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Abstract—This paper presents the application of the Discrete 

Component Model for heating and evaporation to multi-component 
biodiesel fuel droplets in direct injection internal combustion engines. 
This model takes into account the effects of temperature gradient, 
recirculation and species diffusion inside droplets. A distinctive 
feature of the model used in the analysis is that it is based on the 
analytical solutions to the temperature and species diffusion 
equations inside the droplets. Nineteen types of biodiesel fuels are 
considered. It is shown that a simplistic model, based on the 
approximation of biodiesel fuel by a single component or ignoring 
the diffusion of components of biodiesel fuel, leads to noticeable 
errors in predicted droplet evaporation time and time evolution of 
droplet surface temperature and radius.  
 

Keywords—Heat/Mass Transfer, Biodiesel, Multi-component 
Fuel, Droplet, Evaporation.  

I. INTRODUCTION 

IODIESEL fuel droplets heating and evaporation are 
crucial processes leading to fuel combustion in the 

internal combustion engines [1]. As such, the accuracy of 
modelling these processes is important for improving the 
design of these engines [1]–[3]. There have been several 
suggestions for accurate modelling of fuel droplet heating and 
evaporation (see [2], [4]–[10]).  

This paper presents a comparison between the results, 
referring to fuel droplet evaporation times and time evolution 
of droplet surface temperatures and radii, predicted by the 
previously suggested simplified models (see [11], [12]) and 
the recently developed version of the Discrete Component 
(DC) model ([9], [13], [10]). The latter takes into account the 
recirculation, temperature gradient, and diffusion of species 
inside the droplets, based on the Effective Thermal 
Conductivity and Effective Diffusivity (ETC/ED) models. 
This approach is performed in contrast with the previously 
suggested models that ignore temperature gradients and 
diffusion of species by assuming Infinite Thermal 
Conductivity and Infinitely fast Diffusivity (ITC/ID) of 
species inside the droplets. 

The model originally described in [9], [13], [14] is used in 
the analysis. However, this model is applied to a considerably 
larger number of biodiesel fuels (19 types). These are: Tallow 
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Methyl Ester (TME), Lard Methyl Ester (LME), Butter 
Methyl Ester (BME), Coconut Methyl Ester (CME), Palm 
Kernel Methyl Ester (PMK), Palm Methyl Ester (PME), 
Safflower Methyl Ester (SFE), Peanut Methyl Ester (PTE), 
Cottonseed Methyl Ester (CSE), Corn Methyl Ester (CNE), 
Sunflower Methyl Ester (SNE), Soybean Methyl Ester (SME), 
Rapeseed Methyl Ester (RME), Linseed Methyl Ester (LNE), 
Tung Methyl Ester (TGE), Hemp-oil Methyl Ester, produced 
from Hemp seed oil in Ukraine (HME1), Hemp-oil Methyl 
Ester, produced in European Union (HME2), Canola seed 
methyl ester (CAN) and Waste cooking-oil Methyl Ester 
(WME). The molar fractions of the pure fatty acids 
contributing in these methyl esters are inferred from averaging 
data reported in [14]–[20]. These are shown in Table I. The 
thermodynamic and transport properties, inferred from [9], 
[15], are used in the analysis.  

II. RESULTS AND DISCUSSION 

The time evolutions of droplet surface temperatures (Ts) and 
radii (Rd) for the abovementioned 19 types of biodiesel fuels 
have been studied. It is assumed that droplets with initial 
temperatures and radii 350 K and 12.66 μm, respectively, are 
moving through air at Ud= 35 m/s at temperature and pressure 
equal to 880 K and 30 bar respectively.  

Two examples of the time evolutions of droplet surface 
temperatures and radii of Rapeseed Methyl Ester (RME) and 
Waste oil Methyl Ester (WME) droplets are shown in Figs. 1 
and 2. The following models are used in our analysis: 1) the 
ETC/ED model taking into account the contributions of 
multiple components (ME); 2) a combination of ITC and 
single-component models, in which all species are treated as 
one-component (SI); and 3) a combination of ITC and one 
dominant component models, in which biodiesel fuel is 
approximated by a single dominant component (DI). As 
mentioned in Section I, the second and third models are 
commonly used in the analysis of heating and evaporation of 
biodiesel fuel droplets. 
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