broader correlation 

 

Fig. 2 shows the pairwise correlation of bandpass filtered 

signals between each electrode and C3 and C4. Control subjects 

achieved the expected modulation, which was modulation, 

which was isolated to the mu peak and was located primarily in 

C3 and C4. However, ataxia patients showed a different control 

profile in Fig. 2 (a), showing higher correlation of C3 and C4 

activity with surrounding brain regions. Increasing ataxia 

severity (FSFA scores listed in the top of figure) is associated 

with broadened spatial distribution of correlation. With more 

cases, it is clear that the spatial correlation is broadened with 

increasing FSFA score (R2=0.525). 

Fig. 3 shows, the spectral correlation over frequency ranges 

for both control and ataxia groups. Power modulation was not 

isolated to mu-band range, but was correlated with broad 

changes in other spectral bands. Futhermore, spectra of ataxia 
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subjects showed a smaller mu band peak during relaxation. 

Here, p-value was used.In Fig. 3 (a); it shows C3/C4 mean 

power shift standard error of mean (SEM) and resulting 

p-value. Ataxia subjects show decreased amplitude and lack of 

frequency specificity. Fig. 3 (b) shows C3/C4 mean spectral 

power correlation with mu band SEM. From figure, we come to 

know that ataxia patients show broader correlation. 

IV. CONCLUSIONS 

Our works demonstrate that despite the theoretical 

possibility that patients with severe ataxia may have impaired 

motor imagery and abnormal cortical rhythms, an ataxia patient 

is capable of generating sufficient changes in cortical rhythms 

to achieve voluntary control of an EEG based BCI using cued 

motor imagery.  

Although BCI control is possible for ataxia patients, 

electrophysiology is abnormal. Impaired synchronization of 

circuits could result in spectral smearing of the resulting signal, 

explaining the less pronounced mu-band peak during ERS as 

well as the increased bandwidth modulated during ERD. This 

reduced amplitude could lead patients to use alternative 

strategies to achieve BCI control, such as compensatory 

modulation of more distal brain regions. This could provide the 

necessary power shift and would explain the observed 

broadening of spatial correlation. Intriguingly, these EEG 

differences correlate with disease severity, suggesting that EEG 

modulation could be used as a biomarker of disease progression 

or to train motor imagery.  
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