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Abstract—The use of neural networks is popular in various In addition, increased interest in energy efficieiscthought

building applications such as prediction of heatiogd, ventilation
rate and indoor temperature. Significant is, thdy dew papers deal
with indoor carbon dioxide (Cfp prediction which is a very good
indicator of indoor air quality (IAQ). In this styda data-driven
modelling method based on multilayer perceptromvaek for indoor
air carbon dioxide in an apartment building is deped.
Temperature and humidity measurements are usatpas\variables
to the network. Motivation for this study derivesrh the following
issues. First, measuring carbon dioxide is expensind sensors
power consumptions is high and secondly, this letmsshort
operating times of battery-powered sensors. Thalteeshow that

to affect negatively on indoor air quality. For tasce, in
Nature there are discussions about low-energy ibpggdand

their relation to carbon emissions [4], as welbasthe use of
biological indicators for IAQ [5]. In Science, tleeare articles

discussing about using and extending smart gridefergy

efficiency [6], sustainability [7], and the relatiships between

healthiness and the environment [8].
Neural networks have been used in the predictionddor
air quality e.g. feedforward backpropagation [9], T8current

predicting CQ concentration based on relative humidity and'®Ural networks [11], fuzzy neuro systems [12] anddel

temperature measurements, is difficult. Therefonere additional
information is needed.

Keywords—Indoor air quality, Modelling, Neural networks

|. INTRODUCTION

NDOOR Air Quality (IAQ) is a widely researched topi
because of its impacts on occupant’s health. Symgtdke
e.g. eye dryness, running nose, headache and etzziare
experienced by occupants in a building. Sick buogdi
syndrome (SBS) is a combination of ailments andallisiit is
related to poor indoor air quality [1]. About halfthe studies
concerning non-residential and non-industrial hingd
present that the risk of the SBS decreased sulbgnif
ventilation rates were increased, so that carboridi CQ
concentrations were reduced below 800 ppm [2],caritig
better IAQ. As a whole, linking symptoms and IAQbefilding

occupants has been a very difficult task.

The concentration of CQOn indoor air is generally used asa The

surrogate for ventilation rate and concentratiofowel000
ppm is widely recommended. For the temperature Fthish
guideline value is 21°C and for the relative hutyidi is 20-
60 % during the heating season [3].
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comparison [13].
forecasting outdoor air quality parameters usinguatational
methods [14, 15, 16].

This study aims to explore the applicability of tiayer

perceptron (MLP) network to predict G@oncentration in

indoor air using measurements of relative humidityd
temperature.

Il. MATERIALS AND METHODS

A.Data Collection

The case study was conducted in an apartment bgildi

located in Kuopio, Finland, from May to October 20TThe
building has been built in 1973. Indoor air qualitsgta was
collected continuously in 8 apartments from 4 bedrs and 6
living rooms, using an energy consumption and imdaio
quality monitoring system [17]. Measurements wea&eh
every 10 seconds.

collected IAQ data consisted of
measurements of temperature, relative humidity &@,
concentration in the study building. Measured \@ea and

their ranges are presented in Table I.

TABLE |
DATA VARIABLES AND THEIR RANGE
Variable Range
Temperature9C] 20.7-27.7
Relative humidity [%6] 15.9-62.8
Carbon dioxide [ppm] 341.0-998.9
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(including measurement time) variables in columns.

B.Multilayer Perceptron (MLP)
Multilayer perceptrons have been used successfulbplve

There are also previous studies on

continuous
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classification, regression and function approxiomati
problems. Multilayer perceptron models are capable
modelling highly non-linear and complex problems;otigh

the topology of the network, as presented in a k&infigrm in

Figure 1.
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Fig. 1 The structure of a multilayer perceptronhviivo hidden layers
(modified from [18])

MLP networks consist of groups of interconnectediaso
arranged in different layers, such as the inpuerdajhidden
layers, and the output layer. The purpose of tpetitayer is
to distribute inputs to the first hidden layer, whethe
mathematical processing task takes place. It suimesathe
inputs based on predefined weights, processes thena
transfer function and transfers the result to tlest rayer,
which is usually an output layer, as a linear corabon.
Finally, the output layer receives the informatfoom the last
hidden layer. The network outputs are calculatea iyansfer
function, which can be e.g. hyperbolic or sigmdi8][

C.Modelling Carbon Dioxide Concentration using MLP

The data was processed and modelled under a Matlal

software platform (Mathworks, Natick, MA, USA) acding
to Figure 2. At the beginning, the indoor air qtyallata was

Kurtosis 7 (RH), 8 (T)

0> " s -
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separating the higher
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17 (RH), 18 (T)
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The size of the final data matrix used was 7807%Vsr®1
variables in columns. Variable number 1 is measerdgrtime,
variable number 2 is the room ID and the rest efwthriables
are calculated features. No outliers or missingueslwere
found. The data was scaled using variance scalifiped as:

XX g, %0, (1)
ag

X

X =

wbﬁere Xis the average of values in vectoand g, denotes
the standard deviation of those values. Thus, neeiascaling

pre-processed. This means removing outliers, sgafia data Nnot only equalizes the effect of variables havingifferent

and extracting the features using time window ofn@iflutes.
Extracted features are presented in Table Il, winere the

total number of data sampleg,is theith measurementy; is

the mean of the measurements, anslthe standard deviation,

respectively. RH means relative humidity, T tempee and
CO, carbon dioxide.

TABLE II
DEFINITIONS OF THE EXTRACTED FEATURES FROM THE INDG®AIR QUALITY
DATA
i Variable
Features Definitions
number
ini N
Minimum min,", x; 3 (RH), 4 (T)
Maximum max" X, 5 (RH), 6 (T)

range; it also reduces the effect of possible engtlin the data.
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1) Pre-processing phase

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2) Model building and evaluation on each room

Pre-processing Hold-out cross- Training MLP Performance
and scaling 3 validation model indicators

Database

Fig. 2 Main stages of the building and evaluating®vmodel for predicting C©concentration

After pre-processing, the input variables of theMinodel ~Coefficient of Determination (& is defined as follows:
were selected using correlation analysis. Selecagithles and

their delayed values were used in training the MhBdel. ZN (P. —6)2
Delaying horizon was set to 1, 2, 3, 24, 25, 28,1869 and R? = % ®)
170 hours. The model parameters were selectedd base Zm(oi —O)

experience and knowledge. The parameters used ®@re

hidden neurons in a hidden layer, the back-propayat R? js an index measuring the proportion of variatoplained
learning was based on the Levenberg-Marquardtithgorthe  py the model.

performance function was regularized mean squaredr,e Root Mean Square Error (RMSE) is defined as foltows
hyperbolic sigmoid tangent was used for the hiddgars and
linear for the output layer. 1

MLP models room-specific performance indicators ever ruse =(LZ‘N G _O)ij 4
estimated by repeating model training 5 times arheaodel, N ==
using hold-out cross-validation [19] (Figure 2). eThused
method is the simplest way to validate the goodrefsa RMSE is the estimated standard deviation of thererdf the
model. In this approach the data was divided ino $ets; the RMSE is small relative to the variation in the dateen the R
training set and the validation set (hold-out s&te training IS near to 1 and the data are concentrated closietditted
data set consisted measurements of relative hly‘nmd model. Both ﬁand RMSE measure the gOOdneSS'Of-ﬁt of the
temperature 9 rooms and rest of the data was used amodelin their own way.
validation data.

Performance of the models was based on four itafiga . RESULTS
namely Index of Agreement (IA) [20], Coefficient of Input variables of the MLP model input were seldatising
Determination (R [20], Root Mean Square Error (RMSE)correlation analysis (Figure 3). Variables whichrretated
and their statistics (mean = S.D). Hdétedenotes a predicted with mean CQ were 5 (max RH), 6 (max T), 9 (Skewness
RH), 14 (Average T), 16 (Median T), 18 (RMS T) a2d
(Sum T). Negative linear relationship was reasa@bl2 < R
< 0.3) between mean G@nd selected variables.

element andQ; equals to observed element afdis the
symbol for the average of observations. Index ofegnent is
a measure which can be used to describe the goodifies
model:

ZiNzl(lj o) _ (2
> \r-0]+[a -off

A =1-
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-1 Fig. 4 Mean CQ@concentrations (observed versus predicted) olitaine
as a result of one of five MLP model 5 (LR). Thelded line gives

the perfect fit and the solid line the fitting ugileast-squares

Scale Gives Value of R for Each Variable Pairs
Fig. 3 Correlation map of extracted features (\des); Variable pairs are
regrouped by similarity using k-means clustering

A d standard deviati ¢ del ‘ In Figures 4 and 5 it can be seen that the predicti
vVerages and standard deviations of model per Ocmanaccuracy is reasonable in normal situations, batxizeptional

|nd|c§t(_)rs are presented "? Table Ill. The resilticated, that circumstances the model cannot predict correctly.
predicting CQ concentration, based on calculated features

utilizing on relative humidity and temperature maasnents,
is difficult. However, it can be seen that the tbemdel
performances can be found when predicting livingmme CQ
concentration.

TABLE Il
STATISTICS (MEAN * S.D.) OF THE MLP MODEL PERFORMANCE
BD MEANS BEDROOM AND LR LIVING ROOM

Model IA R? RMSE

1 (BD) 0.68 +0.02 0.23+0.02 83.14 +1.92
2 (LR) 0.60 +0.12 0.22+0.12  177.45+102.04
3 (BD) 0.66 +0.02 0.28 +0.05 175.45 + 6.88
4 (LR) 0.67 +0.03 0.24 +0.04 144.22 + 4.33
5 (LR) 0.76 +0.01 0.39 +0.02 122.85 +5.37
6 (BD) 0.40 +0.01 0.00 +0.00 258.68 + 13.97
7 (LR) 0.54 +0.00 0.11 +0.00 193.89 + 2.34
8 (BD) 0.58 +0.03 0.27+0.04  189.16 +10.15
9 (LR) 0.70+0.01 0.32+0.02 122.26 +2.08
10 (LR) 0.63 +0.01 0.31+0.02 174.77 £ 2.74

The performance was also visualized using the escptot
(Figure 4) and time series plot (Figure 5) of thedicted
versus observed mean €fncentrations.

mip (IA: 0.77472 RMSE: 117.5289)
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Fig. 5 Time series plot of observed versus prediatean CQ

concentration obtained as a result of one of fikdPNinodel 5 (LR)

IV. DISCUSSION

In this study we tested the MLP model for predigtmean
CO, concentrations in ten rooms. Overall, it seemst tha
predicting CQ is challenging, if it is only based on
measurements on relative humidity and temperatrdirst,
we tried to model mean GQ@oncentration, using means of
relative humidity and temperature as model inploitg,results
were poor (not presented here). Mean values ofximfe
agreements were lower than 0.5. Therefore we ddctd
calculate several features to attain further infation
concerning the dependences. After that the perfiocseaof
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MLP models was tested using selected varibles (7[).0] H. Xie, F. Ma and Q. G. Bai, “Prediction of indoair quality using

P 2 artificial neural network$ Fifth International Conference on Natural
Performance indicators IA, “‘Rand RMSE (Table 1ll) show Computation (ICNC '09\ol. 2, pp. 414-418, 2009,

that the goodness and fit of the model were reddenan [11] M. H. Kim, Y. S. Kim, J. J. Lim, J. T. Kim, S. W.uSg and C. K. Yoo,

models 5 (LR) and 7 (LR). It seems that predictiiving “Data-driven prediction model of indoor air quality an underground
rooms CQ concentration is easier probably due to small igg%e*;g%ea” Journal of Chemical Engineeringol. 27, pp. 1675-
varlatlon§ n CQconcentratlon._ ] ) ) [12] T. E. Alhanafy, F. Zaghlool and A. S. El Din Mousta“Neuro fuzzy
Thus, it seems to be very difficult to build upediable and modeling scheme for the prediction of air pollutiorJournal of
generalizable prediction model using only relattvemidity American Sciencevol. 6, pp. 605-616, 2010. _
d temperature as input variables. If the modeégsization [13] T. Lu and M. Viljanen, “Prediction of indoor tempéure and relative
and tempe p : humidity using neural network models: model congam” Neural

ability and prediction accuracy were good, it coube Computing & Applicationsvol.18, pp. 345-357, 2009
implemented as a soft sensor to make prediction€©f [14] M. Kolehmainen, H. Martikainen, T. Hiltunen, and Ruuskanen,
concentration “Forecasting air quality parameters using hybriduraé network
’ modelling,” Environmental Monitoring and Assessmewol. 65, pp.
277-286, 2000.

V.CONCLUSION [15] M.  Kolehmainen, H. Martikainen and J. Ruuskanen,

- - e “Neural networks and periodic components used in quality
Today, buildings are more airtight and energy &ffig forecasting,”Atmospheric Environmenol. 35, pp. 815-825, 2001.

which can have an effect on indoor air quality. fEfiere, the [16] H. Niska, T. Hiltunen, M. Kolehmainen and J. Ruuska
developing new affordable and reliable indoor airality “Hybrid  models for forecasting air - pollution episede
L International Conference on Artificial Neural Netikse and Genetic

sensors (e.g. soft sensors) is important. The teepuésented Algorithms (ICANNGA'03) University Technical Institute of Roanne,

in this paper show, that prediction of mean,@0ncentration France April 23-25, 2003.

is difficult, if it is based only on measurements relative [17] J-P. Skon, O. Kauhanen and M. Kolehmainen, "En&gpsumption

L. . . and Air Quality Monitoring System,”Proceedings of the 7
humidity and temperature. Further study is needeichprove International Conference on Intelligent Sensorsis®e Networks and

the model accuracy. Information Processingpp. 163-167, Adelaide, Australia Dec. 6-9,
In the future, the study will be expanded to selvera 2011

- . A ) : « _ ; p nd
apartment buildings and more additional informaimneeded [18] S: Haykin, *Neural Networks-A Comprehensive Fourufgt 2™ ed.,
New Jersey: Prentice-Hall Inc., 1999.

as model input e.g. information on presence andtréd#y [19] R. Kohavi and F. Provost, “Glossary of termislachine Learningvol.
consumption, to improve the goodness of the model. 30, pp. 271-274, 1998.
[20] C. J. Willmott, “Some Comments on the Evaluation Mdel

A Performance,”Bulletin  American Meteorological Societywol. 63,
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