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Abstract—Motion control of flexible arms is more difficult than 

that of rigid arms, however utilizing its dynamics enables improved 

performance such as a fast motion in short operation time. This paper 

investigates a ball throwing robot with one rigid link and one flexible 

link. This robot throws a ball at a set speed with a proper control torque. 

A mathematical model of this ball throwing robot is derived through 

Hamilton’s principle. Several patterns of torque input are designed and 

tested through the proposed simulation models. The parameters of 

each torque input pattern is optimized and determined by chaos 

embedded vector evaluated particle swarm optimization (CEVEPSO). 

Then, the residual vibration of the manipulator after throwing is 

suppressed with input shaping technique. Finally, a real experiment is 

set up for the model checking. 

 

Keywords—Motion control, flexible robotic arm, CEVEPSO, ball 

throwing robot. 

I. INTRODUCTION 

APID motion robot is an important research topic in the 

robotics research field. Robots equipped with excellent 

rapid motion functions can simulate fast action more humanlike 

or even exceed the athletic ability of human beings. Such 

motion functions would also be helpful for disabled person to 

recover lost movement abilities by the artificial limbs including 

the rapid movement functions. There are some researches on 

this aspect, such as a round plate throwing robot using a rigid 

link [1]. But for a rigid manipulator, there are disadvantages 

including heavy weight, large input or control energy, and other 

problems. To reduce the weight and utilize energy more 

efficiently, a flexible link manipulator would appear to be a 

better choice than rigid one. There are also studies on flexible 

robotic manipulators, like golf swing robots [2]. For this kind of 

robotic manipulator, it is necessary to overcome a number of 

difficulties. For example, in comparison with rigid counterpart, 

it is hard for the flexible link manipulator to maintain sufficient 

trajectory precision as well as difficult to control for its 

characteristics. 

This paper reports a two-link flexible manipulator able to 

perform the action of throwing a ball. Here, to obtain an 

accurate torque input, a Chaos Embedded Vector Evaluated 

Particle Swarm Optimization (CEVEPSO) algorithm is 

introduced to optimize the controlling parameters of the input. 

First in Section II, the system model is illustrated and then 

the equations of motion of this system are derived. In Section 

III, the equations of motion are transformed into a state 
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equation. After that, the CEVEPSO algorithm and results with 

its application are detailed in Section IV. In Section V, the input 

shaping technique is introduced to control the residual vibration 

after throwing followed by the real experiment which is used 

for model accuracy checking in Section VI. Finally, in the last 

section, conclusions are described. 

II.  MODEL DESCRIPTIONS AND EQUATIONS OF MOTION 

Fig. 1 shows the model of the flexible manipulator discussed 

in the paper. The model consists of a rigid link fixed on a hub 

with one set of rotational coordinates O1-x1y1 and a flexible 

beam fixed on another hub with another set of rotational 

coordinates O2-x2y2. The ball has a ball holder with a ball on 

extreme end of the flexible part of the beam. The O-XY 

coordinates denote the inertial reference frame which is in 

global coordinates. The angle θ1and θ2are the rotational angles 

of the rigid link and flexible link under the torquesτ1and τ2, 

respectively. The flexible beam is a homogeneous isotropic 

beam with uniform cross section. The displacement by 

vibration at an arbitrary point x of the flexible beam is 

represented by ν(x,t). And the other system parameters are 

listed in Table I. 

Fig. 2 shows the process of the motion, for the ball throwing 

motion, besides model 1 as in Fig. 1 that in Fig. 2 (a), and one 

more model shown as Fig. 2 (b) is needed to be considered. 

 

 

Fig. 1 Model of a ball throwing robot 
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Fig. 2 Throwing motion of manipulator 
 

TABLE I 

MODEL PARAMETERS 

Symbol  Meaning Quantity

m 1 Mass of first hub 1.45 kg

J 1 Inertia of first hub 3.45×10
3 
kg·m

2

r 1 Radius of first hub 0.47×10
-1 

m

m L1 Mass of rigid link 0.19 kg

L 1 Length of rigid link 0.26 m

m 2 Mass of second hub 1.04 kg

J 2 Inertia of second hub 1.30×10
-1 

kg·m
2

r 2 Radius of second hub 4.75×10
-2 

m

L 2 Length of flexible link 0.37 m

ρ Density of flexible link 7.70×10
3 

kg/m
3

E Young's modulus 4.03×10 GPa

I Inertia of cross section of beam 5.25×10
-11

 m
4

A Cross sectional area of beam 8.64×10
-5

 m
2

m c Mass of the ball holder 0.10 kg

J c Inertia of the ball holder 6.00×10
-5

 kg·m
2

r c Radius of the ball holder 0.03 m

m b Ball mass 5.50×10
-2

 kg

J b Ball inertia 3.75×10
-5

 kg·m
2

 
 

For the equation of motion of the system, the kinetic energy 

of the whole system R can be expressed as 

 

1 2hub rigid hub flexible holder ballR R R R R R R= + + + + +
      

(1) 

 

The kinetic energies for each part can be obtained from: 
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In the above equations, r1g, r2g and r4gare the position vector 

of the center of gravity for the rigid link, the second hub and, 

ball holder, respectively. Similarity, r4g is the position vector at 

position x of the flexible link. 

The potential energy of the flexible link is 
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The external work W is given as 

 

1 1 2 2 ,W τ θ τ θ= +
                                

(9) 

 

According to Hamilton’s principle, 
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The governing equation of the system then can be derived as 

follows: 

Equations of motion for
1δθ : 
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For 
2δθ : 
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For δυ : 
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with the boundary conditions: 
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III. STATE EQUATION 

The displacement of the vibration υ can be expressed by an 

eigen function ( )i xφ  obtained from the ith order vibration 

mode of a cantilevered beam and a time function qi(t), 
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Substituting (16) into (11)~(15) and applying the 

orthogonality relationship of the vibration mode, the equations 

of motion can be expressed, 
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Here M, C, K, and Dare the mass, damping, stiffness, and 

input matrices of the system. In the state vector z,θis the 

rotational angle of the manipulator, andqiis the time function 

which is combined with the eigen function ( )i xφ to express the 

displacement of the flexible beam ( ),x tυ . 

Equation (17) can be rewritten as a state variable equation, 
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For Model 2 (Fig. 2(b)) of the system, mb and Jb can be 

assumed to be zero. 

IV.TORQUE INPUT OPTIMIZATION BASED ON THE CEVEPSO 

TECHNIQUE 

A. The PSO Algorithm 

Particle Swarm Optimization (PSO) [3] is an evolutionary 

computation technique developed by Kenney and Eberhart in 

1995. In our former research [4], the PSO algorithm was used 

as an optimal algorithm for input design. 

Fig. 3 shows a flowchart for implementing this basic PSO. 

Each particle keeps track of its coordinates in the problem 

space and the program searches the problem space with the best 

solution which has been achieved so far. This value is called 

“pbest”. Another “best” value that is tracked by the global 

version of the particle swarm optimizer is the overall best value, 

and its location, obtained so far by a particle in the population. 

This location is called “gbest”. 

The basic procedure for the global version of PSO is, 

• Step one: Initialize the population of particles with random 

positions and velocities in the search space of the problem. 

• Step two: For each particle, evaluate the desired optimal 

cost function. 

• Step three: Compare each particle’s cost evaluation with its 

pbest. If current value is better than pbest, set the pbest 

value equal to the current value and the pbest location 

equal to the current location in the search space. 

• Step four: Compare cost evaluation with the population’s 

overall previous best. If the current value is better than 

gbest, reset gbest to the current particle’s array index and 

value. 
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Fig. 3 Flowchart of the basic PSO 

 

• Step five: Update the velocity and position of the particle. 

• Step six: Loop to Step two until a criterion is met. 

The basic PSO were used for solving some problems such as 

the optimization of the feedback controller for the flexible 

manipulator [5] and seismic control optimization of the 

building [6]. For the problem with one objective function, 

commonly the basic PSO algorithm can work well. But 

considering the problem with multiple objective functions, one 

of the most common methodologies is to aggregate all the 

objective functions with appropriate weight factors into a single 

comprehensive objective function. This requires a well 

knowledge of the problem domain to assign the weight factors 

appropriately. The nature and appropriate way for this problem 

tends to handle the multiple objectives separately with 

multi-objective PSO. 

B. Multi-Objective PSO 

In Multi-Objective Particle Swarm Optimization (MOPSO) 

[7], there are many fitness functions. In this way, it is possible 

to obtain results with specific properties by exploring Pareto’s 

dominance concept. Based on this concept, each particle of the 

swarm could have different leaders, but only one may be 

selected to update the velocity. This set of leaders is stored in a 

repository, which contains the best non-dominated solutions 

found. At each generation, the velocity of the particles is also 

updated similar like the basic PSO. 

For the common MOPSO, it needs an external archive to 

store the non-dominated particles. And moreover the selecting 

rules and size of this archive are hard to be selected and 

decided. So in this paper, we use VEPSO for the 

multi-objective optimization and crowding distance for ruling 

the external archive. If external archivep ∈ with respect to 

cost function , 1, 2, , .icf i n= ⋯ Then for each cost function, the 

crowding distance of member p is as 

 

( ) ( ) ( ) ,p i i icd cf cf q cf r= −
                  

(19) 

where q is the member of external archive following after pin a 

sorting order which is determined through cfi values, and r is 

the member which precedes p in the same order. And the total 

crowding distance of p can be calculated as 

 

( ) ( )
1

.
n

total p i

i

cd p cd cf
=

= ∑
                        

(20) 

C. Vector Evaluated PSO 

Vector Evaluated Particle Swarm Optimization (VEPSO) 

[8]-[10] was introduced by Parsopoulos and Vrahatis as a 

multi-swarm PSO variant for multi-objective optimization 

(MO) problems, and it was extended to parallel 

implementation. The main goal in MO problems is the 

detection of Pareto optimal points. 

In VEPSO, it assumes that n swarms, S1, S2, …,Sn of size L, 

point to optimize n functions simultaneously. And each swarm 

is evaluated according to one of the objective functions. 

Swarms exchange information among them by sharing their 

individual findings to direct search towards the Pareto optimal 

set. 

 

 

Fig. 4 The ring migration topology for n swarms 

 

The VEPSO permits the parameter configuration of each 

swarm independently. So, the number of particles as well as the 

values of the PSO parameters per swarm may differ. A notable 

characteristic is the insertion of the best position of another 

swarm in Sn. This information exchange scheme among 

swarms has a prominent position in VEPSO. It can be clearly 

viewed as a migration scheme, where particles migrate from 

one swarm to another according to a connecting topology. Fig. 

4 shows the ring migration topology corresponding to the 

following equation: 

 

, 1,

1, 2, , .

n i
s

i i n

=
= 

− = ⋯
                         

(21) 

 

Then the swarms of VEPSO are updated according to the 

following equations: 
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1 1 2 2 ,k k k k k k

ij ij sj ij sj ijv w v c r p x c r g x+ = ⋅ + − + −        (22) 
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1 .k k k

ij ij ijx x v+ = +
                              

(23) 

 

 

where k

ijx and k

ijv are the position and velocity of the jth 

dimension of the ith particle in the kth iteration and s represents 

the ring migration defined in (19); p and g stand for the current 

individual best position and the global best position 

respectively;r1 and r2 are psedudo-random values in the [0,1] 

range; c1 and c2 are the cognitive and the social parameters 

respectively; w is inertial weight which determines how much 

the particle inherits from the former one and is expressed by, 

 

max min
max

max

w w
w w k

k

−
= − ×

                     

(24) 

 

where k is the current iteration number, kmax is the maximum 

number of iterations, wmax and wmin are the maximum and 

minimum values of the inertia weight. 

D. Chaos Embedded VEPSO (CEVEPSO) 

For common PSO algorithm, it can be easily trapped in the 

local minima position. Moreover, it is difficult to get an 

acceptable solution without the use of a proper searching 

strategy. Chaos is a general nonlinear phenomenon in nature, 

and its behavior is nearly stochastic. For chaos exquisite 

internal structure, it owns characteristics of randomness, 

ergodicity, and regularity [11]. The chaos optimization 

algorithm owns strong ability of jumping out of the local 

extrema. In addition, PSO with chaos strategy can overcome 

the shortcoming of common PSO algorithm in which it easily 

arrives at the local extrema by maintaining the diversity of the 

swarm. 

In this paper, the chaotic system is used to generate 

sequences for substituting random numbers of VEPSO where it 

is necessary to make a random based choice. Mathematically, 

chaos is randomness of a simple deterministic dynamical 

system and chaotic system may be considered as source of 

randomness. A chaotic map is a discrete time dynamical system 

which can be expressed as 

 

( )1 0 1, 0,1, 2,i i iz f z z i+ = < < = ⋯
           

(25) 

 

Here the tent mapping strategy is used in the CEVEPSO 

algorithm which can be expressed as 

 

( )1 01 2 0.5 , 0 1i iz z zµ+ = − − ≤ ≤
              

(26) 

 

where [ ]0,1µ ∈  is the fork control parameter. Here 1,µ =  the 

tent mapping is in a complete chaos state and moving through 

the whole range. 

Then the velocity updating formulas are also modified 

correspondingly [12]. The equation is as follows: 
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1 1 2 2 3

k k k k k k k k

ij ij j sj ij j sj ijv CM v c CM p x c CM g x+ = + ⋅ − + ⋅ − (27) 

whereCM1, CM2, and CM3 are functions based on the tent 

mapping with value between 0 and 1. 

Comparing with other optimal method, CEVEPSO can 

search the Pareto Front more efficiently and simply. And it also 

can avoid some local trap through embedded chaos mapping. 

E. Input Torque Design 

In this part, the CEVEPSO is applied to establish the input 

pattern. A sinusoidal form of input is used for each control 

torque to obtain the optimized inputs here. 
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wherei=1,2 and the parameters Ai1, Ai2, Ti1, Ti2 are optimized by 

the CEVEPSO algorithm. 

The parameters that are fine evaluated here can be viewed as 

a particle evolution in 8-dimensional search spaces with respect 

to fitness functions. The search space can be expressed as 
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where n stands for the number of particles. 

For the optimization problem in this paper, the fitness 

functions are selected as follows 
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3 .
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where 
maxυ is the maximum speed of the ball u(t) is the torque 

input, ( )tθɺ denotes the angular velocity of the manipulator, 

toper is the length of operation time of the control input. Then the 

problem can be formulated as the following constrained 

optimization problem to minimize the fitness functions under 

the conditions, 
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min max
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where A, T, and, υ are amplitude, time period of the input 

torque, and deformation of the flexible manipulator 

respectively. 

After applying CEVEPSO algorithm, some solutions are 

detected through this optimal algorithm. These solutions are 

shown in Fig. 5. The solutions with the rectangle spots were 

detected under the condition that the particle number and 

iteration were 25 and 140, respectively; the solutions with 

round spots were in the condition that particle number was 15 

and the iteration was 160; the solutions with triangle spots were 

found in the setting of condition of particle 10 and iteration 

120. Then by applying the interpolation method we try to 

estimate the Pareto Fronts of this problem. The solid line is the 

Pareto Fronts evaluated through all of the solutions. The 

solutions detected here are not enough for forming the exact 

Pareto Fronts; however we can estimate the tendency of the 

solution to some extent. 

 

 

Fig. 5 Pareto fronts valued by CEVEPSO 

V. VIBRATION SUPPRESSION BASED ON INPUT SHAPING 

TECHNIQUE  

A. Input Shaping Technique 

The input shaping technique is a feed-forward control 

method and widely used for vibration suppression. And this 

method is composed of a series of impulses [13]. In order to 

understanding how to generate impulses that move flexible 

systems without vibration, it is helpful to start with the simple 

impulses. Applying impulses, A1 or A2 to a flexible system will 

cause it to vibrate. The response of an underdamped system to 

such impulses is shown in Fig. 6 (a). If the time location and 

magnitude of each impulse is chosen correctly, then the 

response of A2 may be cancelled the response of A1. This result 

is shown as the total response in Fig. 6 (b). 

 

 

Fig. 6 Vibration caused by two impulses 

 

If an underdamped, second-order system has an undamped 

natural frequency of 
nω and a damping ratio of ,ζ then the 

residual vibration that results from a sequence of impulses can 

be described as 

 

( ) ( ) ( )
2 2

, , , ,n nt

n n nV e C S
ζωω ζ ω ζ ω ζ−= +           

(34) 

 

where 

( ) ( )
1

, cos ,n i

n
t

n i d i

i

C A e tζωω ζ ω
=

= ∑  

( ) ( )
1

, sin .n i

n
t

n i d i

i

S A e tζωω ζ ω
=

= ∑  

 

Ai and ti are the amplitudes and time locations of the impulses. 

n is the number of impulses in the impulse sequence, tn is the 

time location of the final impulse. 

To generate an impulse sequence that causes no residual 
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vibration, we can set V in (34) equal to zero and solve for the 

impulse amplitudes and time locations. And we also need 

placing a few more restrictions on the impulses because there 

are an infinite number of solutions that satisfy this condition. 

Here we can constrain the impulse as 

 

1

1,
n

i

i

A
=

=∑
                                  

(35) 

 

0 1, 2, , .iA i n> = ⋯
                       

(36) 

 

If we try to find a two-impulse sequence shown in Fig. 6 with 

the time location of the first impulse t1=0, then this problem is 

now reduced to solve three unknowns A1, A2, t2. Now according 

to (34) with the constrained conditions (35) and (36), the 

sequence of two impulses that leads to zero vibration can be 

stated in matrix form as 

 

1

1, 2 ,1 1

0 0.5

i

i
d

P
A

iP P
t

T

 
   = =+ +    

              

(37) 
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ζπ

ζ

−

−

 
 
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2
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1

d

n

T π
ω ζ

=
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The impulses given in (37) are commonly referred to as a 

Zero Vibration (ZV) impulse sequence because they result in 

no vibration. 

If we hope the input shaper have robustness to modeling 

errors, the Zero Vibration and Derivative (ZVD) shaper may be 

introduced here. This shaper was designed by requiring the 

partial derivative of the residual vibration, with respect to the 

frequency, to be equal to zero at the modeling frequency and 

this can be stated as 

 

( ),
0.

V ω ζ
ω

∂
=

∂                          

(38) 

 

Enforcing this constraint has the effect of keeping the 

vibration near zero as the actual frequency starts to deviate 

from the modeling frequency. The result of this shaper is given 

as 

 

( ) ( ) ( )

2

22 2

21

11 1, 2 , 3.1

0.50

i

i

d d

P P
A

PP iP
t

T T

 
   ++= =+   
   

 

 (39) 

 

Note that this ZVD shaper has duration of one vibration 

period. However, for a small increase in rise time, a substantial 

amount of robustness is obtained. 

B. Vibration Suppression 

Fig. 7 shows the vibration suppression of the flexible beam 

with the ZVD shaper. Here only the frequency of the first mode 

which resulted in the vibration mainly was considered. The top 

plot shows strain data after applying one testing input. The dash 

line is the result without any vibration suppression control. And 

the solid line is the condition which torque is modified through 

ZVD input shaper. The bottom plot shows the control torques 

for the second link. Here it shows the torques before and after 

modified through the input shaper. Then we can find that the 

vibration has been suppressed after applying the ZVD shaper to 

the optimal control torque. But there also shows some time 

delay after using the ZVD input shaper. It is the price of 

vibration suppression by applying this method.  
 

 

Fig. 7 Vibration suppression by input shaper 
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Fig. 8 Experimental setting 

VI.EXPERIMENT 

In this section, an experiment manipulator is conducted to 

check the accuracy of the model which was built in Section II. 

The real experimental setting is shown as Fig.  8. The first link 

is the rigid one driven by a direct driven motor. The flexible 

link enforced by the FRP materials is controlled by a servo 

motor. The finger of the ball holder is controlled by the 

artificial muscle which is actuated through the pneumatic 

system. So an air tube can be found on Fig. 8. The strain gauge 

attached on surface of the flexible link is used for gathering the 

strain data which will be recorded after being amplified. 

 

 

Fig. 9 Model checking 

 

The comparison of results between simulation and 

experiment are shown in Fig. 9. The solid lines depict the 

experimental data; the broken lines show simulation results of 

the nonlinear model; the dotted lines here are the simulation 

conditions of the linearized model. The plot on the bottom right 

shows the control torques for the two links here. The left and 

the right plots on the top illustrate the rotational angle 

conditions of the first link and flexible link. At the beginning, 

we found that the simulation matched the experiment data 

exactly, then after some time, the errors increased rapidly. 

There may be two reasons for this problem. One reason can be 

found on middle left plot and middle right plot which show the 

speed conditions of the first link and flexible link. At first, the 

speeds of two links were matched well, but gradually the errors 

increased obviously which could cause the big errors of two 

links. The other reason for this result is that the friction 

coefficients of the driving motors were not measured exactly on 

the current stage which would also lead to the big errors. 

However the result of the strain gauge of the flexible beam on 

the bottom left plot is acceptable. Then the nonlinear model 

owns better performance than linearized model. 

VII. CONCLUSION 

This paper derived the state equation for the ball throwing 

manipulator with one flexible link. In order to obtain the 

optimum torque input style, a CEVEPSO algorithm was 

introduced to optimize the governing parameters of the input. 

By applying the CEVEPSO algorithm, the Pareto Fronts of this 

problem were evaluated roughly. Then the residual vibration of 

the flexible link was suppressed through ZVD shaper. Finally, 

an experiment was operated for accuracy checking of the 

system model. 
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