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Abstract—Spectrum underutilization has made cognitive
radio a promising technology both for current and future
telecommunications. This is due to the ability to exploit the unused
spectrum in the bands dedicated to other wireless communication
systems, and thus, increase their occupancy. The essential function,
which allows the cognitive radio device to perceive the occupancy
of the spectrum, is spectrum sensing. In this paper, the performance
of modern adaptations of the four most widely used spectrum
sensing techniques namely, energy detection (ED), cyclostationary
feature detection (CSFD), matched filter (MF) and eigenvalues-based
detection (EBD) is compared. The implementation has been
accomplished through the PlutoSDR hardware platform and the
GNU Radio software package in very low Signal-to-Noise Ratio
(SNR) conditions. The optimal detection performance of the
examined methods in a realistic implementation-oriented model is
found for the common relevant parameters (number of observed
samples, sensing time and required probability of false alarm).

Keywords—Cognitive radio, dynamic spectrum access, GNU
Radio, spectrum sensing.

I. INTRODUCTION

IN the past decade, the number of applications which use

Cognitive Radio (CR) has increased. The technology is

being exploited to provide a method of using the spectrum

more efficiently. That makes the area of spectrum sensing

increasingly important and key to those applications. This

requires that the overall system operates effectively and

provides the required improvement in spectrum efficiency.

The CR spectrum sensing system must be able to detect and

identify any other transmissions and to inform the central

processing unit within the CR so that the appropriate action

can be taken.
The detection of Primary Users (PU) is performed based

on the received signal at CR users. This approach includes

methods, such as energy based detection [1], cyclostationary

based detection [2], [3], matched filter based detection [4],

eigenvalues-based detection [5], whose purpose is to detect

the presence or absence of primary transmitter.
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Kumar et al. [1] present some approaches for the

energy detection technique and investigate the effect of

different threshold selection methods on the spectrum sensing

performance parameters. Banjade et al. [6] propose some

approximations for performance of the energy detector,

although offering computational ease, but not accurate

for small sample sizes. In their work, Murty et al. [2]

propose a cyclostationary based spectrum detection algorithm

for Orthogonal-Frequency Division Multiplexing (OFDM)

signals. The proposed architecture is hardware implemented

in Field-Programmable Gate Array (FPGA) platform and its

functionality and performance are verified with respect to

conventional ones. Blad et al. [7] also consider spectrum

sensing of OFDM signals and propose modifications to some

state-of-the-art detectors, which are implemented using GNU

Radio and USRP, and evaluated over a physical radio channel.

Tani et al. focus on a low-complexity cyclostationary spectrum

sensing of cognitive heterogeneous LTE-A network where

the eNB represents the primary system. The third method,

based on the matched filter technique, is characterized by

a static sensing threshold. However, the noise is random,

and [4] suggest a dynamic sensing threshold approach

to increase the efficiency of the sensing detection. The

eigenvalue-based method overcomes the highly vulnerable

under noise uncertainty energy-based detection method, but

but the performance deteriorates at low SNR. To solve this

problem, the optimum number of samples, the theoretical

analysis and numerical formula for given SNR are proposed in

[5]. The optimal threshold minimizes the total error rate over

a WGN channel and [8], based upon the optimal threshold

theory, propose dynamic threshold scheme to reduce average

total error rate for local CR node with applied energy detector.

The majority of spectrum sensing research works is

performed theoretically and verified via computer simulations

[9], [10]. Sardana and Vohra [10] evaluated the two important

parameters for the channel sensing performance of energy

detection, cyclostationary detection and matched filter. This

analysis reports the detection probability and the false alarm

probability. In [9], only the performance of energy detector

and matched filter are compared, which is a common and

well established practice. There have also been many practical

realizations of CR systems [7], [11], [12] with a different

range of scientific contributions but they are much fewer in

comparison to the works which present solutions verified only

via simulations.

The rest of the paper is organized as follows. Section
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II describes the common description of the PU signal

and noise used in all of the experiments in this study,

and the models of the four detectors. Then, Section III

introduces the hardware platform and the software used for the

implementation. The setting and conditions of the experiments

are explained in Section IV. Section V discusses the results of

the measurements in terms of detection performance for the

examined algorithms. Finally, the conclusions of this study are

given in Section VI.

II. SYSTEM MODEL AND PRIMARY USER SIGNAL

DETECTION

The premise which is described in this section will be

applied for all detection algorithms examined in this study.

It consists of a PU which has to be detected and a secondary

user (SU) which needs to determine whether the PU’s signal

is present in the frequency band in question or not. They are

both located in close proximity to one another as the scenario

is relevant to indoor cellular networks or Internet of Things

(IoT) system deployments. The signal of the PU is defined

as an OFDM modulated data flow which is described as a

Gaussian process and so is the noise. Due to the problem

studied here, being detection of the PU signal, the input y (k)
of the receiver can be characterized in the following way:

y (k) =

{
n (k) , H0

s (k) + n (k) , H1,
(1)

n(k) representing the noise with zero mean and variance σ2
n,

and s(k) - the signal of the PU with zero mean and variance

σ2
s . There are, thus, only two possibilities for the content of the

information received by the detector - hypothesis H0 which

signifies that the PU is absent from the band, and H1 where the

signal is present and needs to be detected accurately despite

of it being corrupted by noise and channel imperfections. It is

required by each detection algorithm to identify the presence

of the PU with a sufficient probability Pd while, at the same

time, guaranteeing a desired probability of false alarm Pfa

which describes the likelihood of the detector perceiving that

the signal is present in the spectrum when in reality, it is

not. The probability of detection secures the transmission of

the PUs from harmful interference while a low probability of

false alarm provides the SU with the opportunity of higher

utilization of the available spectrum. These are the general

concepts of the scenario in which all four detector types will

be examined.

A. Energy Detection

This technique has been the object of great many scientific

studies for many years and especially since the rise of the

CR concepts in the last two decades. This is due to it being

the simplest to implement and most computationally effective

[13]. In addition to this, the ED allows an almost blind

detection algorithm which can be applied to all kinds of

signals. Its major drawback is its unreliability in below-zero

SNR conditions due to it being unable to discriminate between

different kinds of signals. For that reason it is necessary to

precisely determine the noise level and the decision threshold

which can be difficult in realistic implementations. For this

study, the energy-based spectrum sensing method explored in

[1], [14] is chosen due to its promising adaptive threshold

feature. The test statistic of the signal, which is compared

against the threshold to determine the occupancy of the

spectrum, is defined as follows:

T (y) =
1

N

N−1∑
k=0

y(k), (2)

where N is the number of received samples by the detector.

Then the threshold λ is defined as [1]:

λ =
−B −√

B2 − 4AC

2A
,

A =
−B

2N

(
1

σ2
t

+
1

σ2
n

)
,

B =
σ2
s

σ2
t σ

2
n

; C =
−2 log

(
σ2
n

σ2
t

)
log(e)

; σ2
t = σ2

n + σ2
s .

(3)

The performance of the detector is determined through the

widely-used equation for Pd [14], [15] which is applicable due

to the PU signal and noise following a Gaussian distribution

and the number of samples being more than a few hundred

[1], [14], [15].

B. Cyclostationary Detection

This type of detector extends the capabilities of the spectrum

sensing function by allowing better detection in low SNR

and fading for much lower number of samples than the

energy detection [3], [11], [12]. The algorithm utilizes the

presence of characteristic cyclostationary features in the

communications signals. Noise is differentiated from the PU

signal by examining whether the test statistic includes these

features or not. Their main advantage is that they remain

present even if the noise level is much higher than that of

the signal. The test statistic T (y) chosen for the following

comparison uses the Cyclic Autocorrelation Function (CAF) of

the Single Cycle Detector with Sliding Correlation (SCD-SC)

proposed in [3] due to its decreased computational complexity:

T (y) =
∣∣∣R̂α

y (τ)
∣∣∣2

R̂α
y (τ) =

1

N

1

M

N−1∑
k=0

n+M−1∑
i=k

y (i) y∗ (i+ τ) e−j2παk,
(4)

where R̂α
y is the CAF of the received signal y which is

examined for the two features of the PU signal – the cyclic

frequency α and time lag τ [16]. N is the number of

observed samples and M is the quantity of samples which

are contained in the sliding window. The decision threshold

for this cyclostationary detector is [3]:

λ = −2σ4
n ln (Pfa)

NM
. (5)

Similarly to [3], [12], the Rayleigh fading scenario is

considered which leads to the following expression for the
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Pd [3]:

Pd =

∫ max(h)

min(h)

Q1

(
γf
νf

,

√
λ

νf

)
e

−h2

μ

μ
dh2,

νf =
σ2
n + σ2

sh
2

√
NM

; γf =
∣∣∣R̂α

y

∣∣∣ h2.

(6)

The integral is defined within the lowest and highest values

of the channel estimation vector h and μ is the mean of its

distribution, Q1(.) being the Marcum Q function of first order

[17] which can be computed using the algorithm proposed in

[18].

C. Eigenvalue-Based Detection

In this case, further accuracy and robustness to noise is

sought by exploring a more complex mathematical derivation

of the test statistic [5]. It is expressed by the ratio of

the maximum γmax and minimum γmin eigenvalue of the

covariance matrix Rr formed by performing the following

operations. First, the vector of N received samples is split

into L (L is the smoothing factor) equal parts and a matrix Y
with shape L×NL is formed, where NL = N

L . Finally Rr is

obtained [11]:

Rr =
1

NL
Y Y ∗. (7)

The threshold λ is defined as [5], [11]:

λ =
χ2

δ2

(
1 +

χ−2/3

(NN2
L)

1/6
F−1
2 (1− Pfa)

)
, (8)

where χ =
(√

NL +
√
NNL

)
, δ =

(√
NL −√

NNL

)
and

F−1
2 (.) is the inverse Tracy-Widom distribution of second

order [19] which is used in the case of complex samples as

it is in this study. To determine the performance of the EBD,

the expression for Pd derived in [5] is used:

Pd = 1− F2 (κ) , (9)

where

κ =

NL

σ2
n
(λγmin(Rn(NL)) + λρmin − ρmax)− ψ

φ

ψ = (
√

NL − 1 +
√
L)2,

φ = (
√

NL − 1 +
√
L)

(
1√

NL − 1
+

1

L

)1/3

.

The parameters γmin(Rn(NL), ρmin and ρmax are the

minimum eigenvalue of the covariance matrix of the noise, the

minimum and maximum eigenvalues of the covariance matrix

of the PU signal. They are all computed in the same way as the

covariance matrix of the received samples and its eigenvalues

(γmax and γmin). F2(.) is the Tracy-Widom distribution of

second order which is calculated using tabular data found in

[20]. As taken from [5], L is set to 5.

D. Matched Filter Detection
The detector based on the MF is characterized by achieving

optimal performance in case the probability density function

(PDF) of the PU signal is known (as it is in the present

study) [21]. That is due to the use of specific information

about the signal which needs to be identified. This is the main

disadvantage of the MF. The information is usually in the form

of the pilot signal xp. Thus, the test statistic and the decision

threshold have the form [4], [21]:

T (y) =

N−1∑
k=0

y(k)x∗
p(k)

λ = Q−1(Pfa)
√

Eσ2
n,

(10)

where E is the energy of the PU pilot signal and Q−1(.) is

the inverse Q-function defined as Q−1(u) =
√
2 erfc−1(2u),

erfc−1 being the inverse complimentary error function. The

probability of detection which characterizes the efficiency of

the algorithm is [4], [21]:

Pd = Q

(
λ− E√
Eσ2

n

)
, (11)

where Q(.) is the Q-function which is expressed as Q(u) =
1√
2π

∫∞
u

exp
(
− v2

2

)
dv.

III. MEASUREMENT EQUIPMENT AND SOFTWARE

For the purpose of our experiment, the GNU Radio

software development toolkit and two ADALM-PLUTO

Software-Defined Radios (SDRs) were used. GNU Radio

provides signal processing blocks to implement SDR and also

contains the Companion, a graphical user interface similar

to Simulink for creating signal flow graphs and generating

flow-graph source code [22]. In our scenario, various blocks

provided by GNU Radio are directly utilized in our Python

source code without using the Companion.
The ADALM-PLUTO Active Learning Module (PlutoSDR)

is based on Analog Devices AD9363, a Radio Frequency

(RF) 2×2 transceiver with integrated 12-bit Digital-to-Analog

Converters (DACs) and Analog-to-Digital Converters (ADCs),

and on Xilinx Zynq Z-7010 FPGA. The SDR offers one

receive channel and one transmit channel which can be

operated in full duplex, capable of generating or measuring

RF analog signals from 325 to 3800 MHz, at up to 61.44

Mega Samples per second (MS/s) with a 20 MHz bandwidth.

The transmit power output is up to 7 dBm and the receive

Noise Figure is rated at < 3.5 dB. The PlutoSDR is widely

supported under various software suites, including GNU

Radio, MATLAB, Simulink, libiio, and offers Application

Programming Interfaces (APIs) for C, C++, C#, and Python

[23].
In our setup, each of the PlutoSDR units was connected to a

host computer using the USB 2.0 interface and communicated

via Ethernet over USB, through which complex I/Q samples

were carried. The host computers for the transmitter and

receiver units were running 64-bit Linux operating systems

– Debian Stretch and Ubuntu Xenial, respectively. The

PlutoSDR units run embedded Linux. The two units we used

are depicted in Fig. 1.
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Fig. 1 A photograph of the PlutoSDR units used for our experiments

Fig. 2 A photograph of the PlutoSDR units during the measurements

IV. EXPERIMENTAL SETTING AND IMPLEMENTATION

DETAILS

The experiment was conducted in an indoor environment

(in the premise of a room, see Fig. 2) using two PlutoSDRs,

one being the transmitter (Tx) and the other - the receiver

(Rx) which implements the detectors. In this way, a realistic

scenario is represented due to the non-line-of-sight (NLOS)

conditions and Rayleigh fading. Transmission is implemented

by building a GNU Radio graph which includes the OFDM

Modulator block from the gr-digital GNU Radio package, to

form the PU signal. To emulate a realistic transmitter, the

executed flow of the graph is controlled through the Python

file which GNU Radio generates. In this way, discontinuous

transmission is implemented by setting an array of busy and

idle (ON and OFF) time periods for the transmitter. These

periods follow a Generalized Pareto distribution because it

has been shown to be the most accurate model for modern

cellular systems [24]. The two parameters which define the

distribution are {1.3692,−0.2669} for the busy periods and

{10.3225, 0.4805} for the idle and are obtained from [24].

The samples drawn from these distributions are the values of

the arrays of busy and idle periods of the transmitter. Thus,

discontinuous transmission is run in the span of 5 minutes

during which the receiver is performing the detection.

The SU receiver is implemented by utilizing a GNU Radio

flow-graph which obtains the signal samples and processes

them using the Fast Fourier Transform (FFT) block with size

1024 and then outputs them into the Message Sink block

which allows for the actual detection to be performed in real

time inside the Python script. For each of the detectors, the

program runs for 5 minutes during which it collects samples

for 0.5 seconds and then calculates the decision threshold, the

test statistic and determines whether the PU is present in the

spectrum. Due to the limitations of the currently used PLUTO

SDR model (Fig. 1), the minimum supported bandwidth of 600

kHz is used. Such consideration is due to this model providing

only USB 2.0 functionality for transfer to the host computer.

Another limitation of the transceiver is the frequency range

which is the reason the experiment was conducted in an

available Wireless Local Area Network (WLAN) channel in

the 2.4 GHz industrial, scientific and medical (ISM) spectrum

band. The receiver gain is 40 dB while the attenuation of

the transmitter is 20 dB which makes the output power to be

-13 dBm. As a logical consequence of the bandwidth being

600 kHz, the sampling rate Fs is 1.2 MS/s. Therefore, at

each iteration of the measurements, there are about 300 000

complex samples provided to the SDR for the sensing time

of 500 ms. Several considerations are made in regards to the

implementation of the detectors in a practical experiment. First

of all, the SNR level is estimated using the full-scale SNR

method described in [7]. The sensing time during which the

measurements are performed is set to 1.5 seconds due to the

CR standard [25] allowing up to 2 seconds for the detection

to be executed. Requirements set by the standard also give the

desired constant Pfa to be 0.1. The noise power and variance

are estimated using 1 million samples when the transmitter is

in idle state. Likewise, the reference power and variance of

the PU signal is computed by measuring 1 million samples

under the condition that the transmitter is 1 meter away from

the receiver. That is also used to estimate the reference for

the full-scale SNR. This PU signal vector is used instead of a

pilot signal in the case of the MF detector because the actual

transmitted data remains always the same in this experiment.

This is due to the fact that the contents of the PU signal

are irrelevant because it is generalized. For the CSFD, the

implementation considerations in [12] are made. Thus, the

features of the OFDM signal are α = 0.2Fs = 240 kHz and

τ = 256 samples. The estimation of the channel vector for the

calculation of the integral in (6) also follows the algorithm

described in [12]. Due to the complexity of this algorithm

being much greater than that of the other three, the number of

samples utilized for it are limited to 3000. That is necessary

in order for the processing to be performed in a reasonable

amount of time.

V. MEASUREMENT RESULTS

This section will present the analysis of the measurement

results in the previously described environment and system

model. The performance results for the four detectors are

presented in 3.

It is easily observed that in the current setting, the optimality

of the MF-based detector is proven. This distinction holds
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Fig. 3 Probability of detection versus the measured SNR for the four
detectors

due to the definition of the PU OFDM signal model which

allows for generalization and does not require demodulation

and feature extraction from a pilot signal. The paper [4] which

describes the model further solidifies this observation because

it shows that for high number of samples (as it is in this

case), the detector reaches excellent performance. When it

comes to the CSFD, it is evident that despite of it operating

in very limited number of samples as stated in the previous

section, has achieved fair efficiency even though it is worse

compared to the other three detectors. The ED has shown

significant performance surpassing the CSFD and EBD for

SNR over -30 dB. This can be attributed to the large number

of samples which naturally increase the Pd. Finally, the EBD

statistic shows that the computation of the eigenvalues of the

covariance matrix allow high discrimination of the signal from

the noise even in very low SNR levels. It is however, unable

to reach optimal detection in this setting. It is evident that all

detectors achieve at least 50 % efficiency at even -50 dB which

is due to their characteristics and the large number of samples

obtained by the receiver for the chosen sensing period (500

ms).

VI. CONCLUSION

This paper has presented a study of the implementation

and comparison of the effectiveness of four contemporary

detection algorithms. The details of the experimental

procedures have also been described. Out of the four detectors,

only ED and MF achieved the performance of 90% probability

of detection at SNR of -20 dB, required in the CR standard

[25]. This underlines the necessity of algorithms which allow

simple signal processing which allows for more samples to

be observed. Due to the non-uniformity of areas where the

signal detectors need to be applied within IoT, any of the

examined types of detectors can be utilized depending on what

information about the PU signal is known at the SU device,

and how much computational power this device possesses. The

examination conducted reveals their agility and potency for

practical experimentation.
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