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Abstract—For a spatiotemporal database management system, 

I/O cost of queries and other operations is an important performance 
criterion. In order to optimize this cost, an intense research on 
designing robust index structures has been done in the past decade. 
With these major considerations, there are still other design issues 
that deserve addressing due to their direct impact on the I/O cost. 
Having said this, an efficient buffer management strategy plays a key 
role on reducing redundant disk access. In this paper, we proposed an 
efficient buffer strategy for a spatiotemporal database index 
structure, specifically indexing objects moving over a network of 
roads. The proposed strategy, namely MONPAR, is based on the data 
type (i.e. spatiotemporal data) and the structure of the index 
structure. For the purpose of an experimental evaluation, we set up a 
simulation environment that counts the number of disk accesses 
while executing a number of spatiotemporal range-queries over the 
index. We reiterated simulations with query sets with different 
distributions, such as uniform query distribution and skewed query 
distribution. Based on the comparison of our strategy with well-
known page-replacement techniques, like LRU-based and Priority-
based buffers, we conclude that MONPAR behaves better than its 
competitors for small and medium size buffers under all used query-
distributions. 
 

Keywords—Buffer Management, Spatiotemporal databases.  

I. INTRODUCTION 
ONSIDERING a real-time query execution, execution time 
is known as the typical parameter that reveals the quality 

of system performance. Due to the ever-increasing gap 
between average main-memory access time and average 
secondary-storage access time, I/O cost is still the dominant 
factor for the optimization of the execution time. To alleviate 
this burden, indexes, associated with database files, have been 
employed to organize the hard disk pages in such a way as to 
minimize the number of disk accesses during query execution 
or other database operations. While utilizing indexes is 
indispensable in today’s database systems, there are still other 
means of reducing I/O cost such as having an efficient buffer 
management, applying effective query optimization 
techniques and better data clustering techniques within disk 
pages. Each of these research directions have been addressed 
in the literature with their novel contributions. Moreover, the 
inevitable affect of recent advances in multi-dimensional 
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databases calls for innovations in these areas aiming at a better 
execution time while minimizing the I/O cost. 
Multidimensional indexing, for instance, is extended on the 
existing indexing methods with additional data structures to 
accommodate the specific requirements of new applications. 
Accordingly, with changing indexing strategies, the need for 
more robust solutions arises naturally in other related areas 
mentioned previously.  

In this paper, a novel buffer management strategy, namely 
MONPAR, is designed for a moving object index structure, 
namely MON-tree. Since MON-tree is a spatiotemporal index 
structure designed for objects moving over a network of 
roads, it consequently needs a specialized buffer management 
aiming at reducing the number of disk accesses. In the next 
section, we describe main aspects of some well-known buffer 
management strategies and explain our motivation for a new 
one. Next, in the 3rd section, we examine the main features of 
the MON-tree index structure, on which we built up the new 
buffer management algorithm, MONPAR. Lastly, we describe 
our simulation model in section 4 and evaluate the 
performance of our algorithm based on the comparisons with 
other buffer models.    

II. BUFFER MANAGEMENT 
Buffer is a small part of main memory allocated for the 

purpose of keeping the hard disk pages that is expected to be 
used soon. While the idea of buffering is a traditional 
operating system concept, it has an important impact on the 
performance of index structures as well. Basically, while 
executing a query, pages requested by the query are supposed 
to be read from hard disk and to be located in the buffer area 
in order to serve for anticipated disk accesses without 
accessing the disk redundantly. At this point, if the buffer is 
unable to locate all of the target pages due to its limited 
capacity, an algorithm aiming at keeping the most “important” 
pages in the buffer area is needed. In other words, the 
algorithm, called as page replacement algorithm, is expected 
to have the ability to select the best appropriate page (called as 
victim) to drop from the buffer in order to make room for the 
new requested page. It is not always possible to select the best 
victim page for the replacement. Nevertheless, many adequate 
traditional solutions exist in the literature, some of which are 
LRU (Least Recently Used), NRU (Not Recently Used), and 
LFU (Least Frequently Used). These algorithms are originally 
designed based on the patterns of disk page usage in general 
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manner and do not always fit well into the database 
environment. For example, LRU page replacement algorithm 
replaces the page that has not been accessed for the longest 
time. LRU gives the highest priority to the last referenced 
page by keeping it in the buffer until all other pages in the 
buffer are replaced or referenced again. Hence, although 
simple to implement, LRU is unable to differentiate the pages 
that have frequent reference from the pages that have 
infrequent reference [1]. Additionally, in case of tree-based 
database index structures, the position of the page in the 
structure can be a valid criterion for the victim selection, thus 
LRU is inappropriate due to the lack of this knowledge.  

In order to adapt the LRU replacement strategy to database 
applications, priority-based LRU strategy (LRU-P) was 
suggested in [2]. In this strategy, assuming a tree-based spatial 
access method used, priority of a page in an index depends on 
its level in the tree. While the root has the priority level equal 
to the height of the tree, the pages at the lower levels have 
priority levels corresponding to their distance from the leaves. 
It is important to note that yet LRU-P selects the least recently 
used page as victim, but it selects the victim among the pages 
in the buffer having the lowest priority level. Although it is a 
good idea to apply this kind of priority assigning to each level, 
LRU-P strategy considers only the position of page in the tree.     

All derivatives of the LRU method, like LRU-P [2] and 
OLRU, ILRU [3] and all other traditional solutions 
(NRU,LFU, LRU-K, clock page.) does not have any 
knowledge about the type or content of the stored pages. 
However, in multidimensional databases such as spatial 
databases, it would be better to analyze the content of the page 
in order to select the best victim page in the buffer. For this 
purpose, spatial page replacement algorithm 
(SpatialPageReplacement) has been proposed in [2]. In 
essence, this algorithm requires a function SC (p) computing 
the area of MBR containing all the entries of the page. The 
algorithm selects the victim page, p by applying the function 
SC as follows: 

{ p | p∈buffer ∧  (q∈buffer ⇒   SC(p) ≤  SC(q) ) } (1)

The experiments in [2] shows that it is not advisable to use 
the pure spatial page replacement algorithm for some query 
distributions. Lastly, an adaptable solution combining LRU 
and spatial page-replacement algorithms was investigated in 
[2] in order to achieve a robust organization. Unfortunately, 
the findings from [2] is valid only spatial index like R*tree. 
We think that spatial page-replacement would be a starting 
point to design specialized buffer organizations for other 
multi-dimensional indexes such as moving object index, 
MON-tree. For this purpose, we developed MONPAR on the 
basis of SpatialPageReplacement.  

III. A BUFFER ORGANIZATION FOR MON-TREE 

A. MON-Tree 
MON-tree by Almeida and Güting [4] is an efficient 

organization of a group of R-tree, which is a widely used 
spatial index structure. R-tree spatial index structure [5], 
similar to traditional B-tree, is an excellent index structure for 
query-based static systems. MON-tree is essentially designed 
for the purpose of indexing the past movement of objects 
traveling over a network of roads. Fig. 1 shows its basic 
architectural structure.  

 

 
Fig. 1 MON-tree structural overview 

 
MON-tree is a 2-level organization including a set of 2D R-

trees and a hash table (which is not shown in figure). While 
the R-tree at the upper level indexes the edges of the network 
that had traffic on it, each of R-tree at the lower level stores 
the movements along the corresponding edge. Thus, the 
number of low-level R-trees is equal to the total number of 
edges at leaves of the top level R-tree. In addition, hash table 
in main memory is an auxiliary structure to directly access the 
movements on a specific edge by hashing an edge, Ei to the 
corresponding low-level R-tree. An object movement is 
represented as a rectangle (p1, p2, t1, t2), which means an 
object motion starts at p1 part of an edge, Ei at time t1, and 
ends its movement at p2 part of Ei at time t2, while 
0.0 ≤p1<1.0 and 0.0<p2 ≤1.0 are hold. 

Now, consider a spatial-temporal range query, Q (qspatial, t1, 
t2), where qspatial is a traditional spatial range query that is 
valid for the duration from t1 to t2. At the first step, qspatial is 
the static range query over the top-level R-tree that finds the 
edges that are covered by query region. By accessing an edge 
stored in the top-level, we get the corresponding low-level R-
tree that stores the past movements on this edge. In fact, since 
the edge may partially be within the query region, the covered 
parts of the edge are selected in main memory with a minimal 
execution overhead. Therefore, the output from the first step is 
the set of low-level R-trees and a query set that contains the 
part of edges covered by the query region, w. Then, the 
second step is to find the moving objects of which past 
movement regions are intersecting with any query region in w. 
That is actually done by another range query executions over 
the low-level R-trees found in the first step. Detailed 
explanation on this range query execution and performance 
improvements can be found in [4] for more interested readers. 
We implemented MON-tree index structure as we have 
described in [6]. 

B. MONPAR 
As we noted in section 2, SpatialPageReplacement is a 

specialized algorithm for R-tree index structure. Since MON-

Network R-tree
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tree has been designed as a group of 2D R-trees, we think that 
it is worth to mention another specialized buffer algorithm 
which applies the idea in the SpatialPageReplacement with 
the structural characteristics of MON-tree. Based on these 
motivations, we implemented the MONPAR algorithm from 
the pseudo-code shown below. 

C. Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 types of pages can be designed from the structural 

overview of the MON-tree which is depicted in Fig. 1. Two of 
them, network pages (N) and motion pages (M), are easy to 
refer when we look at the figure. Additionally, we needed a 
third set containing header pages (H). Considering long-term 
motion simulations, a high number, if not all, of header pages 
are expected to accommodate in the buffer due to the fact that 
each edge having traffic on it is represented with an additional 
R-tree. In our experiments, header page actually holds the 
configuration information for the corresponding R-tree that 
naturally results in internal fragmentation. It is a good idea to 
collect all configuration information throughout the MON-tree 
within a couple of disk pages. While this scheme leads to 
more complicated organization for the overall tree 
configuration, this would eventually eliminate the set H in our 
MONPAR algorithm. In that case, we would keep the header 
pages in the buffer all the time since there are a few of them. 
As a future work, we plan to discard the set H in our further 
experiments after some minor reorganization.        

In the algorithm, SC (p) (spatial criteria for p), as we noted 
beforehand, is the function calculating the total area of MBR 
of the entries in the page, p. Since SC results for different set 
of pages (N and M) have different value ranks, they are not 
comparable. As expected, the replacement already happens 
between the pages of the same type.     

According to the pseudo code, if the requested page r is in 

the buffer, there is no further operation to execute except 
keeping some statistics only for LRU, which is the case if set 
H is organized as a LRU buffer. If r is not in the buffer and 
the buffer capacity, C will not be exceeded, the page is added 
into the corresponding set. Otherwise, if C is already at its 
maximum, a victim should be determined from the set having 
the same type of r. At this point, the comparisons done in the 
selection operation is the same as the 
SpatialPageReplacement. Once the most appropriate page 
(which has the minimum mbr area) has been determined, it is 
replaced with the requested page, r.   

It is important to note that, in our algorithm, once the buffer 
becomes full (|H|+|N|+|M| = C), the size of each set in the 
buffer would not change afterwards. This may seem to be a 
contradiction with the adaptive solutions in [2], however, in 
our structure, usage statistics of each different set (N,M,H) 
naturally depends to each other. Thus, it is not applicable to 
apply a hybrid solution combining the strategies from LRU 
and SpatialPageReplacement as it is done in [2], which studies 
only a single R-tree.  Moreover, we are dividing the buffer 
into three subsections, each of which has a fixed-size length 
determined by the initial query distribution conditions. 
Admittedly, we ignore the query distributions which cause 
instability between the numbers of the pages in the buffer. It is 
clear that this would lead to redundant replacements. 
Fortunately, we realized that for range queries on MON-tree it 
is rare to generate queries that modify the balance between the 
requests on each type of set. For example, if high number of 
spatial-temporal queries is generated for a specific range, that 
is, this would fill up the buffer with the pages containing the 
edges in this region; then this would lead the corresponding 
low-level motion R-tree pages to place into the buffer. In fact, 
the larger the query spatial region area is in the query, the 
higher number of motion R-tree pages is requested from hard 
disk. Therefore, the balance between the numbers of different 
type of pages requested for a query does not change 
dramatically due to the structural characteristics of MON-tree.  

IV. EXPERIMENTS 
We used the same simulation environment as we did in [6]. 

Basically, we index the moving objects traveling over a 
network of roads and query on this dynamic dataset. Once the 
traffic generator generators the traffic over the predefined 
network, it is possible to execute many types of queries over 
this series of movements. We completed our studies on range 
queries about the past events.  

Spatial index implementations in Java programming 
language, namely SaIL[7], has been the core for implementing 
MON-tree index structure and all buffer organizations. 
Additionally, we inspired from the work at [7] in order to 
generate network traffic obeying the normal distribution over 
the roads of the network. Fig. 2 depicts the basic modules and 
those that we integrated with in order to evaluate the buffer 
performance. 

r : requested page 
H: set of headers page 
N: set of  network pages 
M: set of  motion pages 
C : buffer capacity 
H=N=M= ø 
SC(p): area(mbr(p)) // area of mbr of a page  
 
MONPAR (r ){ 
     if (‘r’ is in buffer)     
         update ‘r’s statistics if required 
     else 
         type := the type of page ‘r’       
         if (|H|+|N|+|M| < C)        
                add ‘r’ into corresponding set 
         else if(|H|+|N|+|M| == C)  
          { 
               victim=null; 
                if (type = = network)  
                           victim := {v| v ∈N, p∈N, SC(v)<SC(p)}   
                 else if (type == motion) 
                           victim := {v| v∈M, p∈M, SC(v)<SC(p)}   
                else 
                           victim := LRU(v| v∈H) 
                write victim page to disk 
                add ‘r’ into corresponding set  
           } 
 } 
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Fig. 2 Main modules of simulation environment 

We implemented a discrete-time event-generation 
environment that randomly generates objects moving over the 
network based on the parameters, some of which is shown in 
Table I. Motion vectors of a group of objects at each time step 
is updated based on the initialization parameters, such as 
agility and maximum update interval (mui). While the motion 
vector of each object at each time step is stored in a text file, 
the trajectory of each point is updated in the index structure. 
After completion of the generating data set (DS) and 
constructing the corresponding index with a predefined leaf 
capacity (LF), query processing module executes the queries 
in the query set (QS) on the index structure. For the sake of 
more comparability of results, before performing each new 
query set, the buffer was cleared.  

Under these conditions, the established MON-tree index 
structure has a total of 8809 disk pages, including 1330 header 
pages, 241 network pages and the remaining 7238 motion 
pages that are distributed over 1329 motion R-trees. Each 
query set includes 100 spatiotemporal range queries over the 
road network between the simulation intervals, whereas each 
has spatial and temporal distribution that is different from 
other sets. We generated 3 types of sets: The first type, namely 
uniform query distribution (uqd), includes queries obeying the 
uniform distribution characteristics in both spatial and 
temporal dimensions. The second one, namely skewed query 
distribution with probability of 1.0(sqd-1), includes queries 
each of which spatially covers a randomly determined area 
(actually this selected area covers %20 of all road network 
region in each dimension) and has a randomly determined 
temporal interval of 10 time steps throughout the SL. In 
literature, this type of queries is known as hot-spot access 
queries. Lastly, the third type of queries, namely skewed 
query distribution with probability of p (sqd-p), is generated 
in order to evaluate the behavior of the buffer against the 
instantaneous variations of the query region on only spatial 
region dimensions. To do so, we deliberately generate a query 
out of the skewed region with a probability of p, whereas the 
remaining queries still obey the sqd characteristics.  

Each query set with the above characteristics is executed 
over MON-tree with a specific buffer organization. In our 
tests, we compared MONPAR with Random, LRU and Priority 
buffer organizations. As can be guessed, random buffer 
selects the victim in the buffer randomly, and LRU buffer 

selects the victim solely based on the LRU criterion. Lastly, 
Priority buffer, unlike LRU-P presented in section 2, solely 
requires the knowledge of requested page’s position in the 
structure. In our implementation, for all R-tree pages, we 
assign the priority value to a page that equals to its distance 
from leaves. With MONPAR, not only is structural position 
analysis of the pages involved in selection criterion by 
categorizing them into 3 groups, but spatial characteristics are 
also involved in the decision criterion by applying appropriate 
calculations (like SC).   

Our experiments are conducted with a time interval of 
SL=400 on the different-size page buffers in order to see the 
relation between the buffer size and the type of page 
replacement. The size of the buffer was chosen so that the 
buffer can hold 0.5%, 1%, 2.5%, 5% of overall index pages, 
which results in buffer sizes of 50, 100, 250 and 500 pages. 
The performance gain is given as the ratio of number of 
requests served from buffer to total requests in percent, during 
the execution of the query set. 

After completion of a number of experiments with different 
query distributions, buffer sizes and buffer organizations, we 
end up with a list of figures depicted as in fig.3. First, we 
consider the buffer performance in relation to the buffer size. 
Generally speaking, according to the figures in fig.3, it is clear 
that buffer capacity is not always the main parameter that 
improves the performance of the buffer. For example, this is 
shown in the case with uqd distribution on buffers obeying 
Random and LRU rules. Here, the buffer size has nearly no 
affect on the performance. The reason is that under such a 
uniform distribution, buffers having no knowledge about the 
structure are easily filled up with the low levels of the index, 
which leads to redundant page faults. When the buffer has 
knowledge about the level of pages (as Priority and MONPAR 
do), the performance increases with the increasing buffer size. 
This observation shows the clear effect of using structure-
aware buffers. Additionally, when other distributions are 
applied, especially sqd-1, the same buffers (Random and 
LRU) responses to the buffer size modifications accordingly. 
It is equally important to note that under the sqd-1 distribution 
condition, as the buffer capacity increases, the performances 
of all type of buffers already increase rapidly to a peak value. 
As Fig. 3(b) shows, the LRU and Random buffer’s 
performance catches the  specialized buffers’ performance at 
almost medium buffer-sizes. Eventually, at BS=500, all 
buffers can hold overall requested index nodes. 
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TABLE I 
SOME OF THE SIMULATION PARAMETERS 

Parameter Meaning Value(s) 

PS disk page capacity 4K 
LC leaf capacity 10 

SL simulation length 400 time steps 
DS dataset size 250 moving obj. 
QS query set size 100 spatiotemporal query 
BC buffer capacity 50, 100, 250, 500 pages 
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Performance Comparison for uqd 
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(a) 
Performance Comparison for sqd-1
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(b) 
Performance Comparison for sqd-0.8
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(c) 
 Fig. 3 Performance results depending on the buffer size and the 

buffer type for each query distribution 
 

Now, take into consideration the performance gain when 
using specialized buffer organizations. Generally speaking, 
there appear to be a competition between Priority and 
MONPAR buffers. For the test series including uqd-type 
queries, the performance of MONPAR beats the others, 
especially for the buffer sizes of less than about 200. The 
reason is that, for the large buffers (above capacity of 250), 
under such a totally random query distribution, the initial 
distribution of N,M and H sets plays a crucial role for the 
buffer’s later behaviors. Of course, if we reduce the random 
behavior of queries as we did in the other distributions; we 
observe the alleviation of the dominant affect of initial set 
capacities on the near-future buffer performance. To get a 
better sense of how these sets’ capacity really influences the 
buffer’s later behavior, consider the distributions of sqd-1 and 
sqd-0.8. Under the sqd-0.8 distribution condition, for instance, 
MONPAR has an impressive succession for all buffer sizes 
due to the fact that the initial request distribution in spatial 
dimensions rarely changes –in fact it does with probability of 
0.8. The similar succession appears in case of sqd-1 
distribution. However, this success is not as much noticeable 
as in the former query distribution (sqd-0.8), because in sqd-1 
distribution case, others already approach the performance 

level of MONPAR. 
In conclusion, MONPAR performs better than the other 

buffer organizations under all query distributions, except the 
totally random distribution (uqd). Even in uqd case, MONPAR 
preserves its preference for small-size and medium-size 
buffers. As a future work, we plan to analyze statistical 
approaches like LRU-K and their possible integration with 
structure-aware solutions like MONPAR in order to achieve 
more comprehensive results on buffer management for 
spatiotemporal indexes.  

V. CONCLUSION 
In order to speed up the query executions, disk I/O should 

be controlled by designing specialized page replacement 
algorithms. This requirement is becoming more important 
when we look at the innovations in the area of multi-
dimensional databases. In order to design a robust buffer 
replacement, although we may borrow the ideas from 
traditional operating system solutions, they are not adequate 
enough to meet the requirements of database index structures, 
especially of those indexing multidimensional data. It is the 
contribution of this paper to propose a specialized buffer for 
improving the performance of a spatiotemporal index. 
Essentially, the specialized buffer, namely MONPAR, 
coordinates the pages that should be kept or dropped in the 
buffer at the cost of analyzing the content of the page. 

Although we made a few justifications based on the 
specialized structural characteristics of MON-tree, it is still 
possible to manage a fully adaptive buffer on top of current 
implementation of MONPAR In that sense, we are motivated 
by the possible usage of disproportionate usage of the buffer 
by different sets. However, we are still not sure that the 
complexity of such an adaptive organization similar to the one 
in [2] would not degrade the overall execution time, especially 
for large buffers, even though it would decrease the number of 
disk accesses.   
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