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Motion Parameter Estimation via
Dopplerlet-Transform-Based Matched Field

Processing
Hongyan Dai

Abstract— This work presents a matched field processing (MFP)
algorithm based on Dopplerlet transform for estimating the motion
parameters of a sound source moving along a straight line and with a
constant speed by using a piecewise strategy, which can significantly
reduce the computational burden. Monte Carlo simulation results and
an experimental result are presented to verify the effectiveness of the
algorithm advocated.
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I. INTRODUCTION

IN recent years MFP techniques proposed by Bucker [1]
have been successfully applied to target motion analy-

sis (TMA). MFP matches a measured acoustic field with
a predicted field, based on a motion model of the sound
source, for all possible motion parameters of an acoustic
source in a search region[2]. The Dopplerlet transform [3]
estimated the parameters via Matching Pursuits which adap-
tively decomposes any signal under analysis into a linear
combination of a set of atoms that are selected from a large
redundant dictionary of atoms in accordance with the criterion
of maximum projection energy. Although the computations
of Dopplerlet transform are carried out only on the lattice
points through the discretization of parameters, the exhaustive
search of a multidimensional parameter space results in heavy
computational burden. In fact, all MFP techniques inherently
have large computational demands, so there is an increasing
interest in their efficient implementations [4]-[5]. In this paper
we present an efficient MFP algorithm based on Dopplerlet
transform, for estimating the motion parameters of a sound
source using a single sensor, and show how the computational
burden can be significantly reduced (5 to 15 times).

II. CONVENTIONAL ESTIMATION METHOD BASED ON

DOPPLERLET TRANSFORM[3]

A. Dopplerlet Transform

Doppler signals are a class of signals existing in nature.
Dopplerlet transform is parsimonious for delineating the time-
varying spectral contents of such Doppler-like signals. The
Dopplerlet transform of any square-integrable signal s(t) ∈
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L2(R) may be readily defined as
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where j =
√−1, σ ∈ R

+, u ∈ R
+, (tc, fc) ∈ R

2, l � 0,
u > v � 0, “〈, 〉” denotes the Dirac inner product and
the superscript “∗” denotes the complex conjugate operation.
Clearly, such a Dopplerlet is dictated by, besides the shape of
g(t), the following six parameters that each has an intuitively
satisfying significance: time center tc, frequency center fc,
log duration log σ (note that if

∑
log σ is an arithmetic

progression, then
∑

σ is a geometric progression, thereby σ
denotes the dilation), distance r between the observer and the
line that the source moves along, source speed v, and wave
propagation speed u. The motion parameter set is denoted as
γ = (tc, fc, r, v, u).

B. Energy-Based MFP Algorithm

The (complex) Dopplerlet transform can be written con-
cisely in the form

DTs(γ) = 〈s(t), d(t)〉 . (3)

Then, signal s can be decomposed into

s = 〈s, d〉 d + Rs (4)

where 〈s, d〉 d is the projection of s in the direction of d,
Rs is its corresponding residual signal. The matching-pursuit-
based Dopplerlet transform is an iterative projection algorithm
that subdecomposes the residual signal Rs by projecting it on
a vector that matches Rs almost at best, as was done for s in
(4). After each iteration, a Dopplerlet atom that best matched
the dominating component of residual signal is selected. The
decomposition process is iterated until the residual energy is
below some threshold or until some other halting criterion is
met.

When we apply the above-mentioned algorithm to the
scenario of estimating a sound source moving along a straight
line and with a constant speed, we will get only one selected
Dopplerlet atom. Then, the motion parameters according to
this Dopplerlet atom is what we want.
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III. EFFICIENT IMPLEMENTATION

A. Replica Model

According to Eq. (2), for an assumed motion parameter
space Γ, the replicas are formed by the product of the
magnitude envelop am(ti) and the frequency fm(ti) plus white
noise n(ti) ∼ N (0, σ2

n)

s(ti) = d(ti) + n(ti) (5)

= am(ti) · fm(ti) + n(ti) (6)

where

am(ti) =
1√
D

(7)

fm(ti) = cos

{
j2πfc

[
1+

v2(ti − tc)
u · D

]−1

(ti − tc)

}
(8)

D =
√

r2 + [v(ti − tc)]
2
, i = 1, 2, · · · , NK. (9)

Fig. 1 shows a Doppler signal according to Eq. (6) (σ2
n=0).
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Fig. 1. Doppler signal without noise.

B. Frequency Energy Distribution Curve

We can divide a Doppler signal s(t) according to Eq. (6)
into K time blocks, and each time block has N data points
and a time duration T = N/Fs s, where Fs is the sampling
frequency.

Note that each time block is assumed to be quasi-
stationarity, viz, the magnitude change is small and the fre-
quency may approximate to constant, which guarantees the
main frequency energy in each time block concentrates in a
narrow frequency band. So T should be chosen small enough
to meet the quasi-stationarity approximation but large enough
in order that the overall number of time blocks is small enough
that the matching process is computationally feasible.

Let Rf be the frequency resolution and �f be the overall
frequency change owing to Doppler effect, then we may
choose Fs and N to uphold the following condition

Rf =
Fs
N

= �f (10)

which may ensure that the main frequency energy of each time
block concentrates in a narrow frequency band centered in fc.

Carrying out the Discrete Fourier Transform (DFT) on each
time block of the replica, and the largest complex number in
each DFT sequence f is defined as DFT factor. Then, we will
get a sequence F = [f(1), f(2), · · · , f(K)], called frequency
energy distribution curve, representing change of the main
frequency energy in each time block. We may get L curves
Fl = [fl(1), fl(2), · · · , fl(K)] in the search space Γ, where
l = 1, 2, · · · , L.

Following the above-mentioned process, we may also get
the frequency energy distribution curve of the received signal
s′(t), F ′ = [f ′(1), f ′(2), · · · , f ′(K)].

Fig. 2 shows the frequency energy distribution curve of the
signal in Fig. 1.
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Fig. 2. Frequency energy distribution curve of the signal in Fig. 1.

C. Effects of DFT

The DFT has two effects here. First, an entire time block
of N samples is reduced to a single complex number f(k),
and its absolute value represents the frequency energy in a
narrowband in kth time block, the validation of which is
guaranteed by Eq. (10). This enables matching process to be
performed in a far smaller data set, therefor vastly decreasing
the computational burden. Second, as the white noise energy
distributes uniformly in the frequency domain and the main
frequency energy of the signal is in a narrowband, the white
noise energy in this narrowband is quite small. In this sense,
DFT suppress white noise.

Fig. 3 is the signal in Fig. 1 with the signal-to-noise ratio
(SNR) 1 dB and its frequency energy distribution curve is
shown in Fig. 4.

As we can see in Fig. 3, due to white noise effect, the
signal is so ambiguous that it loses its Doppler characteristic,
which limits the adaption of energy matching in time domain.
However, the frequency energy distribution curve is just less
sleek and keeps the essence variation of the main frequency
energy.
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Fig. 3. Doppler signal with SNR = 1 dB.
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Fig. 4. Frequency energy distribution curve of the signal in Fig. 3.

IV. MFP ALGORITHM

A. Cost Function

The correlation coefficients of the frequency energy dis-
tribution curves between the received signal and the replicas
show the similarity degree of actual motion parameters and
the estimation ones. tc, fc, r, v and u corresponding to the
replica with the largest correlation coefficient of frequency
energy distribution curve between the received signal and the
replica, are the very parameters we want. The cost function
for matching data between received signal and an assumed set
of replicas is

C ′
l(k) =

|F ′(k)| · |Fl(k)|T
‖ |F ′(k)| ‖2 · ‖ |Fl(k)| ‖2

(11)

where F ′(k) = [f ′(1), f ′(2), · · · , f ′(k)], Fl(k) =
[fl(1), fl(2), · · · , fl(k)], “| · |” denotes the absolute value,
“‖ · ‖” denotes the usual L2-norm and superscript “T” denotes
the transpose operation.

As C ′
l(k) ≤ 1, we change Eq. (11) to

Cl(k) = C ′
l(k) · C ′

l(k − 1) · · · · · C ′
l(1). (12)

Then, the cost scores in Eq. (12) according to the curve with
incorrect parameters will reduce more quickly over time. This
cost function is maximised over the parameter space Γ.

In a parameter space composed of all possible combinations
of motion parameters, incorrect replicas will often yield poor
scores after a small number of time blocks. Fig. 5 shows
the match scores for 441 replicas with a noise-free simulated
Doppler signal. As we can see in this figure, many of the
replicas yield poor scores after the first 50 time blocks. None
of these are likely to be the successful replicas and thus
the computations are wasted if these replicas are matched
in the entire parameter space Γ. We could compute the cost
function Eq. (12) at each consecutive time block, discarding
the candidates with poor cost scores, which has the potential
to decrease the computations required to find the best replica.
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Fig. 5. Match scores for 441 replicas with a noise-free simulated Doppler
signal.

This batch process would involve recomputing the correla-
tion coefficient at each time, which is also wasteful. Iterative
strategy by updating the scores from previous time block,
can surmount this drawback, thereby leading to an efficient
algorithm for matching process.

We can rewrite Eq. (11) as:

C ′
l(k) =

αl(k)√
βl(k) ·√ηl(k)

(13)

where

αl(k) = |f ′(1)||fl(1)| + |f ′(2)||fl(2)| +
· · · + |f ′(k)||fl(k)| (14)

βl(k) = |f ′(1)|2 + |f ′(2)|2 + · · · + |f ′(k)|2 (15)

ηl(k) = |fl(1)|2 + |fl(2)|2 + · · · + |fl(k)|2. (16)

It is clear that αl(k), βl(k) and ηl(k) can be expressed in
terms of αl(k − 1), βl(k − 1) and ηl(k − 1) as follows

αl(k) = αl(k − 1) + |f ′(k)||fl(k)| (17)

βl(k) = βl(k − 1) + |f ′(k)|2 (18)

ηl(k) = ηl(k − 1) + |fl(k)|2. (19)

The cost function Eq. (13) for kth time block can now be
expressed as

C ′
l(k) =

αl(k − 1) + |f ′(k)||fl(k)|√
βl(k − 1) + |f ′(k)|2 ·√ηl(k − 1) + |fl(k)|2 .

(20)
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By substituting Eq. (20) into Eq. (12), we can compute the
cost scores in an iterative and parallel manner as more data
becomes available, which first results in decrease in storage
requirements.

B. Discard Threshold

As the maximum of the cost score is 1, when the cost score
in kth time block decrease 1/K than that in (k-1)th time block,
or the cost score is under the threshold Th, the replica dl

should be discarded. The discard criteria is as follows:

Cl(k) − Cl(k − 1)
Cl(k)

>
1
K

or Cl(k)≤ Th.
(21)

C. Fast MFP Algorithm

We can use coarse to fine matching strategy to ulteriorly
decrease the computational burden. An algorithm to implement
the matching process in an efficient manner can thus be
specified as follows.

1) Coarse matching.
Guess the initial values of the parameters, determine
reasonably the rough parameter intervals for matching,
and use relatively big and fixed matching steps, thus,
forming the candidate coarse search space Γ1.

a) Iterate over each of the K time blocks. In the kth
time block,

i) Compute the DFT factor of the received signal
f ′(k);

ii) Form the replica [d(t(k−1)N+1) · · · d(tkN )] ac-
cording to Eq. (6);

iii) Compute the DFT factor of each replica fl(k);
iv) Update αl(k), βl(k) and ηl(k) according to Eq.

(17), (18) and (19), respectively;
v) Compute the cost score for each replica Cl(k)

according to Eq. (12);
vi) Discard the replicas that do not satisfy the dis-

card criteria, and replace the current parameter
set γ1

Γ1 = {γ1 ∈ Γ1 |
Cl(k)−Cl(k−1)

Cl(k) > 1
K or Cl(k) ≤ Th} ;

b) Process the next time block k = k + 1.

2) Fine matching.
After finishing coarse matching, we get the coarsely
estimated parameter set γ̃ = (t̃c, f̃c, r̃, ṽ, ũ). To find a
Dopplerlet atom that matches the signal even better, we
then perform the numerical optimization by searching
for the parameters in a neighborhood of γ̃ in much
smaller searching steps to reach a local maxima. The
candidate coarse search space is Γ2. The detail matching
process is the same as that of coarse matching. Denote
the fine parameter set as γ̂ = (t̂c, f̂c, r̂, v̂, û).

D. Speed Gain

We expect an improvement in the matching speed inherent
in the FFT-based processing schemes. The ratio of the compu-
tation load in conventional method, i.e., computing the replica
field for each trial motion parameter and then computing the
Dirac inner product in time domain[3], to that in this FMFP is
given by

Speed Gain ≈ (L1 + L2) · K · N
(1 + K)

∑K
k=1 {k [Ld1(k) + Ld2(k)]}

(22)

where L1 and L2 are the number of replicas of coarse and fine
matching, respectively, and Ld1(k) and Ld2(k) are the number
of discarded replica in kth time block of coarse and fine
matching, respectively. Note that we suppose the computations
of N points DFT approximate to those of K points inner
product.

V. APPLICATION

In this section we present simulation results using computer-
generated signals and an experimental result to verify the
effectiveness of this matched field processing algorithm using
a single sensor.

A. Simulation

To demonstrate the feasibility of this matching algorithm,
we performed a simulation test using a computer-generated
signal. Suppose that the underwater source moves along a
straight line with speed v = 45 m/s, distance r = 100 m,
center frequency fc = 60 Hz, wave propagation u = 1440
m/s (usually, the wave speed is known), time center tc = 5
s (which amounts to a signal duration of t = 10 s) and time
duration of each time block T = 0.05 s.

The coarse matching process without discard is shown
in Fig. 5. Following the above discard criteria, assume the
threshold Th=0.5, the coarse matching process is shown in
Fig. 6 and the histogram of discard occurrence is in shown
Fig. 7, where the matching steps for tc, fc, r, v, respectively,
are 1 s, 5 Hz, 5 m and 5 m/s. As we can see in Fig. 7, after
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Fig. 6. Coarse matching process with discard.

50th time block, there leaves only 20% replicas. The coarse
match result γ̃ = (t̃c, f̃c, r̃, ṽ, ũ) = (10.8, 64, 96, 43, 1440).
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Fig. 7. Histogram of discard occurrence (coarse matching).

The fine matching process is shown in Fig. 8 and the
histogram of discard occurrence is shown in Fig. 9, where
the matching steps for tc, fc, r, v, respectively, are 0.2 s, 1
Hz, 1 m and 1 m/s. The match result is γ̂ = (t̂c, f̂c, r̂, v̂, û) =
(10, 60, 100, 45, 1440).
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Fig. 8. Refinement matching process with discard.

Following Eq. (21), the speed gain of this numerical sim-
ulation is 9, which significantly reduces the computational
burden.

In order to examine the performance of this method under
different contaminating noises, we made trials out of 50 Monte
Carlo runs using zero-mean additive uniform white noise under
various SNR scenarios. The trial results are tabulated in Table
I.

As can be seen from Table I that the proposed matching
algorithm is quite robust to noise—the random noise can
hardly affect the performance.

B. Processing With Real Acoustic Data

We carried out the experiment in an October day, 2004. To
help illustrate the experiment system, a schematic diagram is
shown in Fig. 10. In this experiment, we use two subsystems
to measure the necessary parameters: recording subsystem and
atmospheric data subsystem. The recording subsystem consists
of a laptop computer (with a sampling frequency 22 050 Hz)
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Fig. 9. Histogram of discard occurrence (fine matching).

TABLE I

MEANS AND STANDARD DEVIATIONS (STDS) OF THE ESTIMATED t̂c , f̂c ,

r̂ AND v̂ UNDER DIFFERENT SIGNAL-TO-NOISE RATIOS (SNRS)

SNR (dB) -5.00 0.00 5.00 10.00

Mean of tc (m) 10.73 10.46 10.07 10.00

STD of tc (m) 0.79 0.56 0.48 0.00

Mean of fc (m/s) 55.56 61.28 60.10 59.80

STD of fc (m/s) 5.76 3.37 2.40 0.41

Mean of r (m) 101.14 101.06 100.84 100.45

STD of r (m) 3.27 2.12 1.73 1.27

Mean of v (m) 49.92 46.44 43.74 44.40

STD of v (m) 3.60 3.10 2.76 1.23

Speed Gain 7.91 7.83 8.38 8.53

and a microphone. The atmospheric data subsystem consists
of a digital barometer, and a relative humidity and temperature
probe (solar radiation shielded).

The jet plane moved along a straight line at a constant height
h = 100 m, with a constant speed v = 139 m/s (which were
obtained from instrument mounted on the jet plane). During
the time of recording, the temperature was 15.5◦C, barometric
pressure was 76 680 Pa, relative humidity was 28.0%, and the
theoretical sound speed for the given atmospheric data was
341.61 m/s. (For an easy reference of how to calculate the
sound speed, see Appendix C.A of [3].)

For an explicit comparison, we tabulate in Table II the
experimental results using different estimation methods. Note
that the estimation precision of the results directly read from
the onboard instruments is 5%, and for Dopplerlet transform
[3], the estimation precision of r is 2% and that of v is
0.5%. Accordingly, we concede that the values estimated via
Dopplerlet transform to be more veracious than the values
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Fig. 10. Arrangement for measuring the motion parameters of a single-engine
jet plane flying along a straight line at a constant height and with a constant
speed.

obtained from the onboard instruments.

TABLE II

ESTIMATED RESULTS OF A FLYING JET PLANE.

Parameters tc (s) fc (Hz) r (m) v (m/s) Speed Gain

Measured \ \ 112 139 \

Estimated 1 5.76 164 105 129 \

Estimated 2 5.85 167 110 128 6.45

Note: Measured: results directly read from the onboard instruments;
Estimated 1: estimated results based on Dopplerlet transform [3];

Estimated 2: estimated results based on this proposed MFP algorithm.

As can be seen from Table II, the estimation results of
the proposed matching algorithm is accurate and the speed
gain is 6.45, which confirms the effectiveness of the proposed
matching method.

VI. CONCLUSIONS

An efficient MFP algorithm has been developed to ac-
celerate the matching process when estimating the motion
parameters based on Dopplerlet Transform. With the piecewise
strategy of the cost function, the replicas with poor scores can
be identified at an early iteration and excluded from further
computation. We have shown that the processing speed can
be considerably improved and give quantitative analysis of the
computational burden reduce to make the algorithm convinced.
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