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Abstract—There is a growing body of evidence to support the 

proposition of product take back for remanufacturing particularly 
within the context of Extended Producer Responsibility (EPR).  
Remanufacturing however presents challenges unlike that of 
traditional manufacturing environments due to its high levels of 
uncertainty which may further distract organizations from 
considering its potential benefits.  This paper presents a novel 
modeling approach for evaluating the uncertainty of part failures 
within the remanufacturing process and its impact on economic and 
environmental performance measures. This paper presents both the 
theoretical modeling approach and an example of its use in 
application. 
 

Keywords—Remanufacturing, Demanufacturing, Extended 
Producer Responsibility, Sustainability, Uncertainty. 

I. INTRODUCTION 
NDERSTANDING the “greening” of supply chain 
management and reverse logistics has become a 

necessary management practice as companies today clearly 
recognize the impact of environmental innovation on 
corporate competition.  Moreover in recent years, various 
factors such as complex environmental regulations, evolving 
financial and competitive pressures, and increasingly 
demanding customers, have escalated the importance of 
sustainable supply chain management and reverse logistics 
[1].   

Literature today clearly demonstrates that sustainability 
through remanufacturing, recycling and reverse logistics is an 
important and needed area of current and future research [2].  
Product remanufacturing occurs where a retired product is 
returned (or collected through takeback schemes such as 
leasing or deposits), followed by a process of product 
disassembly, cleaning and rebuilding the product to 
specifications of the original manufactured product [3]. 
Product demanufacturing focuses on evaluating the economic 
and environmental implications of material recycling, part 
reuse, part remanufacturing, shredding and landfill options.  
The central question of demanufacturing is the amount of 
disassembly efforts that should be invested in order to derive 
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"value" from the retired product [4, 5]. 
Remanufacturing today is a multi-billion dollar industry [6, 

7] and has grown in importance over the past two decades.  
One reason for this growth is due to the growing body of 
legislation and policies associated with "Extended Producer 
Responsibility"(EPR).  The primary aim of EPR is to increase 
the amount and degree of product recovery and minimize the 
environmental impact of waste materials.  For example, the 
EU directive on Waste Electronics and Electrical Equipment 
(WEEE) has explicitly made recoverability improvements as 
an objective for the national regulations of member states by 
setting specific recovery rate targets for different product 
categories [8].  In the past two decades, policies on EPR 
continue to expand and have been implemented worldwide for 
a wide range of products.   

Despite the potential environmental and economic rewards 
associated with remanufacturing, there is still limited 
quantitative models to allow OEMs or third parties the ability 
to understand and evaluate the take-back strategy of 
remanufacturing [9]. OEMs and third party organizations have 
few analytic tools to evaluate performance measures such as 
transitions costs, economic gains or environmental benefits 
when trying to incorporate remanufacturing into their current 
business processes.  Furthermore, remanufacturing presents 
challenges unlike that of traditional manufacturing 
environments due to its high levels of uncertainty which may 
further distract organizations from considering its potential 
benefits.   

The purpose of this paper is to demonstrate an approach to 
evaluate the uncertainty associated with the possibility of parts 
failing during the remanufacturing process and the impact of 
the quality of returned cores on the economic and 
environmental outcomes within an EPR environment.  Using 
the developed model, an OEM (or third party remanufacturer) 
may assess the feasibility of remanufacturing taking into 
account such uncertainties and the possible increased cost 
associated with poor core quality or part failures in 
remanufacturing. This methodology provides a medium for 
improved decision making on product remanufacturing within 
the context of mandated or voluntary takeback systems.  

II. LITERATURE REVIEW 
Remanufacturing presents a number of special problems 

compared to a traditional manufacturing system due to high 
levels of uncertainty.  Specific problems include uncertainty 
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with material recovery (i.e., the return flow of cores), 
probabilistic routings within the remanufacturing process, the 
quality of returned items, and the required process times of 
remanufacturing [10, 11].   

The uncertainty of remanufacturing makes it comparatively 
more complex to manufacturing causing challenges in the way 
that the supply of returned products is unpredictable in timing 
and quantities; the quality and composition of returned 
products varies; and the process routings of remanufacturing 
are not necessarily fixed [12, 13].Tang (2012) [13] provides a 
review and classifies the breadth of remanufacturing research 
on uncertainty into three categories: (1) remanufacturing with 
uncertain demand and returns, (2) remanufacturing with 
uncertain quality of returns, and (3) uncertainty in 
remanufacturing production, planning and scheduling. The 
current literature review will focus on research related to the 
present study on remanufacturing with uncertain quality of 
returns. For a review of uncertain demand and returns; and 
production, planning and control, the reader is directed to [13]. 

Probabilistic routings occur because remanufacturing 
operations are only performed as necessary (e.g., the part 
needs the operation to be returned to a usable condition) and 
there is also the possibility of part failure during the 
remanufacturing process itself.  Remanufactured parts may be 
scrapped due to a part being worn beyond practical or 
economic repair in an effort to meet defined remanufacturing 
specifications [10, 14].   

The majority of recent papers in this area focus on 
evaluating the impact of quality uncertainty on 
remanufacturing decisions for an existing remanufacturer in 
operation.  For example, [15] conducted a numerical study of 
the impact of uncertainties on remanufacturing behaviours.  
This author developed a stochastic remanufacturing model to 
provide insights into the structure of an optimal coordination 
of production, remanufacturing and disposal decisions in a 
stochastic multi-period setting.  Azadivar and Ordoobadi 
(2010) [9] developed a quantitative approach for making 
decisions on whether to recycle the good parts recovered from 
returned products into remanufactured products that could be 
sold at after-market prices. The authors also demonstrated how 
a simulation model can be used to estimate very complicated 
parameters that affect justification of remanufacturing 
policies. 

Many consider along the same lines of analysis and 
consider both single and multiperiod time horizons of 
remanufacturing decisions [16, 17, 18 and 19]. Few papers 
however recognize that making a transition from a 
manufacturer to a combined manufacturer-remanufacturer 
operation requires an earlier viewpoint of remanufacturing 
analysis.  That is, given a product that has market potential 
(i.e., demand) how can one produce an earlier assessment of 
the product’s economic and environmental benefits given the 
uncertainty of quality in returned cores? No past research 
efforts have been found to account for such variability within 
an initial assessment of evaluating remanufacturing versus 
demanufacturing alternatives for EOL products.  This topic 
would seem to be timely given the growing state of EPR 

legislation worldwide and the challenges that such policies 
present to manufacturing companies or entrepreneurial 
companies considering product takeback schemes. 

III. PROPOSED MODELING APPROACH 
Uncertainty can be dealt with in several ways; by 

employing Bayesian statistics, by introducing stochastic 
variables, however the most general and versatile way of 
dealing with uncertainties is to introduce the theory of fuzzy 
sets.  The theory of fuzzy sets allows one to model the 
uncertainties in any desired way (using either discrete or 
continuous distributions).  After modeling the uncertainty, a 
Monte Carlo simulation technique can be employed to 
simulate the behavior of some chosen response variables 
(forecast cells) numerically when the source variables 
(assumptions cells) are varying throughout a large number of 
trials according to the modeled uncertainty associated with 
each assumption cell.  This approach allows one to study a 
spectrum of outcomes - from worst case to best case - for each 
forecast cell.  In this paper, this technique is used to predict 
the variability of forecasted economic and environmental 
variables of product remanufacturing.  

This research paper presents an approach to take into 
account two forms of typical remanufacturing uncertainties: 
(1) the quality of returned cores, and (2) the probability of part 
failure within the remanufacturing process.   As previously 
discussed, not every part that is destined for remanufacturing 
actually gets remanufactured because of the possibility of a 
component being damaged beyond reparation [10, 14].  
Likewise, the quality of returned cores will influence the 
likelihood of the product being successfully remanufactured or 
not.  Upon initial screening of the quality of a returned core, 
the product is either sent to be remanufactured or 
demanufactured.  Both forms of remanufacturing uncertainty 
will influence the following outcomes: 
• the quantity and mass of components remanufactured and 

demanufactured. 
• the economics of remanufacturing: revenue and costs will 

fluctuate depending on parts being remanufactured versus 
demanufactured.   

• the quantity and costs associated with new replacement 
parts. 

• the actual amount of recycling and disposal: if the product 
is initially sent to be demanufactured instead of 
remanufactured due to poor core quality, the mass 
destinations of recycling, remanufacturing and disposal 
will vary.   

Furthermore, if a product is sent to be remanufactured but a 
part fails within the remanufacturing process, the part is 
demanufactured which further varies the degree of recycling 
and disposal determined.   

A. Remanufacturing Plans versus Remanufacturing Events 
 Certain definitions are necessary to gain further 

understanding of the uncertainty involved.  In this research, 
we define an“optimal remanufacturing plan (ORP)” as a 
strategy or plan that consists of a "parts list" for 
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remanufacturing and a "part list" for demanufacturing 
(generated based on economic decision making).  Note 
however that parts that are to be remanufactured within an 
ORP may actually fail during the remanufacturing process.  
Therefore, for any given remanufacturing plan (i.e., a defined 
list of parts to be remanufactured), it is possible to have more 
than one "remanufacturing event" or outcomes associated with 
the remanufacturing process (i.e., parts failing or passing).  
There is 2n number of remanufacturing events for any given 
remanufacturing plan where n is equal to the number of parts 
designated for remanufacturing.  For example, if a product had 
15 parts to be remanufactured, there are 32,768 possible 
remanufacturing events meaning that there are 32,768 possible 
outcomes of "parts passing" and "parts failing" the 
remanufacturing process. 

B. Modeling Remanufacturing Events 
Monte Carlo simulation provides a modeling approach to 

learn from the presence of uncertainty in remanufacturing.  
The following steps can be used to forecast the variability of 
the economic or environmental outcomes of remanufacturing 
uncertainty: 
1. For all parts remanufactured in the ORP, "probabilities of 

part failure" are estimated from either historical data or 
sampling techniques. 

2. For each part, the forecasted economic (or environmental) 
variable is calculated based on both events: (1) the part 
failing during the remanufacturing process, and (2) the 
part passing the remanufacturing process. 

3. All remanufacturing events are then generated from ORP.  
There are 2n remanufacturing events for any given 
remanufacturing plan where n is equal to the number of 
parts to be remanufactured.  Thus, 2n number of joint 
probabilities must be calculated using:  

 
)PPJpr frm

i
frmi −= ∏ 1()ability(Joint Prob       

(1) 

where Pfrm represents the probability of no part failure in 
remanufacturing whereby any given part either fails during 
remanufacturing or passes.      

4. For each remanufacturing event, the forecasted economic 
variable is calculated based on the sequence of 
remanufacturing events. Each remanufacturing event has a 
unique combination of parts "passing" and "failing" and 
requires a calculation of the forecasted economic variable for 
each unique sequence of events.  At this point a probability 
distribution of all remanufacturing events and their respective 
forecast outcomes can be generated.  

For example, let us consider the uncertainty of part quality 
on remanufacturing costs.  Not every part that is destined for 
remanufacturing actually gets remanufactured because of the 
possibility of a component being damaged beyond reparation. 
That is, there is a probability that the part will fail 
remanufacturing and a new part will be needed in its place.  
Thus, when a part fails in the remanufacturing process, the 
following costs should be accounted for: 

(1) the partial costs of remanufacturing the component prioir 
to its failure, and 

(2) the cost to replace the failed part with a new part and the 
cost to demanufacture the retired component. 

The following equation represents the mathematical 
expectation of remanufacturing costs (i.e., E(CRMi) ) from a 
long term perspective: 
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where Pfrm represents the probability of no part failure in 
remanufacturing (i.e., the part is remanufactured); CRMi 
represents the cost of remanufacturing the ith  part with no part 
failure; CRMTi represents the cost of the ith part failure during 
remanufacture including labour and material investments; 
CNPi represents the cost of purchasing the ith new component 
for replacement of the failed part; MaxMROi represents the 
maximum Material Recovery Opportunity (MRO) for the ith 
component; and CAi and CDi represent the respective 
assembly and disassembly costs.   

Equation 2 depicts two events that results in the 
remanufacturing process: (1) successful remanufacturing of 
subassemblies or parts, and (2) failure of parts or 
subassemblies in remanufacturing and the need for new 
replacement parts and the necessary demanufacturing of failed 
components. 

5. Using Monte Carlo simulation, generate random numbers 
between 0 and 1 to reflect the probability of any given part 
passing remanufacturing.  Based on the random number 
generated, calculate the forecasted economic variable.  
Continue generating random numbers and forecasted 
economic outcomes over 500 to 1000 simulations.  At this 
point, a distribution of the forecasted variable and descriptive 
statistics can be used to gain a further understanding of the 
true economical or environmental metrics of remanufacturing 
the identified parts in the ORP. 

Steps 3, 4, and 5 can be successfully formulated using either 
a spreadsheet, Crystal Ball (an add-in program for Microsoft 
Excel) or another modeling software that supports Monte 
Carlo simulations.  The output of this technique will include 
the following analysis: 

i. Variability of the Total Rebuild Costs.   
ii. Variability of the Predicted Reuse and 

Remanufacturing Mass. 
iii. Variability of the Demanufacturing Masses (Landfill, 

Shred, and Recycle) 
iv. Variability of the Estimated Energy Savings of 

Remanufacturing and Demanufacturing. 
It is contended that using descriptive statistics generated 

from Monte Carlo simulations of the above four forecasted 
variables would provide an OEM with a more accurate 
representation of the economic and environmental metrics 
involved in product remanufacturing. 
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IV. APPLICATION: CONSUMER TELEPHONE 

A. Input Parameters 
In this research, the necessary remanufacturing and 

demanufacturing data was collected through both 
collaboration with industry partners (Nortel Networks) and 
using online research tools.  The key economic and 
environmental parameters of a consumer telephone are 
modeled in an effort to develop and enhance the usefulness of 
the simulation model presented.   

The consumer telephone analyzed in this study has a 
number of important economic and environmental 
characteristics that are used as input into the Monte Carlo 
simulation.  First, the product depicts the scenario of 
remanufacturing within the context of EPR such as WEEE.  
That is, the product itself falls within WEEE legislation and is 
recovered and furthermore demonstrates through 
remanufacturing analysis that it has the potential for 
remanufacturing at its EOL that is economically viable.  This 
data is derived through a remanufacturing optimization study 
as shown in [20]. Through remanufacturing analysis 
(comparing the economics of demanufacturing versus 
remanufacturing on a part and product levels), the product 
demonstrates an ORP with material and economic 
characteristics as presented in Tables I and II.  The result of 
the remanufacturing optimization (from [20]) that evaluates 
the economic tradeoff between remanufacturing versus 
demanufacturing is shown in the Appendix. 

 
TABLE I 

MATERIAL DESTINATIONS OF REMANUFACTURING AT EOL 
I. New versus Reuse Mass (Kg) % of Total Mass 
Total Mass of New Parts 0.50 25.13% 
Total Mass of Remanufactured and Reused 
Parts 

1.49 74.87% 

Total Mass 1.99 100.00% 
II.  Material Destinations Mass (Kg) % of Total Mass 
Mass Remanufactured and Reused (Kg) 1.49 74.87% 
Mass Recycled (Kg) 0.15 7.54% 
Mass Landfilled (Kg) 0.35 17.59% 
Total Mass 1.99 100.00% 

 
TABLE II 

ECONOMICS OF REMANUFACTURING AT EOL 
Economic Total Amount 
Total Rebuild Cost -$6.87 
Total Cost of New Parts (sum of CNP) -$1.67 
Total Remanufacturing Costs (sum of CRM) -$3.54 
Total Demanufacturing Costs (Landfill and Recycling) -$0.02  
Total Demanufacturing Revenue (Reuse and Recycling)  $0.12  
Total Disassembly & Assembly Costs (sum of CA and CD) -$1.77 

 

B. Modeling the Uncertainty of the Remanufacturing 
Process and its impact Economic Outcomes and Material 
Destinations   

Eight parts within the consumer telephone are economically 
viable for remanufacturing (compared to demanufacturing 
alternatives of recycling and new part replacement costs).  
Using historical data from industry, the parts were analyzed to 
determine the likelihood of part failure during 
remanufacturing (see Table III).  These probabilities were 

modeled into a spreadsheet (see the Appendix) along with 
respective remanufacturing and demanufacturing economics, 
should the parts pass or fail during the remanufacturing 
process.   

 
TABLE III 

PROBABILITY OF PART FAILURES IN REMANUFACTURING 
Part # 

 
Probability of no part failure in 

remanufacturing (Pfrm) 
A2 0.75 
A3 0.8 
A5 0.5 
E 0.9 
F 0.6 
G 1 
H 1 
J 0.5 

 
Fig. 1 demonstrates the variability of remanufacturing costs 

taking into consideration the uncertainties of part failure 
during remanufacturing simulated over 1000 trials.   

 

 
Fig. 1 Monte Carlo Simulation of Total Rebuild Costs 

 
There are several important outcomes with respect to 

remanufacturing these components as shown using the Monte 
Carlo simulation: 
1. The total rebuilds costs range from $6.87 (the optimal 

value generated by the remanufacturing optimization 
model) to $10.08.  The distribution of total costs is left 
skewed and the peak of the distribution directed towards 
the optimal remanufacturing value of $6.87. 

2. The mean of the total rebuild costs is $7.82 (median cost 
is $7.79).  Note that Crystal Ball automatically calculates 
all descriptive statistics of the simulation results including 
the occurrence of statistical outliers. 

As stated, variability in the overall profitability of 
remanufacturing may be analyzed using the Monte Carlo 
simulation approach.  Fig. 2 illustrates the profitability of 
remanufacturing the telephone assuming a 20% added cost for 
indirect overhead costs (relative to the total rebuild costs) and 
a mean price of $15 retail (normally distributed with a 
standard deviation of $1.00).  The mean profit of $6.42 
estimated in section 5.2.1, lowers considerably to a mean 
value of $4.80 (maximum = $9.27, minimum = $0.83) due to 
the added costs (recycling, landfill and new part costs) 
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associated with part failures in remanufacturing.   
 

 
Fig. 2 Monte Carlo Simulation of Remanufacturing Profitability 
 
An additional scenario of the variability of the 

remanufacturing economics was investigated using the 
developed technique.  In an interview with Nortel, 
remanufacturing costs were stated to sometimes vary 
considerably due to substantial rework requirements of a few 
select telephone components.  Nortel classifies such defects as 
"major defect costs" that require a substantial amount of 
labour or material investment in the rebuild of the product.  To 
model this scenario, the main electrical subassembly is 
assumed to have a major defect cost for 50% of the 
remanufacturing cycles.  Each "major defect" is assumed to 
cost an extra $2.50 on top of the estimated remanufacturing 
costs.  As shown in Fig. 3, the occurrence of a major defect 
cost creates a bimodal distribution of remanufacturing costs: 
the lower cost modal distribution demonstrates the 
remanufacturing costs without the major defect, and the higher 
cost modal distribution demonstrates the remanufacturing 
costs with the major defect.  The mean remanufacturing costs 
is $8.60 (median cost is $7.71) and the variability extends 
from a minimum cost of $6.87 (ORP) to a maximum of 
$12.23.  

 

 
Fig. 3 Monte Carlo Simulation of Total Rebuild Costs - Major Defect 

Scenario 
 
 As shown in Fig. 4, the estimated profitability 

demonstrates that remanufacturing the consumer telephone 
may incur a loss in profitability when a major defect is 
modeled in the analysis.  The mean remanufacturing profits 
lowers to $3.85 (median profitability is $4.44) and the 
variability extends from a minimum profit of -$2.73 to a 

maximum profit of $8.37.  
 

 
Fig. 4 Monte Carlo Simulation of Profitability - Major Defect 

Scenario 
 
Other Monte Carlo simulations were generated for the 

prediction of actual mass of the product remanufactured and 
reused, recycled and landfill mass, and the predicted energy 
savings based on the variability of remanufacturing (all 
modeled without the scenario of a major defect).   

Figure 5 demonstrates the variability of the total telephone 
mass that is remanufactured and reused.  According to the 
original parameters of the input model, the plan generates an 
optimal savings of 1.49 kilograms (approximately 75% of the 
total telephone mass).  Any variation of the 6 components not 
being remanufactured decreases the "reuse" mass savings and 
increases the mass demanufactured (i.e., through either 
recycling or landfilling). The variability of the 
remanufacturing plan brought on by the probability of part 
failure creates a bi-modal distribution pattern as shown in Fig. 
5.  The statistical output of the simulation demonstrates a 
mean material savings of 1.12 Kg (or 56.42% of the total 
telephone mass) from the original input model.  The 
variability of material savings ranges from 0.44 Kg (or 
22.11% of the total product mass) to 1.49 Kg (or 74.87% of 
the total product mass). 

 

 
Fig. 5 Monte Carlo Simulation of Total Remanufacturing and Reuse 

Mass 
 
The variability of energy savings of remanufacturing was 

also analyzed.  Energy savings will fluctuate according to a 
part being remanufactured, recycled or landfilled.  When 
successfully remanufactured, the energy embodied in a 
component’s materials is saved.  Otherwise the energy is lost 
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when demanufactured via recycling.  The results of the 
simulation demonstrate that the mean energy savings is 77,067 
KJ per telephone (median is 82,476 KJ).  The variability of 
energy savings of remanufacturing varies from 42,300 KJ to 
93,823 KJ per telephone.  The maximum energy savings is 
represented by the remanufacturing event of all 6 components 
successfully remanufactured (93,828 KJ).   

V. CONCLUSION 
This paper presents an approach for assessing the impact of 

remanufacturing uncertainty at the early stage of product 
takeback considerations for strategies associated with EPR and 
product stewardship.  The modeling approach was developed 
to provide a test bed for assessing two forms of 
remanufacturing uncertainty: (1) the quality of returned cores, 
and (2) the probability of part failure within the 
remanufacturing process.  Future research will be expanded to 
other products that are potential candidates for 
remanufacturing and will also further investigate the energy 

and material savings of remanufacturing uncertainty. 

APPENDIX 
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REMANUFACTURING OPTIMIZATION  
Part # 

 
Decision Variables Interpretation of Output 

 X1 X2 X3 X4 MaxMRO  
A 0 0 0 1 0 receiver subassembly remanufactured
A1 0 0 0 1 0 reuse bolts 
A2 0 1 0 0 0 remanufacture 
A3 0 1 0 0 0 remanufacture 
A4 0 0 1 0 RC demanufacture via recycling  
A5 0 1 0 0 0 remanufacture 
B 0 0 1 0 RC demanufacture via recycling  
C 0 0 1 0 RC demanufacture via recycling  
D 0 0 0 1 0 telephone base remanufactured  
E 0 1 0 0 0 remanufacture 
F 0 1 0 0 0 remanufacture 
G 0 1 0 0 0 remanufacture 
H 0 1 0 0 0 remanufacture 
I 0 0 1 0 LF demanufacture via landfill 
J 0 1 0 0 0 remanufacture 
K 0 0 1 0 LF demanufacture via landfill  

 

MONTE CARLO SIMULATION OF REMANUFACTURING COSTS 

P 1] Part Number A2 A3 A5 E F J 
Prfrm 0.75 0.8 0.5 0.9 0.6 0.5 

P 2] Part Number A2 A3 A5 E F J 
PLMreman (If part is remanufactured) -0.85 -0.756 -0.122 -0.844 -2.467 -0.328 

      
PLMdeman (If part fails in remanufacturing) -1.13 -1.219 -0.191 -0.9 -1.187 -0.412 
50% of cost  -0.425 -0.378 -0.061 -0.422 -0.4835 -0.164 
subtotal -1.555 -1.597 -0.252 -1.322 -1.6705 -0.576 

P 3] 

Monte Carlo Simulation -  
Remanufacturing Events ("1" represents 
remanufacture, "0" represents demanufacture) 1 1 1 0 1 0 
Random Number Generator 0.390361 0.755156 0.046400 0.752826 0.054872 0.786021 
             
Part Number A2 A3 A5 E F J 
Outcome based on Remanufacturing Events -0.85 -0.76 -0.122 -1.322 -0.967 -0.576 
Legend for Above 6 Cells:    SUM of Remfg. Constant Total  

 1. Identify probability of part failure for each part to be remanufactured (Prfrm) Outcomes (A3+ ..+J) Remfg. Cost Rebuild Cost 
    Here, the telephone has 6 parts:  A2 through J -4.597 -3.005 -7.602 

2 2. Calculate the value of the forecast variable (economic or environmental) if part is successfully remanufactured 
     For example, here we're trying to predict remanufacturing cost. Thus, if part A2 is remanufactured, the cost is $0.85 
 3. Calculate the value of forecast variable (economic or environmental) if part fails during remanufacturing. 
     For example, if part A2 is fails during remanufacturing, the cost is $1.555 to purchase a new part plus the lost investment  
     in remanufacturing (i.e., assuming an additional cost of 50% of the full remanufacturing cost) 

3 4. Random number generator in this cell between 0 and 1 (Excel function: =rand()) 
 5. This cell uses an Excel function (=VLOOKUP()), that matches the random number generated to the "VLOOKUP" table.  For example, the 

random number generated for part A2 is 0.39 which falls between 0 and 0.9 in the VLOOKUP table, therefore a "1" is generated.  This 
demonstrates that 90% of the time, part A2 will be remanufactured.  Alternatively, 10% of the time (the random # generated will fall between 
0.9 and 1.0) and a "0" is generated (meaning it will fail remanufacturing 10% of the time). 

 6.  If a "1" is generated as a remanufacturing event (i.e., from 5.), the part is remanufactured and the cost is equal to PLMreman. 
      If a "0" is generated as a remanufacturing event (i.e., from 5.), the part fails remanufacturing and the cost is equal to PLMdeman. 
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