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Abstract—The object of this work is the probabilistic 

performance evaluation of safety instrumented systems (SIS), i.e. the 

average probability of dangerous failure on demand (PFDavg) and the 

average frequency of failure (PFH), taking into account the 

uncertainties related to the different parameters that come into play: 

failure rate (λ), common cause failure proportion (β), diagnostic 

coverage (DC)... This leads to an accurate and safe assessment of the 

safety integrity level (SIL) inherent to the safety function performed 

by such systems. This aim is in keeping with the requirement of the 

IEC 61508 standard with respect to handling uncertainty. To do this, 

we propose an approach that combines (1) Monte Carlo simulation 

and (2) fuzzy sets. Indeed, the first method is appropriate where 

representative statistical data are available (using pdf of the relating 

parameters), while the latter applies in the case characterized by 

vague and subjective information (using membership function). The 

proposed approach is fully supported with a suitable computer code. 

 

Keywords—Fuzzy sets, Monte Carlo simulation, Safety 

instrumented system, Safety integrity level.  

I. INTRODUCTION 

OWADAYS, most of industrial processes, especially the 

characteristic parameters of their behavior, are constantly 

monitored by devices qualified as safety instrumented systems 

(SIS). A SIS is conventionally made up of three main 

subsystems: sensing elements (S) elements, logic solvers (LS) 

and final elements (FE). The primary objective assigned to 

such systems is to detect the occurrence of a hazardous 

situation, when predetermined conditions are violated such as 

set points for pressure, temperature, level, etc., that could lead 

to an accident and then implement a set of necessary reactions 

to take the system under control to a safe state. In this context, 

the IEC 61508 [1] has been developed as a performance-based 

standard to define the requirements for SIS regarding the 

necessary risk reduction. To characterize these requirements, 

the IEC 61508 uses the concept of safety integrity level (SIL), 

which is therefore a measure of the confidence with which the 

SIS can be expected to perform its safety function [2]. 

Actually, the SIL relies both on quantitative and qualitative 

measures. Note that qualitative measures are beyond the scope 

of this paper. Quantitative measures depend on the number of 

times the SIS is called to achieve the safety function. 
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According to this statement, IEC 61508 defines two modes of 

operations: (1) Low demand mode (SIS is called upon at a low 

frequency) for which the relevant performance indicator is the 

average probability of dangerous failure on demand (PFDavg), 

and (2) High or continuous mode (frequent use of the SIS) 

where the indicator of interest is the average frequency of a 

dangerous failure (PFH: Probability of Failure per Hour).  

The accordance between SIL levels and the above 

indicators is presented in Table I [1]. 
 

TABLE I 

RELATION BETWEEN SIL LEVELS AND SIS PERFORMANCE INDICATORS 

(PFDavg AND PFH) 

SIL PFDavg PFH (h-1) 

4 10-5 to < 10-4 10-9 to < 10-8 

3 10-4 to < 10-3 10-8 to < 10-7 

2 10-3 to < 10-2 10-7 to < 10-6 

1 10-2 to < 10-1 10-6 to < 10-5 

 

In a previous work [3], the authors have proposed general 

analytical formulations for PFDavg and PFH which provide a 

general case of those given on the IEC 61508. The process 

allowing the establishment of these formulations will not be 

given in this paper. They are simply recalled hereafter:  
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where: 

- KooN: K out of N architecture which represents each 

subsystem constituting the SIS (S, LS, FE). 

- 
)!(

!

pn
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A p
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- λDind =(1–β)λDU + (1–βD)λDD : independent dangerous 

failure rate. 

- λDD (= DC.λD) and λDU (= (1–DC).λD) are respectively 

detected and undetected dangerous failure rates. 

- DC: Diagnostic Coverage. It represents capability for on-

line detection of dangerous failures. 

- β and βD are common cause failure (CCF) proportion for 

respectively detected and undetected dangerous failures. 
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- CCF

DDλ = βD λDD: detected dangerous common cause failure 

rate.
CCF

DUλ = β λDD: undetected dangerous common cause 

failure rate. 

- MTTR: mean time to repair a detected failure. 
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is the mean down time for 1ooi architecture. 

- T1: proof-test interval.       

For the entire SIS, based on the rare events approximation,
SIS

avgPFD and PFHSIS 
are given by the following formulae: 
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FELSSSIS PFHPFHPFHPFH ++≈                     (4) 

 

Now, the question is where to find quality reliability data, 

namely: λD, DC, β, βD and MTTR. It is worth noticing that 

these parameters may be subject to uncertainty, especially 

since SIS are highly reliable systems and produce weak 

historical failure data [4], [5]. Furthermore, the recourse to 

generic reliability data may introduce uncertainty due to lack 

of relevance with respect to the system under study [6]. The 

data shortcomings also induce a strong dependency on the 

analyst’s judgments and may significantly affect the results 

[7]. Those facts may lead to an inaccurate (even erroneous) 

SIL level, which could have a great impact on the actual safety 

of the system under control by increasing the risk of making 

wrong decision. We stress that this paper deals with the so-

called epistemic (state-of-knowledge) uncertainties. For more 

detail about uncertainty classification, one may refer to [8].         

To overcome the underlying difficulties, beside the 

necessary PFDavg and PFH calculation, the IEC 61508 imposes 

completing it with a second procedure which may be carried 

out by two quite different ways called Route 1H (deterministic) 

and Route 2H (probabilistic). Both ways enable us the 

determination of the maximum SIL that can be claimed 

(Claimed SIL) for the safety function. They will be explained 

further in the current document. Route 2H, introduced at the 

second version of the IEC 61508 [9], is based on uncertainty 

propagation. Therefore, it is in keeping with the main goal of 

this paper. Of course, the uncertainty propagation shows how 

the uncertainty of input parameters (failure rate, for example) 

spreads onto the output of the model at hand (in our case: 

PFDavg and PFH). 

For uncertainty propagation many approaches have been 

developed. Monte Carlo sampling is the most commonly used 

approach for that purpose, where data uncertainty processing 

is based on a sampling carried according to a given probability 

density function (pdf). Even though, within the framework of 

reliability engineering and risk assessment, a large related 

work has been achieved, Monte Carlo analysis applied to the 

SIL calculation still limited. For example and not exclusive, 

we may note Rouvroye’s Ph.D. thesis [10] in which a Monte 

Carlo analysis were applied to Markov model for the 

computation of the time dependent probability of failure on 

demand (PFD(t)). Also, Mechri [11] modeled the imperfect 

knowledge related to the common cause failure proportion (β) 

by a uniform and triangular probability distribution laws.  

An alternative is the use of fuzzy numbers [12] which 

seems to be appropriate when addressing highly uncertain 

conditions, i.e. where the statistical data are not sufficient [13]. 

For this reason, it is suited when data arising from human 

subjectivity are involved [6]. Many studies have been carried 

out on the application of fuzzy sets theory to dependability 

methods [4]. In connection with the treatment of uncertainty in 

assessing PFDavg, one can note the work of Sallak [4] who 

proposed the modeling of failure rate with a fuzzy number 

using the fault tree approach. Furthermore, Mechri [11] has 

replaced the point-values of common cause failure proportion 

(β) and diagnostic coverage (DC) by fuzzy numbers using 

both Fault tree and Markov chains.   

The remainder of this article is organized as follow. Section 

II presents the IEC 61508 approach for uncertainty treatment, 

i.e. Route 1H and Route 2H. In Section III, Monte Carlo and 

Fuzzy sets principles are briefly described and applied 

separately to an illustrative example. Section IV is devoted to 

the presentation of a combined approach using Monte Carlo 

and Fuzzy sets to deal with different levels of uncertainty. 

Finally, Section V gives some concluding remarks and 

research perspectives.        

II. TREATMENT OF UNCERTAINTY ACCORDING TO IEC 61508 

STANDARD 

As already mentioned, according to the IEC 61508 

standard, the computation of PFDavg or PFH is necessary but 

not sufficient. Indeed, the standard stipulates that additional 

requirements have to be fulfilled by implementing one of two 

possible routes: (1) Route 1H based on hardware fault 

tolerance (HFT) and safe failure fraction (SFF) concepts, and 

(2) Route 2H based on component reliability data from 

feedback from end users, increased confidence levels and 

hardware fault tolerance for specified safety integrity levels. 

Let us look at these two procedures.   

A. Route 1H: Architectural Constraints    

In the first edition of the IEC 61508 [1], this procedure was 

the exclusive way to deal with uncertainty. It is based on two 

tables (each one concern a specified type of components: A or 

B which are gathered in this paper (Table II)). Therein, the 

maximum claimed SIL is expressed in terms of the safe failure 

fraction (SFF), element type (A or B) and hardware fault 

tolerance (HFT). A HFT of M means that M+1 is the 

minimum number of faults that could cause a loss of the safety 

function. A KooN architecture tolerates N–K failures (faults); 

e.g. 2oo3 system tolerates 1 fault. Type A element must satisfy 

the following three conditions: all failure modes are well 

defined, the behavior under fault conditions can be completely 

determined and there is sufficient reliable failure data. 

Otherwise, the element is of type B. The SFF = (λS+ λDD)/(λS+ 

λD), where λS is the safe failures rate (failures which could 
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anticipate the safety function without a demand condition). 

The SFF at a first view characterize the “safe” behavior under 

failures of the element at hand (fail-safe), i.e. the higher the 

SFF, the higher the degree of confidence in this element. 

 
TABLE II 

MAXIMUM ALLOWABLE SIL FOR A SAFETY FUNCTION CARRIED OUT BY A 

TYPE A (RESP. B) ELEMENT OR SUBSYSTEM 

Safe failure 

fraction (SFF) 

Hardware fault tolerance (HFT) 

0 1 2 

< 60 % SIL 1 (Not Allowed) SIL 2 (SIL 1) SIL 3 (SIL 2) 

60 % - < 90 % SIL 2 (SIL 1) SIL 3 (SIL 2) SIL 4 (SIL 3) 

90 % - < 99 % SIL 3 (SIL 2) SIL 4 (SIL 3) SIL 4 (SIL 4) 

≥  99 % SIL 3 (SIL 3) SIL 4 (SIL 4) SIL 4 (SIL 4) 

 

In order to illustrate the route 1H procedure, let us consider 

a SIS which must assure a safety function with a required 

safety integrity level equal to 3 (SIL 3). This imposes that 

each subsystem of the SIS has at least this SIL: S (e.g. with 

1oo2 voting logic, SFF = 70%, type A); LS (e.g. 1oo1, SFF = 

99%, type B); FE (e.g. 2oo3, SFF= 50%, type A). From Table 

II, it can be seen by inspection that the maximum allowable 

SILs for the above subsystems are respectively: SIL 3, SIL 3 

and SIL 2. As a result, the SIS does not meet the required SIL, 

due to the SIL 2 of the FE subsystem (even if its PFDavg would 

be in the range of SIL 3). To improve this subsystem, we may 

change its voting logic from 2oo3 to 1oo3 (redundancy 

improvement) or use elements with a higher SFF (e.g. 60%) 

(element improvement). These two improvements could 

compensate any possible underestimation of failures rates used 

in PFDavg and PFH calculations. One can conclude that the 

Route 1H procedure prevents from selecting a design fully 

based on a quantitative assessment. It may therefore be 

interpreted as mistrust to the PFDavg and PFH, as already 

stated in [14]. 

However, the SFF, which is the key parameter of that 

procedure, is based on some failures rates used in the PFDavg 

and PFH calculations. So, is it a relevant parameter? We are 

going to attempt to answer this question in the following.  

The objective of Route 1H is to obtain a sufficiently robust 

architecture. We are not answering the chosen objective, but 

the fact that we must resort to the SFF to attain it. Let us 

actually consider two components C1 and C2, for which the 

reliability characteristics are: C1 (λ1S = 5.4E–7h
–1

; λ1D = λ1DU 

= 6 E–8h
–1

; T1 = 4380h; type A), C2 (λ2S = 5 E–8h
–1

; λ2D = 

λ2DU = 5 E–8h
–1

; T2 = 4380h; type A).  

Assuming, for a single element, that PFDavgi ≈ Ti/2, we can 

easily calculate their respective PFDavg: PFDavg1 = 1.3E–4 and 

PFDavg2 = 1.1E–4. Table tells us that these values correspond 

to a SIL 3. We can now calculate their SFF and obtain: 

SFFC1= 90% and SFFC2 = 50%.  

By consulting Table II, the SIL 3 is validated for 

component C1, but the claimed SIL for component C2 is 

limited to level 2 (SIL 2). This latter is therefore more 

restricted, more penalised by its SFF than C1 is, whilst it is 

slightly higher from a safety point of view (λ2D < λ1D), and 10 

times better from an availability point of view (λ2S< λ1S).  

The preceding example does not argue in favour of using 

the SFF and therefore the Route 1H. We still think that the SFF 

of any entity is representative neither of its safety, nor its 

availability. So what use is it? An alternative is to consider the 

second procedure: Route 2H. It is explained hereafter. 

B. Route 2H: Uncertainty Propagation  

From the description of Route 1H, one can easily see that 

the standard does not explicitly handle uncertainty related to 

parameters used in quantitative assessments of the SIS 

performances. It only expresses doubts about the quantitative 

results, where many decision processes require that 

uncertainty be treated explicitly. Moreover, these doubts 

concern only failure rates of individual components without 

taking into account common cause failures that may 

jeopardize the system redundancy, such as the concept of HFT 

would be meaningless. 

Contrary to Route 1H, Route 2H principle is in keeping with 

uncertainty propagation philosophy, even some minimum 

HFT requirements still maintained. Beside these requirements, 

the IEC 61508 [9] stipulates that “If Route 2H is selected, then 

the reliability data uncertainties shall be taken into account 

when calculating the target failure measure (i.e. PFDavg or 

PFH) and the system shall be improved until there is a 

confidence greater than 90 % that the target failure measure 

is achieved”.  

Depending on route 2H, the uncertainties on reliability data 

are modeled using probability distributions according to a 

given law (Uniform, Lognormal, etc.). Hence, a Monte Carlo 

sampling allows taking into account their effects on the output 

measures (PFDavg or PFH). However, output measures 

themselves become random variables (X) and their 

distributions may cover more than one SIL zone. Therefore, 

the objective is to demonstrate that the obtained value for 

PFDavg or PFH of the SIS performing a specified safety 

function belongs “almost surely” (i.e. with probability of 90%) 

to the required SIL zone. Different ways to fulfill this 

objective are presented in the next sections.   

Compliance with IEC 61508 shall become a principal step 

in quantitative risk assessment (QRA) process. Also, 

uncertainty propagation is a paramount within the framework 

of QRA to validate and give credit to the obtained results [15]. 

This being the case, one could understand that Route 2H is in 

accordance with that statement which confirm its supremacy 

regarding Route 1H. 

The next section presents the Monte Carlo approach in 

more detail. A second approach, Fuzzy sets, will also be 

presented.  

III. MONTE CARLO AND FUZZY SETS PRINCIPLES 

A. Monte Carlo (MC) Simulation  

Monte Carlo simulation method is generally used to 

perform uncertainty analysis. This is because this technique 

has become the industry standard for propagating uncertainties 

[7]. It provides an efficient way for this purpose. We give 
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hereafter, in connection with SIS performance indicators, its 

main steps. 

• Construct a probability density function (pdf) for each input 

parameter (pdf reflects state of knowledge about the value 

of the parameter). In our developed approach, all 

parameters may be considered: λD, DC, β, βD, MTTR and T1 

(for S, LS and FE). Moreover, therein, seven different 

probability distributions are implemented: Uniform, 

Triangular, Normal, Lognormal, Chi-square, Beta and 

Gamma.  

• Generate one set of input parameters by using random 

numbers (uniformly distributed between 0 and 1) according 

to pdfs assigned to those parameters. 

• Quantify the output function (PFDavg or PFH) using the 

above set of random values. The obtained value is a 

realization of a random variable (X). 

• Repeat steps 2 to 3 n times (until a sufficient number, e.g. 

1000) producing n independent output values. These n 

output values represent a random sample from the 

probability distribution (empirical distribution) of the output 

function. 

• Generate statistics from the obtained sample for the output 

result: mean (��: PFDavg or PFH), standard deviation σ, 

confidence interval  (percentiles), etc.    

The confidence on the obtained SIL according to the value 

of PFDavg or PFH may be established by checking that the 

upper limit of the confidence interval (X90% (or X95%)) is 

encompassed in the corresponding SIL zone. Also, a direct 

measure is the evaluation of the cumulated density function 

(cdf) at the upper bound of the required SIL (noted SILRU): 

 

   F (SILRU) = p(�≤ SILRU)                            (5) 
 

where F is the cdf of the distribution: normal (�, � √�⁄ ). 

An illustration of the Monte Carlo approach is made on a 

hypothetical SIS. Assume a SIS working in low (resp. high) 

demand mode. The subsystem S is made up of three pressure 

transmitters connected according to 1oo3 voting logic. If a 

condition of high pressure should occur, it is detected at least 

by one pressure transmitter which send a signal to the 

subsystem LS. This latter, composed of two programmable 

logic controllers (1oo2), commands the closure of five 

shutdown valves (resp. monitors control valves) (subsystem 

FE). The working of two valves is required. The related 

reliability characteristics are given in Table III. These 

characteristics are only given for an illustrative purpose and 

assumed to be in the range of the available data. 1E+4 

iterations have been performed. The obtained results are 

summarized in Table IV, while the histograms for PFDavg and 

PFH are presented on Fig. 1.  

The review of Table IV allows to the safety function of the 

SIS at hand a SIL 2 (in case of low demand) and SIL 1 (in 

case of high demand). This statement is valid with a 

probability higher than 95%, because the 95
th

 percentiles are 

included in the related SIL zones. This probability is exactly: 

p(X ≤ SILRU = 1E–2) = 1.   
 

TABLE III 

RELIABILITY CHARACTERISTICS FOR THE SIS ELEMENTS 

Paramet

ers 

Subsystem S: 

1oo3 

Subsystem LS: 

1oo2 

Subsystem FE: 

2oo5 

λD Logn. (–12.5, 0.557)  Trian. (5E–7, 1E–5, 
3.67E–6)  

Trian. (3E–6,  
1E–5, 5.33E–6) 

DC Unif. (0.6, 0.8)   Unif. (0.95, 0.99)   Trian. (0.2,0.5, 0.3)   

β Beta (2.33, 4.66) 

with 0.15 ≤  x  ≤ 0.30 

Unif. (0.01, 0.1) Unif. (0.1, 0.2) 

βD Gam. (3.70, 0.027) Unif. (0.005, 0.05) Unif. (0.1, 0.2) 

MTTR Logn. (2.43, 0.21) Logn. (2.047, 0.4) Logn. (2.85, 0.34) 

T1 Constant (4380) Constant (8760) Constant (2190) 

 

TABLE IV 

OBTAINED RESULTS FROM MC APPROACH 

Elements PFDavg PFH 

S 5.722E–4  5.605E–7 

LS 3.642E–5 1.416E–7 

FE 6.870E–4 9.157E–7 

SIS  Mean = 1.296E–3 

σ= 4.407E–4 

PFD05% = 1.288E–3 
PFD95% = 1.303E–3 

Mean = 1.618E–6 

σ= 4.738E–7 

PFH05% = 1.610E–6 
PFH95% = 1.626E–6 

 

 

Fig. 1 Histograms related to PFDavg and PFH 

B. Fuzzy Sets   

The fuzzy set theory started to be developed at the decade 

of 1960 by Zadeh [12], intending to treat the nebulous aspect 

of the information. Therefore, it offers an alternative to deal 

with parameters uncertainties and is an efficient tool for 

applications where no sharp boundaries (or problem 

definitions) are possible. It allows using imprecise and 

approximate data that are typically met in probabilistic 

assessment. Especially, this approach is suitable when data are 

affected with high degree of subjectivity and vagueness [6]. 

Being less restrictive, it may be considered more suitable for 

treating information provided by human beings than other 

theories [16]. Of course, when no (or poor) statistical data are 

available, the use of Monte Carlo simulation becomes 

meaningless, although possible using some distributions, e.g. 

Uniform.  

A fuzzy set A is a subset from the universe of discourse Ω, 

whose boundaries are progressive rather than abrupt. 

Mathematically, such a set is characterized by a membership 
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function µA, which assigns to each x belonging to Ω a grade of 

membership ranging between zero (non-membership) and one 

(total membership). In that way:  

 

{ }]1,0[: and)(, →ΩΩ∈= AA xxxA µµ          (6) 

   

In safety and reliability analysis, the membership function 

is defined by the typical convex functions of triangular, 

trapezoidal and Gaussian type. Only triangular and trapezoidal 

functions are implemented in this work. Trapezoidal fuzzy 

number can be denoted by the fourtuple point (a, m1, m2, b), 

see Fig. 2. It expresses the idea that the evaluation is “around 

of”. Mathematically, the corresponding membership function 

is written as:  
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Triangular fuzzy number is a special case of the trapezoidal 

one: when m1 = m2. It expresses the idea that the evaluation is 

“close to”. The classical number is encountered when the 

evaluation is “exactly”: a = m1= m2= b (crisp function). To 

simplify the mathematical operations on fuzzy numbers, a 

fuzzy number is often represented by its cuts of level α, 

named α-cuts and noted A(α) [17]: 0 1     

          

{ }αµαα ≥∈=∈∀ )()(],1,0[ xRxA A             (8) 

    

 α-cuts represent therefore horizontal slices in a fuzzy set 

that produce non-fuzzy ones: intervals [
)(α

LA ,
)(α

RA ] (Fig. 2).  

 

 

Fig. 2 α-cuts concept 

 

Consider two fuzzy numbers A and B. Based on interval 

arithmetic, the following expressions are established.  



















⋅=→=







⋅⋅⋅⋅=

⋅⋅⋅⋅=

=⋅→⋅=

−−=→−=

++=→+=

→→

]/1,/1[],[],[/

),,,(max

),,,(min

:],[],[],[

],[],[

],[],[

],[],,[

)()()()()()(

)()()()()()()()()(

)()()()()()()()()(

)()()()()()(

)()()()()()(

)()()()()()(

)()()()(

αααααα

ααααααααα

ααααααααα

αααααα

αααααα

αααααα

αααα

LRRLRL

RRLRRLLLR

RRLRRLLLL

RLRLRL

LRRLRL

RRLLRL

RLRL

BBAACCBAC

BABABABAC

BABABABAC

CCBBAABAC

BABACCBAC

BABACCBAC

BBBAAA

   (9)                                                                           

 

After fuzzy arithmetic operations, the result is a fuzzy 

number which further needs to be translated into a crisp value. 

Defuzzification is an inverse transformation which maps the 

output from the fuzzy domain back into the crisp domain. 

Several methods exist for the defuzzification process: centre 

of area, centre of maximum, mean of maximum, smallest of 

maximum, largest of maximum and centre of gravity COG 

(weighted average or centroid). The COG method is the most 

used and provides a conservative value:  

 

∫ ∫⋅=
x x AACOG xxxxxA d)(d)( µµ                 (10) 

 
TABLE V 

FUZZY CHARACTERISTICS FOR THE SIS ELEMENTS 

Parameters Subsystem S: 

1oo3 

Subsystem LS: 

1oo2 

Subsystem FE:  

2oo5 

λD  (1.48E–6, 4.35E–6, 
9.26E–6) 

(5E–7, 3.67E–6,  
1E–5) 

(3E–6, 5.33E–6, 
 1E–5) 

DC (0.6, 0.7, 0.8) (0.95, 0.97, 0.99) (0.2, 0.3, 0.4, 0.5) 

β (0.15, 0.2, 0.25, 0.3) (0.01, 0.055, 0.1) (0.1, 0.15, 0.2) 

βD (0.07, 0.1, 0.15) (0.005, 0.0275, 0.05) (0.1, 0.15 ,0.2) 

MTTR (8, 12 ,16) (5, 9, 15) (8,18, 30) 

T1 4380 8760 2190 

 
TABLE VI 

OBTAINED RESULTS FROM FUZZY SETS APPROACH  

Elements PFDavg (COG) PFH (COG) 

S 1E-3  9.327E-7 

LS 6.920E-4 3.792E-7 

FE 8.182E-4 1.138E-6 

SIS  α )(α
L

PFD  )(α
R

PFD  )(α
L

PFH  )(α
R

PFH  

0.0 3E-4 8.2E-3 3.19E-7 6.523E-6 

0.1 3E-4 5.1E-3 3.86E-7 5.429E-6 

0.2 4E-4 4.1E-3 4.62E-7 4.716E-6 

0.3 4E-4 3.5E-3 5.46E-7 4.153E-6 

0.4 5E-4 3.1E-3 6.38E-7 3.672E-6 

0.5 6E-4 2.7E-3 7.39E-7 3.246E-6 

0.6 7E-4 2.4E-3 8.50E-7 2.860E-6 

0.7 8E-4 2.1E-3 9.70E-7 2.508E-6 

0.8 9E-4 1.8E-3 1.10E-6 2.186E-6 

0.9 1E-3 1.6E-3 1.241E-6 1.890E-6 

1.0 1.1E-3 1.4E-3 1.393E-6 1.618E-6 

PFDavg = 2.3E-3  PFH = 2.418E-6 

 

 

 

x

µA(x)

1

0
a m1 m2 b

αααα

)(α
R

A)(α
L

A



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:11, 2013

1562

 

 

 

Fig. 3 Alternative approach 

 

For illustration, assume a SIS with uncertain parameter 

values as gathered in Table V. We have kept the same range of 

variation used in the previous example, in order to compare 

the results. Using the above principles and relations, the 

obtained shape related to the SIS fuzzy PFDavg and PFH are 

depicted in Fig. 3, while the results are gathered on Table VI. 

 The resulted uncertainty is more important than that 

obtained using MC simulation: PFDavg(α = 0) = [3E–4, 8.2E–

3] and PFH(α = 0) = [3.19E–7, 6.523E–6]. The crisp values 

derived using the COG methods are: PFDavg = 2.3E–3 and 

PFH = 2.4184E–6h
–1

. However, the 1-cuts are very close to 

confidence intervals given by MC simulation: PFDavg(α =1) = 

[1.1E–3, 1.4E–3] and PFH(α = 1) = [1.393E–6, 1.618E–6].   

1-cuts mean that the corresponding intervals belong to the 

fuzzy number of interest (PFDavg or PFH) with confidence of 

100 %. It is obvious that fuzzy sets provide a wide range of 

uncertainty compared to Monte Carlo simulation, because the 

formalism is adapted for handling highly uncertain 

information which leads to high uncertain result. 

Also, it is clear that the possibility to reach the range of 

variation defined by the 0-cuts is very low. In the other hand, 

1-cuts intervals do not tack into account different values with 

high degree of membership (0.9, 0.8, etc.). To remedy to this 

problematic situation, the analyst may choose an arbitrary 

interval with for example α = 0.6 and compare the upper limit 

of that interval to the upper limit of the required SIL zone. 

However, what value for α the analyst does tack?  

To avoid any extra uncertainty due to the choice of α, we 

propose an alternative based on the  following equation, where 

pF(A ≤ SILRU) express the compliance probability of the fuzzy 

number A (PFDavg or PFH) with the required SIL (see Fig. 3). 

 

∫∫
≤

=≤
x A

RU
SILx

ARUF xxxxSILAp d)(d)()( µµ         (11) 

 

 

Fig. 4 Curves related to PFDavg and PFH 

 

In the case of the preceding example, applying (11) results 

in: pF (PFDavg ≤ 1E–2) = 1, pF (PFDavg ≤ 1E–3) = 0.151, pF 

(PFH ≤ 1E–5) = 1; pF (PFH ≤ 1E–6) = 0.102. Therefore, the 

conclusions issued from MC simulation are confirmed: SIL2 

for low demand and SIL1 for high demand mode. Despite this 

agreement between the two approaches, the purpose of this 

work is not comparing them, but it is their combining to cover 

different kinds of uncertainties inherent to parameters used to 

compute the SIS metrics. This is the object of the next section. 

IV. COMBINING MONTE CARLO AND FUZZY SETS 

In the previous sections, it is noticed that Monte Carlo 

simulation is a suitable tool to tackle uncertainties when 

historical data are significant. In the contrary case, i.e. where 

the provided data are vague and highly subjective, fuzzy sets 

offers a more effective way to deal with uncertainty.  

In practice, those two kinds of uncertainty may be 

encountered simultaneously. Indeed, for example, a significant 

historical data may exist for failure rates inherent to proven in 

use SIS element. Nevertheless, that may not be the case 

regarding common cause failures of the same element. In 

addition, data could be available for one subsystem and not 

available for another one. For example, in the case of new 

technologies SIS elements (which are generally very complex 

and highly reliable), no pertinent reliability data exist. This is 

true for failure rates and it is still more for common causes and 
diagnostic coverage.  

The present paper does not discuss further the gathering and 

the evaluation of uncertainties of input parameters, but the 

proposed approach start with these uncertain parameters 

supposed well defined.  
This approach enables one to carry out uncertainty 

propagation using both Monte Carlo simulation and fuzzy sets. 

Fig. 5 shows its overall process which is described hereafter. 

This process is fully automated within a computer code 

developed under the MATLAB environment.  

 

 

∫x
A xx d)(µ

x

µA(x)

1

0
a SILRL bSILRU

∫
≤ RUSILx

A xx d)(µ
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Fig. 5 Overall process for combining MC and fuzzy sets 

A. General Information 

The first step of the proposed approach is the assignment of 

all input data needed for the calculation procedure, including: 

K and N for the three subsystems of the SIS, probability 

distributions and/or membership functions for uncertain 

parameters. The constant law related to Monte Carlo 

simulation is presented as a fuzzy number in order to easily 

handle fuzzy representations: crisp value a = [a, a, a, a]. 

Additional inputs are also required such as n (number of 

Monte Carlo iterations), required SIL upper bounds (SILRU) 

for PFDavg and PFH, confidence level L (to compute 

confidence intervals) and dα which represents the increment 

for α-cuts (the smaller dα, the more accurate the results).  

B. Monte Carlo Simulation 

The main idea for the proposed procedure is a Monte Carlo 

simulation driven by Fuzzy arithmetic. In fact, if at least one 

parameter is considered as fuzzy number, all resulted amounts 

are also fuzzy numbers. Once the first step is fulfilled, a 

Monte Carlo sampling is performed. To deal with 

uncertainties specified as fuzzy numbers, each input parameter 

issued from the sampling (described by a pdf) is changed to a 

crisp number a = [a, a, a, a]. Hence, arithmetic operations may 

tack place to evaluate PFDavg and PFH, of course they are 

expressed as fuzzy numbers and entirely defined by their α-

cuts.  

At the end of this step, the results are stored in two matrixes 

(for PFDavg and PFH); each line represents the obtained value 

for the corresponding iteration (A stands for PFDavg or PFH):  
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C. Statistical Analysis  

The first computed metrics are the centre of gravity (COG) 

related to each fuzzy number (each line of the matrixes) and 

the average of the obtained COGs. Each COG is evaluated 

according to a discretization (with respect to dα) of (10). 

Therefore, the average of COGs can be deduced:  

 

∑
=

=
n

i

i

COG

avg

COG nAA
1

/

                                       

(13) 

 

In addition, confidence intervals at a given level (L) are 

provided: 

 

 [ ])/(),/( nEAnEA avg

COG

avg

COG σσ ⋅+⋅− = [
avg

L
COG

A ,
avg

U
COG

A ]  (14)  

 

where )(2 LerfinvE ⋅= (e.g. for L = 0.9, E = 1.6449).  

The probability p(ACOG ≤ SILRU) is also given:  

   

)/,,()()( nASILnormcdfSILFSILAp avg

COGRURURUCOG σ==≤  (15) 

 

where, normcdf (x, µ, σ) computes the normal cdf at the value 

x using the corresponding mean µ and standard deviation σ. 

Furthermore, from the matrix given by (12), the average 

fuzzy number is computed according to (16).   

 





















=
∑∑∑∑
=

=

=

=

=

=

=

= +++

n

A

n

A

n

A

n

A

A

n

i
R

n

i
R

n

i
L

n

i
L

F
avg

d

i

d

i

d

ii 1

)0(

1

)1(

1

)1(

1

)0( 2)/1(22)/1(1)/1(1

,...,,,...,

ααα αααα

(16) 

 

It is obvious now to establish a confidence interval for the 

resulted average fuzzy number: upper and lower bounds which 

are also fuzzy numbers. For this purpose, the following 

procedure is proposed. Its starting point is that the mean of 

elements associated to each colon of the matrix A follow a 

normal distribution. This being the case, each colon may be 

characterized by a mean (those given by (16)) and a standard 

deviation. Therefore, for each elements of the vector given by 

(16), lower and upper bonds may be computed at a given 

confidence level. By doing so, the upper bound (resp. lower 

Bound) of the confidence interval for the average fuzzy 

number
F
avgA could be specified by these individual upper 

bounds (resp. lower bounds), see Fig. 6. Their corresponding 

COGs are respectively noted )(COGA
F

U and )(COGA
F

L . 

General informations 

- SIS architecture 

- Assignements of input data (x) 

distributions: f(x)or µ(x)

- Additional parametrs: n, dα, L, SILRU

Monte Carlo simulation

- Generate set of input parameters.

- Change their single values to fuzzy 

crisp numbers .

- Perform  fuzzy arithmetic operations 

to compute PFDavg and PFH. 

i < n
Yes

No 

Statistical analysis

- Average of COG

- Confidence interval for COG

- p(SILRU)

- Average of  PFDavg and PFH (average

fuzzy numbers)

- Confidence intervals for the resulted

average fuzzy numbers

- pF(SILRU)  

i=i+1
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Moreover, the compliance probability of the average fuzzy 

number
F
avgA with the required SIL, pF (

F
avgA  ≤ SILRU), is 

computed according to a discretization of (11). 

 

 

Fig. 6 Confidence interval for the average fuzzy number 

D. Illustrative Example   

In order to illustrate the application of the proposed 

procedure, the reliability characteristics of the new SIS are 

mixed from Tables III and V (see Table VII). Results are 

grouped on Table III, while Fig. 7 depicts average fuzzy 

numbers corresponding to the SIS and its subsystems. Fig. 8 

presents the histograms related to the SIS COGs. Fig. 9 maps 

the confidence intervals for the SIS average fuzzy number. 
 

TABLE VII 

RELIABILITY CHARACTERISTICS FOR THE SIS ELEMENTS 

Parameters S LS FE 

λD Logn. (–12.5, 0.557) (5E–7, 3.67E-6,  

1E–5) 

Trian. (3E–6, 1E–5, 

5.33E–6) 
DC (0.6, 0.7, 0.8) (0.95, 0.97, 0.99) (0.2, 0.3, 0.4, 0.5) 

β (0.15, 0.2, 0.25, 0.3) (0.01, 0.055, 0.1) (0.1, 0.15, 0.2) 

βD Gam. (3.70, 0.027) (0.005, 0.0275, 0.05) (0.1, 0.15 ,0.2) 

MTTR Logn. (2.43, 0.21) Logn. (2.047, 0.4) Logn. (2.85, 0.34) 

T1 Constant (4380) Constant (8760) Constant (2190) 

 

TABLE VIII 
OBTAINED RESULTS FROM THE COMBINED APPROACH  

n = 5000; dα = 0.001; L= 90% 

Metrics PFDavg PFH 

avg
COGA  

[ avg

COG L

A , avg

COG U

A ] 

Mean= 2.40E–3   

Std = 1.1365E–5 
[2.381E–3, 2.420E–3] 

Mean = 1.912E–6   

Std = 6.67E–9  
[1.902E–6, 1.923E–6] 

)(COGA F
avg

 2.40E–3 1.912E–6 

[ )(COGAF
L

, )(COGAF
U

]  [2.381E–3, 2.420E–3] [1.902E–6, 1.923E–6] 

p (ACOG  ≤ SILRU)  p( ACOG  ≤ 1E–2) = 1 

p( ACOG  ≤ 1E–3) = 0 

p( ACOG  ≤ 1E–5) = 1 

p( ACOG  ≤ 1E–6) = 0 

pF (
F
avgA  ≤ SILRU) pF(

F

avgA  ≤ 1E–2) = 1 

pF(
F

avgA  ≤ 1E–3) =  

2.2E-3 

pF(
F

avgA  ≤ 1E–5) = 1 

pF(
F

avgA  ≤ 1E–6) = 

2.04E-2 

 

 

Fig. 7 Average fuzzy numbers related to PFDavg and PFH 

 

 

Fig. 8 Histograms for COGs related to the SIS PFDavg and PFH 

 

 

Fig. 9 The SIS PFDavg and PFH confidence intervals for (a) n = 1E+4 

and (b) n = 20 

 

Inspection of Table VIII allows, once again, SIL 2 (PFDavg) 

and SIL 1 (PFH) for the safety function implemented in the 

considered SIS. The main resulting statement, on one hand, is 

that the average center of gravity (
avg
COGA ) has the same value 

that the centre of gravity related to the average fuzzy number

)(COGAF
avg , whatever the number of iterations n (MC trials). 

The same conclusion is made for the confidence intervals:     

         

[
avg

L
COG

A ,
avg

U
COG

A ] = [ )(COGA
F

L , )(COGA
F

U ] 
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At Fig. 9 (a), the mean fuzzy numbers and their respective 

lower and upper bonds curves are superimposed due to their 

very close values. Fig 9 (b), where n = 20, shows separated 

curves.  

In addition, the fact that pF (
F
avgA ≤ SILRU) is slightly greater 

than p (ACOG ≤ SILRU) = 0 (for SILRU= 1E–3 and 1E–6) is due 

to the spreads of the average fuzzy numbers (Fig. 7) which are 

slightly higher (toward SILRU) than those of the corresponding 

COGs distributions (Fig. 8).  

V. CONCLUSION 

The IEC 61508 standard require to consider uncertainties 

related to safety instrumented systems’ reliability parameters 

when assessing their performances. This requirement may be 

carried out by two quite different ways called respectively 

Route 1H (deterministic) and Route 2H (probabilistic). In this 

paper we have demonstrated, on the basis of a simple 

example, that Route 1H is not suitable to handle uncertainty in 

an effective manner. Furthermore, with respect to Route 2H 

principle, we have proposed an approach which combines 

Monte Carlo sampling and fuzzy sets, in order to deal with 

different degrees of uncertainty: Monte Carlo method is used 

when a sufficient statistical data are available, while fuzzy sets 

method is more adapted when data are affected with high 

degree of subjectivity and vagueness. 

In a future work, a sensitivity analysis will be carried out. In 

this context, new indicators for sensitivity analysis will be 

introduced regarding the proposed approach.    
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