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Abstract—The author presented a method for model order 

reduction of large-scale time-invariant systems in time domain. In 
this approach, two modified Hankel matrices are suggested for 
getting reduced order models. The proposed method is simple, 
efficient and retains stability feature of the original high order 
system. The viability of the method is illustrated through the 
examples taken from literature. 

 
Keywords—Model Order Reduction, Stability, Hankel Matrix, 

Time-Domain, Integral Square Error. 

I. INTRODUCTION 
ODEL order reduction is a very attractive idea in CAD 
area. It replaces the original large scale systems model 

with a much smaller one, yet still retains the original behavior 
under investigation to high accuracy. Therefore, by simulating 
just the reduced small system one can still study the original 
system and thus make the design work much easier. With the 
ever increasing the scale of system models appearing in the 
engineering design practice, model order reduction has 
become an indispensible tool in numerous areas of science and 
technology. Model order reduction is also a very interesting 
and meaningful mathematical problem in its own right.  

Several methods based on Hankel matrix have been used 
for deriving low order state models from a given complex 
system described by its transfer function matrix or state 
model. The problem of minimal realization of rational transfer 
function matrix based on Hankel matrix approach has drawn 
major attention of the several authors [1]-[7] from the last few 
decades. Rozsa et al. [2], Hickin & Sinha [5] and Shrikhande 
et al. [6], etc. has suggested reduction methods based on 
Hankel matrix approach in which Hankel matrix is converted 
into Hermite normal form by using outer products. The 
minimal realization can be achieved in fixed number of 
operations on the Hankel matrix. Shamash [3] has proposed a 
method based on Hankel matrix approach in which conversion 
of Hankel matrix into Hermite normal form is not required but 
using Silverman’s algorithm [8] and the theory developed in 
reference [1], the reduced order state models are obtained by 
minimal realization. The method suggested by Shamash is 
applicable to linear SISO and MIMO dynamic systems. In 
this paper, the outer products algorithm is used to synthesize 
the reduced model which is equally applicable to linear multi- 
variable system as well.  
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II. PROBLEM STATEMENT 

Let the thn  order original high order linear SISO system be 
expressed as 

 

( ) ( ) ( )
( ) ( )

X t AX t BU t
Y t CX t

• ⎫⎪= +
⎬

= ⎪⎭

                               (1) 

 
where ( )X t , ( )U t and ( )Y t  are state, input and output 
variable vectors and 

1[ ] , [ ]n n nA B× ×
 and 

1[ ] nC ×
 are state, input, 

and output matrices of the original high order system.  
The problem is to find the thk  ( )k n<  order reduced 

model, which reflects the dominant properties of the original 
high order system (1) be expressed as   
 

  

( ) ( ) ( )
( ) ( )
k k k k

k k k

X t A X t B U t
Y t C X t

• ⎫⎪= +
⎬

= ⎪⎭

                  (2) 

 
where ( )kX t , ( )kY t are reduced state and output vectors and 

( )kY t  is close approximation of ( )Y t  and 
1[ ] , [ ]k k kA B× ×
 , and 

1[ ] kC ×
 are unknown matrices of the reduced order model.   

III. DESCRIPTION OF THE METHOD 
The transfer function ( )G s , which can be expanded in 

power series of 1s−  or s  as 
 

1( ) ( )G s C sI A B−= −                                    (3)  
                  

                1 2 3
1 2 3 ..................M s M s M s− − −= + + +                (4)   

                  
                2

1 2 3 .......................T T s T s= + + +                  (5)                   
 

where    
         

1

1, 2, 3, ..........
i

i

i
i

M CA B
i

T CA B

−

−

⎫= ⎪ =⎬
= ⎪⎭

            (6)          

 
and 

iM  & 
iT  are the thi  Markov parameter and time-moment 

respectively. The following two modified Hankel matrices 
(0 )

ijH  are defined in the following manner with i j n= =  as 
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Type 1:
1 1 1

1 2
(0)

2 1 2 3

1 2 2

... ...

... ...
... ... ... ... ...

... ...

... ...

n

n n n

nn

n n n

n n n

T M M
M M M

H
M M M
M M M

−

− −

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  

1 2

1

3 2 2 4

2 1 2 3

... ...

... ...
... ... ... ... ...

... ...

... ...

n

n

n n n

n n n

CA B CB CA B
CB CAB CA B

CA B CA B CA B
CA B CA B CA B

− −

−

− − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

            (7)                                                           

 
which can also be written as    
 

 

1

(0 ) 1

3

2

... ...... n
nn

n

n

CA
C

H B AB A B
CA
CA

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   = £×Ω      (8) 

                                                    
where £ and Ω are observability and controllability matrix.  

By applying any of the available techniques [1], [2], a 
partial realization is then obtained as 

 
                   1: , ,B A CA−∑                                   (9) 

                                                                                     
from which the triple of matrices ( , ,k k kA B C ) can be obtained.  
 

Type 2:
1 1 1

1 2
(0 )

2 1 2 3

1 2 2

... ...

... ...
... ... ... ... ...

... ...

... ...

n

n

nn

n n n

n n n

M T T
T T T

H
T T T
T T T

−

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  = 

1 1

1 2

2 1 2 3

1 2 2

... ...

... ...
... ... ... ... ...

... ...

... ...

n

n

n n n

n n n

CB CA B CA B
CA B CA B CA B

CA B CA B CA B
CA B CA B CA B

− − +

− − −

− + − + − +

− + − − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

              (10)  

                                                
This matrix can also be written as 
 

 ( 0 )
nnH  = 

1

1 1

2

1

... ...... n

n

n

C
CA

B A B A B
CA
CA

−

− − +

− +

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= € . £     (11)  

                                             
where € and £ are observability and controllability matrix.  

By applying any of the available techniques [1]-[2], a 
partial realization is then obtained as 
 

1: , ,B A C−∑                                 (12) 

from which the triple of matrices ( , ,k k kA B C ) can be obtained.  
The algorithm of Rozsa and Sinha [2] is used to convert the 

Hankel matrix (0 )
nnH  into Hermite normal form using outer 

products. In this procedure the first ' 'k  columns of the Hankel 
matrix are transformed to unit vectors. The method requires 
exactly ' 'k  steps where ' 'k  is the order of minimal realization. 
The conversion algorithm of the both types of the Hankel 
matrix into Hermite normal form and realization in each steps, 
is illustrated as follows: 

Let a Hankel matrix (0 )
nnH  be  

 

    
11 12 13 1

21 22 23 2
(0)

31 32 34 3

1 2 3

...

...

...
... ... ... ... ...

...

n

n

nn n

n n n nn

e e e e
e e e e

H e e e e

e e e e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                    (13)    

                    
The Hankel matrix (1)

nnH , in Hermite normal form is 
obtained from (0 )

nnH  using outer products method as follows: 
 

     
[ ]

21
(1) (0 )

31 11 12 13 1
11

1

1 ...
...

nn nn n

n

z
e

H H e e e e e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (14)    

                    
where

11 1z e= −   
 

          

' ' '
12 13 1

' ' '
22 23 2

(1) ' ' '
32 33 3

' ' '
2 3

1 ...
0 ...
0 ...
... ... ... ... ...
0 ...

n

n

nn n

n n nn

e e e
e e e

H e e e

e e e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                       (15)    

 
Thus, the 1st order partial realization is obtained as follows: 
For type 1 Hankel matrix: 

1 [1]B = , '
1 12[ ]A e=  and 

1
1 1 11[ ]C A e− =   
For type 2 Hankel matrix: 

1 [1]B = , 1 '
1 12[ ]A e− =  and  

1 11[ ]C e=   
In the second step, ( 2 )

nnH  is obtained from the (1)
nnH  as 

follows 
 

 

'
12

(2 ) (1) ' ' ''
22 23 232'

22

'
2

1 0 ...
...

nn nn n

n

e
z

H H e e ee
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤= − ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (16)  

                    
where '

22 1z e= −  
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" "
13 1

" "
23 2

(2 ) " "
33 3

" "
3

1 0 ...
0 1 ...
0 0 ...
... ... ... ... ...
0 0 ...

n

n

nn n

n nn

e e
e e

H e e

e e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                     (17)  

 
2nd order partial realization is thus obtained as 
 

For type-1 Hankel matrix: 
2

1
0

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , 
"

13
2 "

23

0
1

e
A

e
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and  

[ ]1
2 2 11 12C A e e− =    

 

For type 2 Hankel matrix: 
2

1
0

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
"

1 13
2 "

23

0
1

e
A

e
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and 

[ ]2 11 12C e e=    
 

Similarly, in the third step, (3)
nnH is obtained from the 

Hankel matrix ( 2 )
nnH  and is written as 

 

  

"
13

"
23

(3) (2 ) " "
33 3"

33

"
3

1 0 0 ...
...

nn nn n

n

e
e

H H e ez
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤= − ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          (18) 

                                                      
where "

33 1z e= −  
 

       

''' '' '
14 1

''' ' ' '
24 2

(3) ''' ' ' '
34 3

''' '' '
3

1 0 0 ...
0 1 0 ...
0 0 1 ...
... ... ... ... ... ...
0 0 0 ...

n

n

nn n

n nn

e e
e e

H e e

e e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                     (19)   

                                                                     
The 3rd order partial realization is then obtained as 
 

For type 1 Hankel matrix: 
3

1
0
0

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
'''

14
'' '

3 24
'''

34

0 0
1 0
0 1

e
A e

e

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

and [ ]1
3 3 11 12 13C A e e e− =  

For type-2 Hankel matrix: 
3

1
0
0

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,     

 
'''

14
1 '' '

3 24
'' '

34

0 0
1 0
0 1

e
A e

e

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 , and [ ]3 11 12 13C e e e=  

Extension to MIMO Systems:  
The proposed method is also applicable to linear MIMO 

systems. The algorithms of the proposed method for the 

MIMO systems are almost same as discussed for the reduction 
of linear SISO systems. But for the sake of convenience, a 
brief procedure for the reduction of MIMO systems is 
discussed as follows: 

Let the thn order linear MIMO system with ' 'p  inputs and 
' 'q  outputs be taken as  
 

              ( ) ( ) ( )
( ) ( )

X t AX t BU t
Y t CX t

• ⎫⎪= +
⎬

= ⎪⎭

                       (20)  

                    
where ( )X t , ( )U t and ( )Y t  are state, input and output variable 
vectors and [ ] , [ ]n n n pA B× ×

 and [ ]q nC ×
 are state, input, and 

output matrices of the original high order system.  
Let a reduced model of the order ' 'k  ( )k n< , which reflects 

the dominant properties of the original high order system be 
expressed as   
 

           ( ) ( ) ( )
( ) ( )
k k k k

k k k

X t A X t B U t
Y t C X t

• ⎫⎪= +
⎬

= ⎪⎭

                      (21)  

                    
where ( )kX t , ( )kY t are reduced state and output vectors and 

( )kY t  is close approximation of ( )Y t  and [ ] , [ ]k k k pA B× ×
 , and 

[ ]q kC ×
 are unknown matrices of the reduced order model.   

In case of MIMO system, the size of the Hankel matrix 
(0)

ijH  is calculated as follows: 
 

ni
q

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 and n pj

p
⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

                               (22)    

                    
where [ ]α  is the largest integer greater than α  and ,p q , and 
n  are inputs, outputs and order of the original system 
respectively.  

The following two types of Hankel matrices with ' 'i  rows 
and ' 'j  columns are taken as  

Type 1:    

   

1 1 2 1

1 2 3

( 0 )

2 1 3

1 1 2

... ...

... ...
... ... ... ... ... ...
... ... ... ... ... ...

... ...

... ...

j

j

ij

i i i i j

i i i i j

T M M M
M M M M

H

M M M M
M M M M

−

− − + −

− + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

             (23)   

                    
This matrix can be written as:      
 

   
1

( 0 ) 2 1

3

2

...
... ...

...
j

ij

i

i

C A
C

H B A B A B A B

C A
C A

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤= ⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (24)   
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A partial realization is then obtained as:          
                                      

                1: , ,B A CA−∑                                   (25) 
                                                              

Type 2:  

    

1 1 2 1

1 2 3

(0 )

2 1 3

1 1 2

... ...

... ...
... ... ... ... ... ...
... ... ... ... ... ...

... ...

... ...

j

j

ij

i i i i j

i i i i j

M T T T
T T T T

H

T T T T
T T T T

−

− − + −

− + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

              (26)  

                                               
The above matrix can be also written as:  
 

  
(0 )

ijH = 
1

1 2 1

2

1

...
... ...

...
j

i

i

C
CA

B A B A B A B

CA
CA

−

− − − +

− +

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     (27)  

                                           
The partial realization is obtained from above Hankel 

matrix as: 
 

              1: , ,B A C−∑                                   (28) 
                                                                                   

Let the general Hankel matrix (0 )
44H  of the type-1 be 

written as:  
 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 2 1

1 2 3

(0 )

2 1 3

1 1 2

... ...

... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ...

... ...

jq p q p q p q p

jq p q p q p q p

ij

i i i i jq p q p q p q p

i i i i jq p q p q p q p

T M M M

M M M M

H

M M M M

M M M M

−× × × ×

× × × ×

− − + −× × × ×

− + + −× × × ×

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎢

= ⎢
⎢
⎢

⎡ ⎤⎢ ⎣ ⎦
⎢

⎡ ⎤⎢ ⎣ ⎦⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

      (29) 

 
The same procedure as discussed earlier for SISO systems 

for getting (1)
ijH , (2)

ijH ,……., ( )k
ijH  using outer products is 

adopted here to get partial realizations in each case. The order 
of the reduced model ' 'k  is p k n≤ <  in case of MIMO 
system reduction, hence the process for conversion of the 
Hankel matrix (0)

ijH  into Hermite normal forms (i.e., (1)
ijH , 

(2)
ijH ……..) can be stopped just after the thk  step. For getting 

the thk order partial realization from the matrix ( )k
ijH , the first 

' 'k  rows and first ' 'p columns of the matrix ( )k
ijH  are selected 

to realize the matrix 
kB , the first ' 'k  rows and next ' 'k  

columns are selected to obtain the matrix 
kA  and  the first ' 'q  

rows and first ' 'k  columns of the Hankel matrix (0)
ijH  are 

selected to obtain the matrix 1
k kC A − . The same algorithm can 

be applied on the type-2 Hankel matrix to realize the reduced 
order models. 

IV. NUMERICAL EXAMPLES  
Two numerical examples are taken from the literature to 

illustrate the algorithm of the proposed method and solved in 
details by using the Hankel matrices of the type 1 and type 2. 
The reduced order models are graphically compared with the 
original high order system with the help of its unit step 
responses. To check the goodness of the reduced order 
models, the ISE [9] and RISE [10] are calculated between the 
transient parts of the original and reduced systems and are 
defined as follows: 

 
2

0
ISE [ ( ) ( )]ky t y t dt

∞
= −∫                           (30)  

                  
2 2

0 0

RISE= [ ( ) ( )] / [ ( ) ( )]ky t y t dt y t y dt
∞ ∞

− − ∞∫ ∫          (31)  

 
where ( )y t  and ( )ky t  are the unit step responses of original 
and reduced order system respectively and ( )y ∞  is the steady-
state value of the original high order system.  

Example 1: Consider the 4th order state model of a fuel 
control system of an actual boiler, which integrates a real 
power plant from Aguirre [7].  
  

2.06 0.4558 0.1524 0.05683
4 0 0 0
0 2 0 0
0 0 0.5 0

A

− − − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 , 
1
0
0
0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
and   

[ ]0.9704 0.2901 0.1127 0.05437C =  
 
(a) Let the type 1 Hankel matrix be used to reduce the system.  

The type 1 Hankel matrix (0 )
44H  is obtained as  

 
1 1 2 3

1 2 3 4( 0 )
44

2 3 4 5

3 4 5 6

T M M M
M M M M

H
M M M M
M M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 

(0 )
44

0.9567 0.9704 0.8386 0.8599
0.9704 0.8386 0.8599 1.2081
0.8396 0.8599 1.2081 1.7227

0.8599 1.2081 1.7227 2.2040

H

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦  

 
using the outer products, the following Hankel matrices in the 
Hermite normal form and corresponding reduced order models 
are obtained as: 
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[ ](1) (0)
44 44

1.9567
0.97041 0.9567 0.9704 0.8386 0.8599
0.83960.9567
0.8599

H H

−⎡ ⎤
⎢ ⎥
⎢ ⎥= + − −
⎢ ⎥−
⎢ ⎥
⎣ ⎦  

 
1 1.0143 0.8766 0.8988
0 0.1457 0.0093 0.3359
0 0.0093 0.4730 0.9690
0 0.3359 0.9690 1.4311

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥− −⎣ ⎦  

 
hence, 1st order partial realization gives the following  
 

1 [1]B = ,  [ ]1 1.0143A = −   and  [ ]1
1 1 0.9567C A − = −  

  
Thus, the 1st order reduced model is obtained as : 
 

[ ]1 1

1 1

1.0143 [1]
[0.9704]

X X U
Y X

•

= − +

=

 

 
or ,  

1
0.9704( )

s + 1.014
R s =  

 
now in the second step, ( 2 )

44H  can be obtained as: 
 

[ ](2) (1)
44 44

1.0143
0.85431 0 0.1457 0.0093 0.3359

0.00930.1457
0.3359

H H

−⎡ ⎤
⎢ ⎥−⎢ ⎥= − −
⎢ ⎥
⎢ ⎥−⎣ ⎦  

 
1 0 0.9413 3.2372
0 1 0.0638 2.3054
0 0 0.4736 0.9904
0 0 0.9904 2.2055

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦  

 
Similarly, for the 2nd order partial realization, we have  

 

2

1
0

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,    
2

0 0.9413
1 0.0638

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  and  

[ ]1
2 2 0.9567 0.9704C A − = −  

 
2nd order reduced model is unstable in this case.  
In the third step, (3)

44H  can be obtained similarly 
 

[ ](3) ( 2 )
44 44

0.9413
0.06381 0 0 0.4736 0.9904
1.47360.4736

0.9904

H H

⎡ ⎤
⎢ ⎥
⎢ ⎥= + −
⎢ ⎥−
⎢ ⎥
⎣ ⎦  

               
1 0 0 1.2687
0 1 0 2.1720
0 0 1 2.0912
0 0 0 0.1344

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦  

 

The 3rd order partial realization is given by  
 

3

1
0
0

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,    
3

0 0 1.2687
1 0 2.1720
0 1 2.0912

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

    and

[ ]1
3 3 0.9567 0.9704 0.8386C A − = − −  

 
The 3rd order reduced model in time-domain is thus obtained 
as   
 

3 3

3 3

0 0 1.2687 1
1 0 2.1720 0
0 1 2.0912 0

[0.9704 0.8386 0.8598]

X X U

Y X

•
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

= −

 

 
or     

2

3 3 2

0.9704 1.191 1.214( )
2.091 2.172 1.269

s sR s
s s s

+ +
=

+ + +
 

 
The step responses of the first, second and third order 

reduced models are compared with the original system and 
shown in Fig. 1 and the error indices ISE and RISE are 
calculated between the original and reduced systems and 
shown in Table I.    

 

 
Fig. 1 Comparison of the step responses for the example 1 

 
TABLE I 

COMPARISON OF REDUCED ORDER MODELS FOR EXAMPLE I 
Reduced 
Models 

Type-1 Type-2 
ISE RISE ISE RISE 

First Order 0.04180 0.10140 0.044180 0.10140 
Second Order   0.039960 0.09170 
Third Order 0.02943 0.06755 0.009103 0.02089 

 
Example 2: A simplified dynamic model of a power system 

i.e. single machine connected to infinite bus power system is 
considered and symbols used have usual meanings as defined 
in paper [11]. 
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1

0.188 0 0.227 0 0 1
0 0 1 0 0 0
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⎢ ⎥⎣ ⎦

 

1

1 0 0 0 0
0 1 0 0 0

q

t

E

V

p
p

δ
ω

δ

Δ⎡ ⎤
⎢ ⎥Δ⎢ ⎥Δ⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦  

 
The proposed method is applied to the above power system 

model and the following 2nd and 3rd order reduced models are 
obtained which are given as 
(1) Using type-1 Hankel matrix , the following 2nd and 3rd 

order models are obtained as  
 

2 2

2 2

0 0 1
1 0.1880 0

1 0.1880
0 0

X X U

Y X

• ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦  
 

3 3

3 3

0 0 0.1072 1
1 0 1.0761 0
0 1 0.6881 0

1 0.1880 0.3765
0 0 1.8157

X X U

Y X

•
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦  

 
(2) Using type-2 Hankel matrix , the 2nd order reduced model 

is obtained as 
 

2 2

2 2

1.9738 1 1
0.1949 0 0

1 5.3191
0 16.937

X X U

Y X

• −⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦

 

            
The step responses of the third order model from type-1 

Hankel matrix and 2nd order model from type-2 Hankel are 
shown in Fig. 2. 
 

 
Fig. 2 Step response comparison of the reduced models 

 
TABLE II 

COMPARISON OF THE ORDER REDUCED METHODS FOR EXAMPLE 2 
Method of reduction Reduced order model ISE 

Proposed method 
11r  2

1.037
1.974 0.1949

s
s s

+
+ +

 0.0819 

21r  2
3.301

1.974 0.1949s s
−

+ +
 1.976 

Hankel Norm 
Approximation [11] 

11r  2

2.734 1.297
2.753 0.2175

s
s s

+
+ +

 0.781 

21r  2
5.266 3.86

2 0.2495
s

s s
−

+ +
 10.24 

Balanced Realization 
[11] 

11r  2

1.04 0.2183
0.6535 0.03662

s
s s

+
+ +

 0.2265 

21r  2
0.2663 1.265
0.5944 0.08173

s
s s

−
+ +

 3.12 

Routh approximation 
[11] 

11r  2

12.172 11.4
17.006 19.42 2.086

s
s s

+
+ +

 0.5236 

21r  2
21.78 36.3

17.006 19.42 2.086
s

s s
− −

+ +
 12.45 

V. CONCLUSION 
In this paper, modified hankel matrices are used to 

synthesize the reduced order models .The proposed method is 
based on outer product and it has been concluded that the 
algorithm is simple and efficient. Two numerical examples are 
taken from literature and solved by using the proposed method 
to get lower order models. In the example 1, 2nd and 3rd order 
model are synthesized which matched the step response of 
original system very closely. In example 2, multivariable 
system is reduced to 2nd and 3rd order models which are very 
closely matching the features of original system. The proposed 
method is also compared with the existing well-known 
reduction methods and found better in quality.  
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