
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2474

Abstract—A low bit rate still image compression scheme by
compressing the indices of Vector Quantization (VQ) and generating
residual codebook is proposed. The indices of VQ are compressed by
exploiting correlation among image blocks, which reduces the bit per
index. A residual codebook similar to VQ codebook is generated that
represents the distortion produced in VQ. Using this residual
codebook the distortion in the reconstructed image is removed,
thereby increasing the image quality. Our scheme combines these two
methods. Experimental results on standard image Lena show that our
scheme can give a reconstructed image with a PSNR value of 31.6 db
at 0.396 bits per pixel. Our scheme is also faster than the existing VQ
variants.

Keywords—Image compression, Vector Quantization, Residual
Codebook.

I. INTRODUCTION
ECTOR Quantization [1] [2] has been observed as an
efficient technique for image compression. VQ

compression system contains two components: VQ encoder
and decoder as shown in Fig.1. In VQ method, the given
image is partitioned into a set of non-overlapping image
blocks },....,,{ 110 −= mxxxX of size 4 x 4 pixels each and a
clustering algorithm, for example LBG [3], is used to generate
a codebook },...,,{ 110 −= NYYYC for the given set of image
blocks. The codebook C consists of a set of representative
image blocks called codewords. The VQ encoder finds a
closest match codeword in the codebook for each image block
and the index of the codeword is transmitted to VQ decoder.
In the decoding phase, VQ decoder replaces the index values
with the respective codewords from the codebook and
produces the quantized image, called as reconstructed image.
In order to achieve low bit rate, many VQ schemes, such as
side-match VQ (SMVQ) [4], classified SMVQ (CSMVQ)[5]
and Gradient based SMVQ (GSMVQ)[6], have been
proposed. SMVQ [4] makes use of the high correlation
existing between neighboring blocks to achieve low bit rate. It
uses master codebook C to encode the image blocks in the first
column and first row in advance.

Manuscript received March 31, 2006.
K.Somasundaram and S.Domnic are with Department of Computer

Science & pplications, Gandhigram Rural Institute, Gandhigram-624302, and
India (Corresponding author phone: 91-451-2452371; fax: 91-451-2453071,
e-mail: somasundaramk@yahoo.com and S.Domnic e-mail:
to_domnic@yahoo.co.in).

The other image blocks are encoded utilizing the correlation
with the neighboring encoded image blocks. Let x be the
input image block, and u and l be the upper and left
neighboring codewords respectively. Let the size of the given
image block size be nmk ×= . The side-match distortion of
a codeword Y can be defined as:

 ∑∑
−

=
−

−

=
− −+−=

1

0

2
)0,()1,(

1

0

2
),0(),1()()()(

m

i
ini

n

i
iim YlYuYsmd (1)

SMVQ sorts the codewords according to their side-match
distortions of all codewords and then selects SN codewords
with smallest side-match distortions from the master book C
of size N to form the state codebook SC, where NN S < .

A best-match codeword iY is selected to encode an image

block x from SN codewords and the corresponding index is
coded in log2NS bits. Thus, the SMVQ reduces the bit rate of
VQ. Since mean square error caused by state codebook is
higher than that of master codebook, SMVQ degrades the
image quality and also it requires long encoding time.
Classified side-match vector quantization [5] (CSMVQ) is an
efficient low bit rate image compression technique which
produces relatively high quality image. It is a variable rate
SMVQ and makes use of variable sized state codebooks to
encode the current image block. The size of the state codebook
is decided based on the variances of left codewords and upper
codewords that predict the block activity of the input blocks.
Also, CSMVQ uses two master codebooks, one for low detail
blocks and another for high detail blocks. Another variant,
gradient-based SMVQ [6] (GSMVQ) has been proposed, in
which gradient values are used instead of variance values to
predict the input vector. Another low bit rate VQ, called
Jigsaw-puzzle vector quantization (JPVQ) [7] was proposed,
in which an input block can be coded by the super codebook,
the dynamic codebook or the jigsaw-puzzle block. The jigsaw-
puzzle block is constructed dynamically using four-step side-
match prediction technique.

However, the low bit rate schemes, SMVQ, CSMVQ,
GSMVQ and JSPVQ require high encoding time than that of
VQ method. In this paper, we propose an efficient low bit rate
image compression scheme based on VQ that makes use of
compression of indices of VQ and residual codebook. This
scheme achieves low bit rate and better image quality than
SMVQ, CSMVQ, GSMVQ and JPVQ.

The rest of the paper is organized as follows: in section II,
our compression scheme is described. Performance of our

Modified Vector Quantization Method for
Image Compression

K.Somasundaram, and S.Domnic

V

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2475

LBG
algorithm

VQ
Encoder

Image
Blocks

Indices

Codebook
C={c1,c2..cn}

scheme along with other existing schemes is discussed in
section III and the conclusion is given in section IV.

(a)

(b)

Fig. 1 (a) VQ Encoder (b) VQ Decoder

II. OUR COMPRESSION SCHEME
 Our image compressor consists of two components,
compression of indices and generation of residual codebook.
These two are explained in this section.

A. Compression of Indices
When the image blocks are vector quantized, there likely to

exist high correlation among the neighboring blocks and hence
among the corresponding codeword indices. Therefore, if
indices are coded by comparing with the previous indices,
further reduction in the bit rate can be achieved. In Search
Order Coding (SOC) [8], [9], a simple searching scheme is
followed to find a match for the current index from the
previous indices. The search order SO is defined as the order
in which the current index is compared with the previous
indices. The SO used in [8] and [9] is given in Fig.2 (a) and
(b) respectively. The label “1” indicates the highest searching
priority, “2” denotes the second highest priority and so on. In
order to limit the comparisons of current index with previous
indices, the searching range (SR) is fixed. The SR is defined
as the number of previous indices to be compared with current
index. The previous work [8] has shown that SR = 3 gives the
better bit rate than other high SR values. In the Modified
Search Order [9], SR is taken as 10, which gives the lower bit
rate than other SR.

7 8 9 10 11
6 2 3 4 12
5 1

(a)

8 6 9 12

7 3 2 4 10
5 1

(b)

Fig. 2 (a) Searching Order [8] (b) Modified Searching Order [9]

In our scheme, the index of the codeword of a block is
encoded exploiting the degree of the similarity of the block
with previously encoded upper or left blocks. When the degree
of similarity of the current block with one of the two
previously encoded blocks is high, the index of the codeword
of the block is encoded using the index of the neighboring
codeword. I.e. the codeword index of the current block and
that of the neighboring blocks are same. If the degree of
similarity of the block with the neighboring blocks is not high,
we assume that the closest match codeword of the current
block may be nearer to the codewords of the neighboring
blocks. For example, if one of the two neighboring blocks
codeword’s index is ‘N’, the closest match codeword of the
block to be encoded may lie between (N-J)th codeword and
(N+J) th codeword in the codebook, where J is any arbitrary
number. So the index can be coded in)*2(log 2 J bits. This
idea is based on the property existing in the codebook design
using LBG algorithm with splitting technique. In the splitting
technique, bigger size codebook is generated by splitting each
codeword of the smaller codebook into two. The size of the
codebook is always in powers of two (2M 2(M+1)). Hence,
relatively similar two image blocks may have same closest
match codeword in Jth position at codebook of size 2M and at
codebook of size 2(M+1), one of the two image blocks may
have its closest match codeword at Jth place in the codebook
and other block’s codeword may be in (J+1)th place. The other
non-similar blocks are encoded using their original index
value. In our scheme, examining the resemblance of a block
with its left and upper blocks is not required to encode the
index of the block. The above description is the idea behind
our VQ indices compression scheme. In order to implement
our idea, the index to be coded is compared with previous
indices according to the SO given in Fig.2.b and SR is fixed as
2 in our scheme. Let 1, 2,..,12 be the SO and ind_val (1),
ind_val (2),..ind_val(12) be the indices values of the SO = 1,
2,…12. We use the following steps to encode VQ index.
1 Get the first index generated by the VQ encoder and

transmit as such.
2. Get the next index generated by VQ Encoder.
 Compare this index with the previous indices
 according SO
3. if SO = 1, code it as “00” and go to the step 2

Current
index

VQ
Decoder

Codebook
C ={c0, c2,…cN-1}

Reconstructed
image Indices

Current
index

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2476

 else
 if SO = 2, code it as “01” and go to the step 2
 else go to the next step.
4 if index value ≤ (ind_val (SO = 1) + J) and
 index value ≥ ─ (ind_val (SO = 1)+J)
 { if ind_val (SO =1) = ind_val (SO=2)
 code it as “10” followed by)*2(log 2 J bits
 else
 code it as “100” followed by)*2(log 2 J
 bits. }

 go to step 2.
 else

 if index value ≤ (ind_val (SO = 2) + J) and
 index value ≥ ─ (ind_val (SO = 2)+J)
 code it as “101” followed by)*2(log 2 J bits

 and go to step 2.
 else

code it as “11” followed by its original index and
goto step 2.

Decoding of the compressed indces is done by reversing the
above coding steps. The performance of our proposed scheme
is evaluated with the existing techniques SOC [9] and SOC
[10] for different gray- scale images of size 512x512 and is
given in the table I. J is set to 4 for our scheme. From table I,
we note that our scheme has an improvement in coding the
VQ indices.

TABLE I

PERFORMANCE OF OUR METHOD, SOC[8], SOC[9] AND VQ WITH CODEBOOK
SIZE 64 IN CODING STANDARD GRAY SCALE IMAGES OF SIZE 512 X 512

EACH

Images
VQ

bits/index
SOC[8]

bits/index
SOC[9]

bits/index
Our method
bits/index

Lena 6 4.11 3.92 3.88
Barbara 6 4.29 4.07 4.00
Jet 6 4.22 4.08 3.99
Peppers 6 3.85 3.72 3.66
Zelda 6 4.64 4.45 4.32

B. Construction of Residual Codebook (RC)
Residual codebook },...,,{ 110 −= LRYRYRYRC is

constructed using absolute error values caused by VQ method,
In the residual codebook construction, the image blocks that
are less similar to their closest match codewords found in the
codebook are taken into account. Less similarity blocks will
increase distortion than high similarity blocks in the
reconstructed image. Residual codeword (RYi) for a less
similarity image block is constructed by comparing it with its
closest match codeword. The collection of residual codewords
RYi, RYi+1… is called residual codebook. Similarity of an
image block x with its closet match codeword Yi is
determined based on minimum distortion rule (α) between
them. If the mean square error (α) of an image block is
greater than a predefined threshold value (σ), then the block
is taken as less similarity block. Let),..,(110 −= kxxxx be a

k-pixels image block and },..,{ 10 kt yyyY = be a k-pixels
closest match codeword, then the α is defined as:

∑
−

=

−=
1

0

2)(1 k

i
ii yx

k
α (2)

The steps used for constructing residual codebook are given
below.

Step1: An image to be compressed is decomposed into a set of
 non-overlapped image blocks of 4x4 pixels.

Step 2: A codebook is generated for the image blocks using
 LBG algorithm.

 Step 3: Pick up the next codeword Yt from the codebook C
 and find its all closest match less similarity image
 blocks(X) found out using (2) from the given set of
 image blocks and construct residual codeword RYt

 using the following equation.

},....,,{1
22

1
11 iktkit

m

i
itt XYXYXY

m
RY −−−= ∑

=

 (3)

where k denotes the number of elements in the codeword Yt
and the image block Xi respectively and m denotes the number
of less similarity image blocks that are closer to the codeword
Yt.

Repeat the step 3 until no more codeword exists in the
codebook.

Since residual codeword RYi is constructed only for less
similarity image blocks, some of the codewords Yi may not
have their respective residual codewords, i.e; these codewords
may not have less similarity image blocks. In residual
codebook construction, only absolute values of the residuals of
the less similarity image blocks are used. The sign information
for each less similarity image block is preserved and is called
residual sign bit plane. In encoding phase, for each less
similarity image block, pixels of the block are subtracted from
the corresponding pixel values of the codeword Yi, then sign
values (positive or negative) of the residual values of that
block, called residual sign bit plane, are preserved. To reduce
the bits needed for residual sign bit plane, only alternate bits
are stored and others are dropped based on the assumption that
there exists correlation among neighboring bits. The bits used
for prediction is shown in Fig.3. In the decoding process, the
bits of the residual sign bit plane of a block are replaced with
the respective residual values of the residual codeword from
the residual codebook (RC) with appropriate sign. The
residual values of the dropped bits are predicted from
neighboring residual values using following steps.

1.

3
)()()()(FrrvCrrvArrvBpv ++

=

2.
2

)()()(HrrvCrrvDpv +
=

3.
3

)()()()(FrrvIrrvArrvEpv ++
=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2477

4.
4

)()()()()(KrrvFrrvCrrvHrrvGpv +++
=

5.
4

)()()()()(KrrvFrrvNrrvIrrvJpv +++
=

6.
3

)()()()(PrrvKrrvHrrvLpv ++
=

7.
2

)()()(NrrvIrrvMpv +
=

8.
3

)()()()(PrrvKrrvNrrvOpv ++
=

where pv (*) is the predicted value of the corresponding bit in
the residual sign bit plane and rrv (*) is the respective
reconstructed residual value of the bit in the residual sign bit
plane. After reconstructing the residual codeword, each value
of the residual codeword is added to respective value of the
closest match codeword of the block
 Since the residual sign bit plane for each image block has
only eight bits, alternate residual values in the residual
codeword RYt are dropped and it also reduces the cost of
storing residual codebook. The dropped residual values are
predicted from the neighboring residual values as given above.

Fig. 3 Bits encircled are used for prediction

C. The Proposed Algorithm
Our scheme combines compression of VQ indices and

residual codebook. The steps used in our compressor are.

1. An image to be compressed is decomposed into a set of
non-overlapped image

 blocks of size 4x4 pixels.

2. A codebook is generated for the image blocks using LBG

[3] algorithm.

3. Construct a Residual Codebook (as described in section

II.B) for those image blocks (less similarity blocks)
whose α is greater thanσ .

4. Pick the next image block (current block) and find its

closest match codeword in the codebook. Calculate mean
square error α for the image block using equation (2)

and index of the codeword is encoded using VQ indices
compression scheme presented in section II.A.

5. if (α ≤σ), the current block is encoded as “0”.
 else
 the current block is encoded as “1” followed by
 interpolated residual sign bitplane which is
 computed as described in section II.B.

6. Repeat the step 4 until no more blocks exist in
 the image.

The decoding of the compressed images is done by
reversing the above said steps and residual block to be added
is reconstructed for each less similarity block as described in
section II.B.

III. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate our scheme we carried out experiments on

standard gray scale images using a Pentium-IV computer
running at 1.60 GHz under Linux Fedora core-2. For
comparison, we also applied other methods CSMVQ,
GSMVQ and JPVQ on the same standard images. Three
images of 512 x 512 pixels in size are used. Codebook is
generated using LBG [3] algorithm for all the methods. For
our scheme, a codebook of size 64 is used. For GSMVQ and
JPVQ, the codebook size is 256. Performances of the above
algorithms are evaluated in terms of bit rate (bits per pixel)
and peak signal-to-noise ratio (PSNR) given by:

db
MSE

PSNR
2

10
)255(log10= (4)

where MSE (mean squared error) is defined as:

∑
=

−=
n

i
ii yx

n
MSE

1

)(1 (5)

where ix and iy denote the original and the encoded pixel
values and n is the total number of pixels in an image. Bit rate
including overhead bits (i.e bits need to store codebook) for
different threshold values ranging from 50 to 2000 for Lena
Jet and Pepper are given in Figs. 4, 5 and 6. From Figs. 4, 5
and 6, we observe that our scheme gives PSNR values of
31.60db, 31.820db and 32.340 db at the bit rates of 0.396bpp,
0.410bpp and 0.479bpp respectively for Lena image. The
other methods, JPVQ gives PSNR values of 31.460db,
31.710db and 31.830db at the bit rates of 4.00bpp, 0.438bpp
and 0.538bpp respectively, GSMVQ gives PSNR values of
31.150db, 31.350db and 31.680 at the bit rates of 0.400bpp,
0.425bpp and 0.459bpp for the same image. Since our scheme
uses smaller codebook in VQ method, it gives less encoding
time than GSMVQ and JPVQ.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2478

29

29.5

30

30.5

31

31.5

32

0.37 0.39 0.40 0.41 0.41 0.42 0.43 0.44 0.45 0.46 0.50

Bit Rate (bpp)

PS
N

R
 (d

b)

JPVQ
GSMVQ
Our method

Fig. 4 Experimental results in terms of PSNR and bit rate for JPVQ, GSMVQ and our method with Lena image as the standard test image

29

29.5

30

30.5

31

31.5

32

0.37 0.39 0.40 0.41 0.41 0.42 0.43 0.44 0.45 0.46 0.50

Bit Rate (bpp)

PS
N

R
 (d

b)

JPVQ
GSMVQ
Our method

Fig. 5 Experimental results in terms of PSNR and bit rate for JPVQ, GSMVQ and our method with Jet as the standard test image

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2479

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

0.37 0.38 0.39 0.40 0.40 0.41 0.42 0.43 0.44 0.46 0.50

Bit Rate(bpp)

PS
N

R
 (d

b)

JPVQ
GSMVQ
Our method

Fig. 6 Experimental results in terms of PSNR and bit rate for JPVQ, GSMVQ and our method with Pepper as the standard test image

V. CONCLUSION

In this paper, we have proposed a new gray scale image
compression scheme which gives better image quality and low
bit rate. This scheme is based on VQ method and employs
residual codebook to improve image quality and compression
of VQ indices to lower the bit rate. Experimental results on
standard images show that our scheme gives better PSNR
values and low than GSMVQ and JPVQ. Since our scheme
uses smaller codebook, it gives faster compression than the
other two schemes.

REFERENCES
[1] R. M. Gray, “Vector quantization,” IEEE Acoustics, speech and Signal

Processing Magazine, pp. 4-29, 1984.
[2] M. Goldberg, P. R. Boucher and S. Shlien, “Image Compression using

adaptive vector quantization,” IEEE Transactions on Communication,
Vol. 34, No. 2, pp. 180-187, 1986.

[3] Y. Linde, A. Buzo and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Transactions on Communication, Vol. 28, No. 1, 1980,
pp. 84 – 95.

[4] T.Kim, “Side match and overlap match vector quantizers for images,”
IEEE Trans. Image. Process., vol.28 (1), pp.84-95, 1980.

[5] Z.M.Lu, J.S Pan and S.H Sun, “Image Coding Based on classified side-
match vector quantization,” IEICE Trans.Inf.&Sys., vol.E83-D(12),
pp.2189-2192, Dec. 2000.

[6] Z.M.Lu, B.Yang and S.H Sun, “Image Compression Algorithms based
on side-match vector quantizer with Gradient-Based classifiers,” IEICE
Trans.Inf.&Sys., vol.E85-D(9), pp.1414- 1420, September. 2002.

[7] Chia-Hung Yeh, “Jigsaw-puzzle vector quantization for image
compression” , Opt.Eng Vol.43, No.2, pp. 363-370, Feb-2004.

[8] C.H.Hsieh, and J.C Tsai, “Lossless compression of VQ index with
search order Coding,” IEEE Trans. Image Processing, Vol.5, No. 11,
pp. 1579- 1582, Nov. 1996.

[9] Chun-Yang Ho, Chaur-Heh Hsieh and Chung-Woei Chao, “Modified
Search Order Coding for Vector Quantization Indexes,” Tamkang
Journal of Science and Engineering, Vol.2, No.3, pp. 143- 148, 1999.

