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Abstract—This paper presents an interactive modeling system of 

uniform polyhedra using the isomorphic graphs. Especially, 
Kepler-Poinsot solids are formed by modifications of dodecahedron 
and icosahedron. 
 

Keywords—Kepler-Poinsot solid, Shape modeling, Polyhedral 
graph, Graph drawing.  

I. INTRUDUCTION 
EPLER-POINSOT solids are subset of uniform polyhedra, 
which include 5 regular polyhedra (Platonic soilids), 13 

semi-regular polyhedra (Archimedean solids), and 4 regular 
intersected polyhedra (Kepler-Poinst solids). Traditionally, 
Kepler-Poinsot solids are formed by stellating or faceting the 
ordinary dodecahedron and icosahedron, which are regular 
polyhedra. This paper presents another way to form and to 
model them using the isomorphic graphs. The system consists 
of three subsystems: graph input subsystem, wire frame 
subsystem, and polygon subsystem. 

II. KEPLER-POINSOT SOLIDS 
Four Kepler-Poinsot solids are listed in Table I-II, and 

illustrated in Fig. 1. The symbols {m, n} in the tables stand for 
Schlölfli’s symbols, which mean all the faces are congruent 
m-regular polygons (regular m-gons) and all the vertex figures 
are congruent n-regular polygons. Vertex figure of each vertex 
is the polygon formed by its adjacent vertices. It is similar to the 
segments joining the mid-point of the edges incident on the 
vertex, which is the conventional definition of vertex figure [1]. 
We define n-regular polygon by 2 /n π θ= with its regularity, 
where θ is the exterior angle of each vertex. The exterior angle 
of pentagram is 4 /5π , then pentagram can be regarded as 
5/2-regular polygon. 

Great dodecahedron {5, 5/2} and Great icosahedron {3, 5/2} 
are regular concave polyhedra with intersecting faces. They 
were introduced by L. Poinsot in 1809.  

Great stellated dodecahedron {5/2, 3} and Small stellated 
dodecahedron {5/2, 5} are regular concave polyhedra with 
pentagram (5/2) as faces. They were introduced by J. Kepler in 
1619. It depends on the definition of face of pentagram that 
their faces are intersecting or not. If the face of pentagram is 
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defined by winding rule, faces are intersecting each other. On 
the other hand, if it is defined by even-odd rule, faces are not 
intersecting. Fig. 2 depicts the comparison of these two 
definitions. 

 
TABLE I 

THE LIST OF KEPLER-POINSOT SOLIDS (1) 

 
TABLE II  

THE LIST OF KEPLER-POINSOT SOLIDS (2) 

   
 (a) Great dodecahedron {5,5/2}    (b) Great icosahedron  {3,5/2} 

 
(c) Great stellated dodecahedron    (d) small stellated dodecahedron  

{5/2, 3}                                                    {5/2,5} 
 

Triangles(3), pentagons(5), and pentagrams(5/2) are colored with 
yellow, blue, and gray, respectively. 

Fig. 1 Four Kepler-Poinsot solids 
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K 
Symbol Polyhedron 
{5,5/2} Great Dodecahedron 

{3,5/2} Great Icosahedron 

{5/2,3} Great Stellated Dodecahedron 

{5/2,5} Small Stellated Dodecahedron 

Symbol Vertices Edges Faces 
{5,5/2} 12 30 12 

{3,5/2} 12 30 20 

{5/2,3} 20 30 12 

{5/2,5} 12 30 12 
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                   (a) Winding rule                  (b) Even-odd rule 
 

Fig. 2 Two alternative definitions of face or “inside” of pentagram 
 
Traditionally, Kepler-Poinsot solids are formed and defined 

by stellating and extending of faces of dodecahedron or 
icosahedron as the core polyhedron. As is shown in Fig. 3, 
Small stellated dodecahedron, Great dodecahedron, and Great 
stellated dodecahedron are formed from Dodecahedron. By 
extending the faces of icosahedron, five faces meet again 
outside of Icosahedron and Great icosahedron is obtained. Fig. 
4 shows the comparison of the size of the core icosahedron and 
Great icosahedron. 

 
Fig. 3 Stellating and extending the face of dodecahedron 

 

 
 

Fig. 4 Comparison of the size of the core icsahedron and Great 
icosahedron 

III. ISOMORPHIC POLYHEDRAL GRAPH 
Great dodecahedron fails to satisfy the Euler polyhedral 
equation. It has 12 pentagons, which is the origin of its name, 
but corresponding graph is isomorphic to icosahedron. Great 
icosahedron has 20 triangles, and the corresponding graph is 
also isomorphic to icosahedron. Great stellated dodecahedron 
has 12 pentagram, and the corresponding graph is isomorphic 
to dodecahedron. Small stellated dodecahedron has 12 
pentagram, but the corresponding graph is isomorphic to 
icosahedron. It fails to satisfy the Euler polyhedral equation. 

Fig. 5 illustrates the isomorphic graphs of Kepler-Poinsot 
solids. And Fig. 6 shows the screen shot of graph input 
subsystem. 

 

 
 

(a) {5/2, 3}               (b) {5, 5/2}, {3, 5/2}, {5/2, 5} 
 

 Fig. 5 Polyhedral graphs isomorphic to Kepler-Poinsot solids 
 

 
 

Fig. 6 Snapshot of graph input subsystem 

IV. WIRE FRAME POLYHEDRA 
In order to form a wire frame polyhedron from a 

corresponding graph, we define three binary relations between 
two vertices: adjacent, neighbor, and diameter   (Fig. 7). 

 

   
 

                  (a) adjacent          (b) neighbor        (c) diameter 
 

Fig. 7 Binary relations between two vertices 
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( , ) ( )
( , )

true length u v dmr G
diameter u v

false otherwise

⎧ =⎪⎪= ⎨⎪⎪⎩
 

 
The relation adjacent corresponds to the equilaterality of 

edges. The relation neighbor corresponds to the vertex figure. 
The relation diameter corresponds to the circumsphere of 
polyhedron. Virtual springs are applied between vertices 
according to three relations and Hook’s law. Let L and k be 
natural length of virtual spring and spring constant, and each 
subscript a, n, d corresponds to adjacent, neighbor, and 
diameter, respectively. , 0,1, , 1i i p= −v stands for the 3 

dimensional coordinate of vertex iv V∈ . Then the total elastic 
potential E is given as follows. 

 
a n dE E E E= + +  

2
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( )
2

i j

a
a a i j
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k
E L v v

< ∧
= − −∑  

2
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2

i j

n
n n i j

i j neighbor v v

k
E L v v

< ∧
= − −∑  
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( , )

( )
2

i j

d
d d i j

i j diameter v v

k
E L v v

< ∧
= − −∑  

 
Fig. 8 shows a screen shot of wire frame subsystem with tool 

windows, and Fig. 9 shows the wire frames of Kepler-Poinsot 
solids generated by the system using simulated elasticity. 

 
 

      
 
Fig. 8 Screen shot of wire frame subsystem with elasticity control tool 

and optional monitor window 

     
                     (a) {5, 5/2}                        (b) {3, 5/2}, {5/2, 5} 

 
 (c) {5/2, 3} 

 
Fig. 8 Wire frames of Kepler-Poinsot solids 

 
We can see in Fig. 8, wire frame of Great dodecahedron {5, 

5/2} is identical to that of icosahedron {3, 5}. Wire frame of 
Great icosahedron {3, 5/2} and small stellated dodecahedron 
{5/2, 5} are also congruent. Vertex positions of above four 
polyhedral are equivalent. And vertex positions of Great 
stellated dodecahedron are equal to those of dodecahedron. 

V. MODELING OF KEPLER-POINSOT SOLIDS 
The final step is detecting and selecting appropriate faces. 

Fig. 9 shows snapshots of polygon subsystem. 
 

    
 

    
 

Fig. 9 Screenshots of polygon subsystem 
Three Kepler-Poinsot solids generated from icosahedral graph 
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Detecting n-regular polygon is equivalent to finding simple 
closed path (cycle) with length n. Firstly, detecting triangles 
from Great icosahedron is equal to detecting triangles from 
icosahedron. Secondly, detecting pentagrams from Great 
stellated dodecahedron is common with detecting pentagons 
from dodecahedron. Lastly, detecting pentagons from Great 
dodecahedron is common with detecting pentagrams from 
Small stellated dodecahedron. In the last case, five vertices 
forming pentagon or pentagram are neighbor of another vertex, 
therefore, by reordering of these five vertices according to 
adjacency, correct face is detected. 

The faces of Great dodecahedron and Great icosahedron are 
intersected each other, then hidden surface removal according 
the depth is required for rendering. Z-buffer algorithm is 
applicable for this purpose (for example [9]), but exterior 
elements of faces can be calculated by the coordinate of 
vertices, therefore, it can be achieved without z-buffer or 
graphics accelerator for real-time rendering. 

In the case of Great dodecahedron, exterior surface is 
obtained as each pentagon subtracted by the pentagram formed 
by the same vertices. Exposed fragments of Great icosahedron 
are calculated as follows (Fig. 10). 
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Fig. 10 Nine exposed fragments of triangle ΔOAB surrounding the 
great icosahedron (shadowed area) 

 
Let , , , ,a b c r be the position vector of each point 
, , , ,A B C R  in Fig.10, then they are expressed by a and b as 

follows: 
5 5 3 5 5
5 10

− −
= +c a b ,   5 1

2
−

=d a  

5 5 2 5
5 5

−
= +e a b ,   3 5

2
−

=f a , 

5 5 3 5 5
10 10
− −

= +g a b . 

3 5 3 5
8 8

+ −
= +p a b ,  1

2
=q a , 

1 3 5
4 8

−
= +r a b  

Three points P, Q, R are used for determining the depth 

order of three fragments, which form a concave region. ΔDPC 
and ΔFRG are right-angled triangles and axisymmetrical to 
ΔDQE and ΔFQE, respectively. 

VI. RELATED WORK 
In order to form a wire frame polyhedron from a 

corresponding graph, simulated elasticity or virtual spring is 
used in several researches. For example, Chen et al. [10] 
applied imaginary springs between the vertices and the origin, 
and also between the pair of adjacent vertices. It is sufficient for 
triangular polyhedral or deltahedra. It include tetrahedron, 
octahedron, and icosahedron. Tyler [11] developed a tensetrity 
simulator “springie”, which can model arbitrary stable wire 
frame polyhedral by designing the structure to satisfy the 
condition of tensegrity. On the other hand, in the presented 
system, tensegrity is obtained semi-automatically using three 
binary relations between two vertices.  

In the case of general polyhedra, the solution of face 
detection from an arbitrary planar graph is not unique. There 
are various researches for detecting polygons from wire frames, 
especially in the field of computer graphics. For example, 
Inoue et al. proposed an effective method of solid model 
reconstruction from planar graphs with exhaustive collection 
and pruning down [12]. On the other hand, in our purpose, the 
graphs are limited to icosahedral and dodecahedral graphs, 
therefore, the algorithm is quite simple. The same approach to 
semi-regular polyhedra has been presented by the author [13]. 

There is also theoretical research on the relation between 
polyhedral graph and abstract polyhedra by Grünbaum [14]. 
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