
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:13, No:9, 2019

609

 

 

 
Abstract—Prediction of wall shear stress in a rectangular 

channel, with non-homogeneous roughness distribution, was studied. 
Estimation of shear stress is an important subject in hydraulic 
engineering, since it affects the flow structure directly. In this study, 
the Genetic Algorithm Artificial (GAA) neural network is introduced 
as a hybrid methodology of the Artificial Neural Network (ANN) and 
modified Genetic Algorithm (GA) combination. This GAA method 
was employed to predict the wall shear stress. Various input 
combinations and transfer functions were considered to find the most 
appropriate GAA model. The results show that the proposed GAA 
method could predict the wall shear stress of open channels with high 
accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test 
dataset. Thus, using GAA provides an accurate and practical simple-
to-use equation. 
 

Keywords—Artificial neural network, genetic algorithm, genetic 
programming, rectangular channel, shear stress.  

I. INTRODUCTION 

HE shear stress plays an important role in an open channel 
flow. In any channel, it is a principal factor in 

sedimentation, deposition, turbulence study, bed erosion and 
river morphological and geometric changes [1]-[3]. Therefore, 
it is considered as the main parameter in designing channels. 
Based on experimental data, the boundary shear stress depends 
on the cross-sectional shape, boundary roughness, hydraulics 
of flow and secondary flow [4]-[7]. Many studies have 
focused on measuring shear stress in the side wall and bed of 
smooth rectangular channels such as [6], [8]-[11], few of the 
studies were done on rectangular channel with non-
homogeneous distribution roughness [12]. Besides 
experimental studies, some researchers have focused on 
establishing some analytical and numerical models in 
predicting of shear stress distribution along the wetted 
perimeter [13]-[17]. 

The applications by soft computing technique as a method 
for solving complex problems in the field of water resources 
are increasing [18]-[20]. Sheikh Khozani et al. [21] used Gene 
Expression Programming for predicting the shear stress 
distribution in circular channels with sediment. The authors 
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indicated that the ANN model has better function in predicting 
shear force than the traditional shear force relations. Kisi et al. 
[22] used the soft computing techniques for estimating the 
daily suspended sediment load in two different stations. 
Khozani et al. [23] evaluated the percentage of shear force 
carried by walls in smooth rectangular channels by using GA 
model.  

Determining the structural properties is one of the most 
important concerns in using ANN. In this study, the GAA 
method as a hybrid combination of ANN and GA is 
introduced and employed for predicting the wall shear stress in 
a rectangular channel. The aims of this study are to (1) employ 
the hybrid GAA method as one that could adjust the neuron 
numbers of the hidden layers, (2) examine various fitness 
functions and choose the best one for wall shear stress 
prediction, (3) consider different input combinations to find 
the most appropriate ones, (4) figure out an accurate equation 
that could predict the wall shear stress by using the most 
appropriate input parameters.  

II. MATERIAL AND METHODS 

A. Experimental Study 

In order to examine the ability of ANN to predict the wall 
shear stress in rough rectangular channels, the data of Knight 
[12] were made use of. The experiments were done in a flume 
15 m long, 0.46 m wide and set at a bed slope of 9.58 × 10-4. 
Afterwards, the wall and bed shear stresses were measured by 
using the Preston pipe technique at different flow depths and 
roughness. According to the experimental results, Knight [12] 
could present an equation for predicting wall shear stress in a 
rectangular channel as:  
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where w  is the mean wall shear stress, B the channel width, h 

the water depth,   the fluid density and wSF%  the total 
shear force carried by the walls, calculated as: 
 

     2tanh5.0tanh   e%SF w  (2) 
 
in which: 
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In this study, the results of ANN were compared with (1). 

B. GAA Neural Network 

The ANN is widely used in modeling the various complex 
engineering problems. Structurally, ANN consists of an input 
layer, an output layer, and one or more hidden layer. The 
neuron number of the input and output layers are equal to the 
number of input and output variables, respectively. But there 
is not a particular rule to identify the neuron number of the 
hidden layers, therefore, in numerous studies the trial and error 
method was used to find the appropriate hidden layer neuron 
number [24]-[27]. Because of the time the trial and error 
method consumes, it could not be used in practical situations. 
In this study, a modified GA was made use of to optimize the 

structure of ANN model and specify the neuron numbers of 
each hidden layer. The flowchart of the introduced GAA is 
shown in Fig. 1. 

GA algorithm needs some modification to become 
appropriate to optimize the ANN structure, because of the 
random nature of the Levenberg-Marquardt Algorithm [28] in 
weights and bias determination, it is probable that an 
appropriate individual was put out from the GAA due to bad 
luck in this algorithm process. To overcome this defect, a 
modification was done in the elite population of the GA 
approach. Elites are the top 15% (in this study) of 
chromosomes that transfer directly from one generation to the 
next one. The GA method was used here to run the elite 
population several times in order to find the best cost of each 
chromosome and then transfer the chromosomes to the next 
generation (Fig. 1). By these modifications of the 
chromosomes of the elite population, they are not simply 
changed but are led to preventing the GAA method from 
trapping in the local minimums and also overcomes the 
random nature of the Levenberg-Marquardt algorithm.  

 

 

Fig. 1 GAA algorithm 
 

III. RESULTS 

Based on the previous studies, the shear stress depends on 
some parameters such as bed and wall roughness (ksb, ksw), 
energy slope (Sf), flow velocity (V), channel width (B), flow 
depth (h), fluid density (  ), gravitational acceleration (g) and 
hydraulic radius (R). Thus, the mean wall shear stress can be 
expressed as:  
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Using Buckingham's theorem, the dimensionless parameters 

affecting shear stress can be expressed as below: 
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where B/h is aspect ratio, ksb/ksw relative roughness, Fr, Froude 
number and Re, Reynolds number. 

Finding the most appropriate GAA for modeling, the mean 
wall shear stress of a rectangular channel was done in three 
steps (Fig. 2). RMSE and average absolute deviation (δ%) 
were used for the performance evaluation of each model. In 
the first step, by using the four non-dimensional parameters of 
B/h, ksb/ksw, Fr and Re, different fitness functions were 
investigated to find the more appropriate one. The assessment 
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and the appropriate fitness functions are the most important 
processes in soft computing. A comparison was done between 
Sum of Squared Error (SSE), Mean Absolute Error (MAE), 
Mean Squared Error (MSE) and correlation coefficient (R) 
fitness functions. The results showed that the SSE fitness 
function performs better than the others. 

In the second step, by using the SSE fitness function, 
various input combinations were examined. The comparison 
between five different input combinations showed that the 
GAA model that uses B/h, Fr and ksb/ksw, performs better than 
the others. 

Up to now, the investigated models were used as a 
logarithmic transfer function, (7), in the hidden layers and as 
the purelin one, (8), in the output layer. In the third step, by 
using the hyperbolic tangent, (9), logarithmic and purelin 
transfer functions, four different situations were investigated. 

The result showed that the GAA model with the logarithmic 
and purelin transfer functions in hidden and output layers, 
respectively, exhibits better performance than the other 
models. It is to be noted that in each of the models that were 
investigated, the neuron number of hidden layers were 
determined by the GAA self-structured assigning process and 
is shown in the parentheses in Fig. 2. 
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Fig. 2 Finding the appropriate characteristics of GAA 
 

The equation, obtained from the selected GAA with SSE 
fitness function, B/h, Fr and ksb/ksw input combination, 
logarithmic transfer functions in hidden layers and linear 
transfer functions in output layer, is shown in (10). The goal of 
this equation is to calculate the mean wall shear stress of a 
rectangular channel. 
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The scatter plot of the selected GAA in the test and train 
datasets is shown in Fig. 3. In the trend line equation, the 
y=C1x+C2, the closer C1 to 1 and closer C2 to 0 indicate that 
the errors of the scatter plot are spread more homogeneously 
around the exact line, and the model has higher performance. 

Also, the coefficient of determination (R2) closer to 1 shows 
how well the data fit the statistical model. According to Fig. 3 
(a), the GAA model in both training and testing processes 
shows high performance and there is almost no over- or 
underestimation. Also, the closing performance of GAA in the 
training and testing processes indicate that no over-fitting has 
occurred. 

The comparison between the Knight [12] proposed equation 
(1) and the GAA equation (10) for the entire dataset is shown 
in Fig. 3 (b). From this figure, the trend line equation of the 
GAA, by C1 and C2 of 0.956 and 0.008, respectively, performs 
much better than that of Knight [12], by C1 and C2 of 0.777 
and 0.097. In addition, a comparison between the GAA and 
Knight shows that the Knight shear stress prediction gets 
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 and under-estimation 

in 45.0
ghS

w



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Fig. 3 Scatter plots of (a) GAA model in test and training dataset (b) GAA model and equation by [12] for entire dataset 
 

IV. CONCLUSION 

In this study, a new hybrid combination of ANN and GA is 
introduced. The GAA method represents a self-structured 
adjustable process that is determined by the hidden layers 
neuron number by applying a modified GA. The GAA method 
is employed to predict the mean wall shear stress of a 

rectangular channel. There are no comprehensive soft 
computing studies available about shear stress prediction. The 
GAA fitness function, input combination and transfer 
functions were adjusted, and the equation that was obtained 
from the selected GAA is presented. The results of 
comparison between the GAA results and the traditional 
equation of Knight [12] show that the GAA method could 
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predict the mean wall shear stress of the rectangular channel 
with higher accuracy and represents more acceptable results. 
Because of the non-dimensional input parameters of the GAA 
equation, it could be used in practical situations and other 
studies around the mean wall shear stress prediction without 
concern of scale variation. 
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