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Abstract—Development of artificial neural network (ANN) for 
prediction of aluminum workpieces' surface roughness in ultrasonic-
vibration assisted turning (UAT) has been the subject of the present 
study. Tool wear as the main cause of surface roughness was also 
investigated. ANN was trained through experimental data obtained 
on the basis of full factorial design of experiments. Various 
influential machining parameters were taken into consideration. It 
was illustrated that a multilayer perceptron neural network could 
efficiently model the surface roughness as the response of the 
network, with an error less than ten percent. The performance of the 
trained network was verified by further experiments. The results of 
UAT were compared with the results of conventional turning 
experiments carried out with similar machining parameters except for 
the vibration amplitude whence considerable reduction was observed 
in the built-up edge and the surface roughness. 

Keywords—Aluminum, Artificial Neural Network (ANN), Built-
up Edge, Surface Roughness, Tool Wear, Ultrasonic Vibration 
Assisted Turning (UAT). 

I. INTRODUCTION

N ultrasonic vibration-assisted turning (UAT), the vibration 
produced by a generator at an ultrasonic frequency is 

transmitted to the cutting tool through an appropriately 
designed horn [1]. The ultrasonic vibration parameters 
commonly used in the vibration machining processes are in 
the ranges of few micrometers up to about thirty micrometers 
for the amplitude and about twenty to fifty kH for the 
frequency.  The advantages and various applications of the 
intermittent engagement between the cutting tool and the 
workpiece in vibration cutting have already been subject to 
considerable research effort. In this regard, [2]-[4] may be 
consulted as some examples.  

Artificial neural networks (ANN) have already been applied 
to various aspects of machining processes, such as 
optimization of machining parameters [5]-[6],  prediction of 
cutting load [7]-[8], surface roughness modeling[8]- [14], tool-
wear detection [15]-[16] and estimation of cutting tool stress 
[17]. Finesa and Agah [18], and El-Sonbaty et al [19] used 
neural network for positioning error compensation. Hao et al 
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[20] used ANN and genetic algorithm for modeling the 
thermal error in turning. Kuljanic et al [21] and Cardi et al 
[22] applied ANN for detection of chatter vibration in milling 
and turning. Jamali et al [23] and Nalbant et al [24] modeled 
explosive cutting process by ANN. Kim et al [25] used neural 
network for performance evaluation of chip breaker.  

This literature survey indicates that responses in cutting 
operations are well apt to be modeled by neural networks.  

To the knowledge of the authors, no work can be mentioned 
to have been done on the application of neural networks to  
vibration cutting where far more complicated situation 
governs compared with the conventional turning (CT). The 
authors have recently developed an ANN model for prediction 
of machining force and surface roughness in UAT of steel 
components [12]. This work has been extended to include 
aluminum parts in the present study. A multi layer perceptron 
neural network was developed for predicting surface 
roughness of AL7075 parts in UAT. Creation of built-up edge 
in machining of aluminum parts is a serious problem. Built-up 
edge leads to high tool wear rate and unacceptable surface 
roughness. This adds to the scrap parts and machining cost. It 
is illustrated in this paper that UAT is an effective machining 
technique to alleviate this problem.  

Modeling of surface roughness of aluminum parts has been 
done on the basis full factorial design of experiments. Separate 
experimental data were used for training and testing the 
network. The influence of UAT parameters including 
vibration amplitude, depth of cut, feed rate and cutting speed 
on the surface roughness were also investigated.  

II.ANN FOR PREDICTING SURFACE ROUGHNESS OF
ALUMINUM PART IN UAT 

A. Experiments  
The experiments were carried out with an ultrasonic 

vibration generator with 2 kW power and frequency range of 
20±0.5 kHz. An aluminum horn was especially designed and 
manufactured for this purpose [1]. A special fixture was used 
for installing the assembly of horn and cutting tool on the 
saddle. Tool insert was DCGT11. The surface roughness was 
measured with Mahr surface roughness measuring device. The 
experiments setup is shown in Fig. 1. The workpiece of 
Al7075 shown in this figure was recessed at intervals of 17 
mm long to separate the successive UAT and CT regions 
during the experiments. The CT experiments were simply 
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carried out by switching the generator off. The cutting tool 
insert was replaced with a new one after each machining pass. 
This was done for properly distinguishing the influence of 
machining conditions. Other parameters were kept constant in 
each machining pass.

Fig. 1 Experiments setup 

The values of machining parameters including vibration 

amplitude (a), depth of cut (d), feed rate ( rf ) and cutting 
velocity (vc) were adjusted at three levels as presented in Table 
I.

TABLE I UAT PARAMETERS 
Level 3 Level 2 Level 1 Factor
0126)( ma
1.4 0.8 0.4 )(mmd
0.4 0.2 0.11 )/( revmmf r

75.36 37.68 13.56 min)/(mvc

The results of fifty four tests carried out in UAT of 
aluminum parts are given Table II. 

As it was noted earlier, CT experiments were also carried 
out in order to compare with the UAT results. CT parameters 
were the same as UAT given in Table I except for the 
vibration amplitude, a, which vanished in CT. The results of 
UAT and CT are compared in Fig. 2. As is evident from this 
figure, the surface roughness is much lower in UAT compared 
with CT.  

In order to further investigate the causes of surface 
roughness of the machined aluminum parts, the cutting tool 
edge was analyzed by using a SEM of model XL30, as shown 
in Fig. 3. 

TABLE II EXPERIMENTAL RESULTS 
Radfrvc   aNoRadfrvc   aNo

0.995 0.4 0.11 37.68 122813.24 1.4 0.4 13.56 121

3.453 0.4 0.2 75.36 6292.805 0.4 0.2 37.68 122
14.7 0.4 0.4 37.68 12301.37 0.4 0.11 13.56 63
5.5 0.8 0.2 13.56 63113.07 0.8 0.4 37.68 124

3.317 1.4 0.2 75.36 6323.583 0.4 0.2 37.68 65
0.984 1.4 0.11 37.68 12333.145 0.8 0.2 75.36 126
3.049 0.4 0.2 13.56 12340.946 0.8 0.11 37.68 67
2.754 0.4 0.2 75.36 12350.838 0.4 0.11 75.36 68
3.182 1.4 0.2 13.56 12363.218 1.4 0.2 13.56 69
0.929 1.4 0.11 37.68 6370.934 0.8 0.11 75.36 1210
13.56 0.8 0.4 13.56 12383.019 1.4 0.2 75.36 1211
12.57 1.4 0.4 37.68 123914.26 0.4 0.4 75.36 1212
1.07 1.4 0.11 75.36 12405.155 0.8 0.2 37.68 613
12.96 0.8 0.4 75.36 124112.96 1.4 0.4 13.56 614
4.069 0.4 0.2 13.56 6423.106 0.8 0.2 37.68 1215
12.44 1.4 0.4 37.68 6431.17 0.4 0.11 37.68 616
3.427 1.4 0.2 37.68 64413.72 0.4 0.4 75.36 617
12.68 0.8 0.4 75.36 6453.013 0.8 0.2 13.56 1218
12.8 0.8 0.4 37.68 64612.8 0.4 0.4 37.68 619
0.86 0.8 0.11 13.56 124712.8 0.8 0.4 13.56 620
1.076 0.8 0.11 37.68 12483.173 1.4 0.2 37.68 1221
14.28 0.4 0.4 13.56 124913.44 1.4 0.4 75.36 1222
3.27 0.8 0.2 75.36 6501.006 0.8 0.11 13.56 623
0.849 0.4 0.11 75.36 12510.995 1.4 0.11 13.56 1224
1.295 1.4 0.11 13.56 6521.057 1.4 0.11 75.36 625
14.06 1.4 0.4 75.36 6531.158 0.8 0.11 75.36 626
13.59 0.4 0.4 13.56 6541.551 0.4 0.11 13.56 1227
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B. Development of ANN 
 A multilayer perceptron network was developed 

comprising three layers including the input, hidden and output 
layers with backward propagation training strategy. The input 
to the model consists of vibration amplitude, cutting speed, 
feed rate and depth of cut. Surface roughness is the output. 
The model is depicted in Fig. 4.  
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Fig. 2 Surface roughness in UAT and CT for different values of 
machining parameters 

Fig. 3 SEM for studying built-up edge 

For development of the model, 81% data were used for the 
training and the 19% data for the testing. The boldfaced values 
of parameters in Table II were not used for developing the 
model but were reserved for verification of the model. 

The processing units or neurons in each layer pass the 
processed data to the neurons of the next layer. The network is 
trained to correlate the input to the output by assigning 
appropriate weights, ),...,( 1 nll WWW , where n is the 
number of input and l is the number of output. The input 
vector is denoted here by ),...,( 1 njjj XXX and the real 

output vector by ),...,( 1 ljjj BBB , where Nj1 and N 

is the number of training exemplifiers. The input layer 
receives the data embodied in the input vector. The weights 
are randomly selected at the first iteration and changed 

accordingly at each subsequent epoch. The output vector is 
generated on the basis of the calculated weights. The predicted 
output is denoted by ),...,( 1 ljjj QQQ . An error function is 

then defined as follows: 

Fig. 4 Neural network for predicting surface roughness 
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The error is then propagated backward from the output layer 
to the hidden layer and new weights are generated based on 
the delta learning rule as follows: 

nl
nl W

EW (2) 

ij
old

ij
new

ij WWW  (3) 

where 0<  < 1 is an indication of the convergence rate of the 
network. This procedure is repeated until the error diminishes 
to a value less than an acceptable limit. 

 The activation or transfer functions were selected to be 
hyperbolic tangent function. The parameters are scaled or 
normalized in order to avoid highly skewed results. The 
scaling is done by mapping the values to a range between 1 
and -1.

 The number of the hidden layers and the number of 
neurons in the hidden layer have an important impact on the 
accuracy of the model. Several networks have been tried and 
the parameter values presented in Table III have been found to 
yield sufficiently accurate results. 

As mentioned earlier, the bold face data of Table II were 
then employed to verify the trained networks. The results of 
the network are compared with the experimental data. Fig. 5 
illustrates the result of comparison. As mentioned earlier 
different experimental data have been used for training and 
testing the networks.  
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TABLE III THE OPTIMUM VALUES OF NETWORK PARAMETERS
1Number of hidden layer 
0.1 Learning factor 
TanhTransfer function used 
4Number of hidden neurons 
1000 Number of epochs 
0.7 Momentum factor 

It is clear from Fig. 5 that a good agreement exists between 
the networks prediction and the experimental data. The linear 
correlation factor is 0.9974 and the average error is %12. The 
mean squared error (MSE) value of 0.0013 practically means 
that the model can recall the training data with minimal error. 

The improved weights of the neural network are presented 
in Tables IV and V. Table 4 gives the weights of the 
correlation between the input and the hidden layers. Table 5 
presents the weighs of the correlation between the hidden and 
the output layers. 

III. BUILT-UP EDGE IN UAT AND CT
 Analysis of the material attached to the cutting tool 
indicated that this material was aluminum different from the 
tool material. A SEM picture of the tool tip is shown in Fig. 6. 

(a)

(b) 
Fig. 5 The results of validation test, a) MSE versus Epoch during 

training step, b) comparison of the output of the trained networks and 
the experimental data 

TABLE IV WEIGHT FOR HIDDEN LAYER 
cutting velocity feed rate depth of cut vibration amplitude input 

neuron 
-0.2296003357121.3435165733440.282042974603-0.0830719515111
-0.133840598362-1.208477233325-0.084818820484-0.2924142456492
0.1656448701220.711218757181-0.1548702347120.525246818603
-0.1052747844081.394806436282-0.354968062479-0.6983301331634

TABLE V WEIGHT FOR OUTPUT LAYER 
4321               Neuron 

output
0.5196077715290.386548995916-0.3481829743590.427247982318surface roughness 
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Fig. 6 SEM photo of the built-up edge  

 Considerable reduction was observed in the built up edge in 
vibration turning compare with CT. This is easily evident from 
Fig. 7 which depicts the magnified picture of the tool tips after 
machining operations in UAT and CT. The rationale behind 
this phenomenon is the intermittent engagement between the 
cutting tool and the workpiece in UAT against the continuous 
engagement in CT. This causes reduction in frictional effect. 
The mechanism of the reduction is both less period of 
engagement time and change of static friction to dynamic. 
Friction This reduced frictional effect in turn results in lower 
tool wear rate. Additionally, less engagement occurring in 
UAT does not leave sufficient time for the thermo chemical 
causes of the tool wear to take effect. 

(a)

(b) 

Fig. 7 Tool tip wear (d=1.4 mm, fr=0.4 mm/rev, vc=13.56 m/min and 
was a in UAT =12 m, a) CT, b) UAT 

 The machining parameters for this experiment in both UAT 
and CT were d=1.4 mm, fr=0.4 mm/rev, vc=13.56 m/min and 
in the vibration amplitude in UAT was a=12 m. 

IV. CONCLUSION 
The surface roughness of aluminum parts in ultrasonic-

vibration assisted turning was modeled by artificial neural 
network, in the present study. The following characteristics of 
the network and training data could yield sufficiently accurate 
results: Multilayer perceptron was used for this purpose. The 
network was trained with experimental data carried out on the 
basis of full factorial design of experiments. The trained 
network was verified with separate experimental data. Totally, 
fifty four experiments were carried out for training and testing 
the network. Three different levels of UAT parameters 
consisting of vibration amplitude, cutting speed, feed rate and 
depth of were used for the experiments. 

 Three-layered back propagation network was proposed 
for modeling the surface roughness. Hyperbolic- tangent 
transfer function and one hidden layer accommodating four 
neurons could converge to acceptable output accuracy after 
991 epochs.  

 The test of the trained networks showed good agreement 
existing between their predictions and the experimental 
results. The average error was %12. 

Superimposition of ultrasonic vibration on the normal 
motion of the cutting tool led to considerable decrease in the 
tool tip's built up edge compared with the conventional 
turning, when machining aluminum parts. This is responsible 
for improved surface quality of workpieces in vibration 
cutting. 
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