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Modeling of Crude Oil Blending via Discrete-
Time Neural Networks

Xiaoou Li, and Wen Yu

Abstract— Crude oil blending is an important unit operation in
petroleum refining industry. A good model for the blending system is
beneficial for supervision operation, prediction of the export
petroleum quality and realizing model-based optimal control. Since
the blending cannot follow the ideal mixing rule in practice, we
propose a static neural network to approximate the blending
properties. By the dead-zone approach, we propose a new robust
learning algorithm and give theoretical analysis. Real data of crude
oil blending is applied to illustrate the neuro modeling approach.
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1. INTRODUCTION

RUDE oil blending is an attractive solution for those

refiners who have the ability to blend different crude
types to provide a consistent and optimal feedstock to refinery
operations. Optimal crude purchasing is an effective method
to improve refinery profits. In general the blending rule is
nonlinear, it can be regarded as a linear mixing rule adding a
nonlinear term. Crude oil blending is an optimization
operations based upon real-time analyzers and process
knowledge [6]. A mathematical model for crude oil blending
is needed to address uncertainties in blending operation; real-
time optimization (RTO) has been proposed [20]. The main
drawback of RTO is that it cannot provide optimal set-points
from large amounts of history data.

The exact mathematical model for crude oil blending is too
complex to be handled analytically. Many attempts were made
to introduce simplified models to construct model-based
controller [9]. A common method to approximate the blending
operation is to use linear (ideal) model [20] or to regard
blending operation has a sufficient small nonlinear uncertainty

[1].

Neuro modeling approach uses the nice features of neural
networks, but the lack of mathematical model for the plant
makes it hard to obtain theoretical results on stable learning. It
is very important to assure the stability of neuro modeling in
theory before we use them in some real applications.
Lyapunov approach can be used directly to obtain robust

Manuscript received March 8, 2005. This work was supported in part by
CONACYyT under Grant 38505A

Xiaoou Li is with Seccion de Computacion, Departamento de Ingenieria
Eléctrica, CINVESTAV-IPN, Av.IPN 2508, México D.F., 07360, México
(lixo@cs.cinvestav.mx).

Wen Yu is with the Departamento de Control Automatico, CINVESTAV-
IPN, Av.IPN 2508, México D.F., 07360, México (yuw@ctrl.cinvestav.mx ).

training algorithms for continuous-time [23] [24] and discrete-
time [13] [18] neural networks. It is well known that normal
modeling algorithms are stable for ideal plants [11]. In the
presence of disturbances or unmodeled dynamics, these
adaptive procedures can go to instability easily. Generally,
some modifications to the normal gradient algorithm or
backpropagation should be applied, such that the learning
process is stable. For example, in [13] some hard restrictions
were added in the learning law, in [22] the dynamic
backpropagation was modified with NLq stability constraints.
Another generalized method is to use robust modification
techniques of robust adaptive control [11]. [15] applied © —

modification, [12] used modified O — rule.

In this paper, we propose a novel learning algorithm for
discrete-time feedforward neural network. By combining
Lyapunov and dead-zone techniques, we analyze the stability
of modeling error and the parameters. This learning law can
guarantee both modelling error and weights bounded. The
neuro modeling approach is successfully used to model crude
oil blending via real data.

II. CRUDE OIL BLINDING

Crude oils are often blended to increase the sale price or
process-ability of a lower grade crude oil by blending it with a
higher grade, higher price crude. The objective is to produce
blended crude oil to a target specification at the lowest cost
using the minimum higher cost crude oil. The crude oil feed-
stocks used for blending often vary in quality and for this
reason crude oil blenders normally use viscosity or density
trim control systems. APl (American Petroleum Institute)
Gravity is the most used indication of density of crude oil. The
lower the API Gravity, the heavier the compound. When the
blender is started the required flow rate and component ratio is
set by the control system based on the ratio in the recipe. A
density or viscosity analyzer, installed at a homogeneous point
in the blender header, generates a control signal, which is used
to continually optimize the blended product by adjusting the
component ratio. This ensures that the blended product
remains as specified at all times during the batch. So normal
modeling for crude oil blending is on-line. In this paper we
will discuss an off-line modeling method.

We discuss a typical crude oil blending process in PEMEX
(Mexican Petroleum Company), it is called Terminal Maritima
de Dos Bocas Tabasco (TMDB). The flow-sheet is shown in

Fig.1-(a). It has three blenders ( M,, M, and M, ), one
dehydration equipment and one tank. We use Fig.2-(b) to
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describe the static process of the crude oil blending, ¢, is
flow rate, p, is the property of i th feed stock, it can be
API Gravity. There are four feed-stocks, L, (q1 » D1 ), Puerto
Ceiba (612,p2 ), Maya (q3,p3) and EI Golpe (q4,p4 )
The blended product for national use (qn, pn) needs 2
blenders, the product for export (q P f) needs 3 blenders

and is stored in a tank.

£>| M, |&.| Dehydrationl_Q’5| M,
! | T

Puerto Ceiba H,0

Maya National  El Golpe International

(CY

ﬂk Blender 1 Tq“’p Blender 2 th,p Blender 3 ﬂ‘

3 ’PZI a5 »Pz[ ' :”4]

(b)

Fig.1 TMDB crude oil blending process

For each blender the static properties can be analyzed by
thermodynamic. If the partial molar volume of a component in
a solution is nearly the same as the molar volume of the pure
component, the molar volume is simply the average of the
molar volumes of the pure components at the same
temperature and pressure. The thermodynamic property is
ideal

2 2 g
P, ZzpixD 9. :qu’ Xi :q_l
i=1 i=1

a

where X;, ¢, and p, are the volume fraction, flow rate

and API Gravity of I th feed-stock, p, and ¢, are the
flow rate and the API Gravity of the blended product of
Blender 1 ( M) . Unfortunately, this equation is correct only
in the ideal condition, in order to make it universally valid a
correction term A is added

2
P :zpixi+A )]
il

where A s called the property change of mixing. Several
approaches can approximate A, for examples

e Interaction model [20][1]

A= o x, @)

where @ is the interaction coefficient between the two
components

e Zahed model [27]

A= ZMi(xipi)k ©)

where M ; and k are constants.

All of above models are only suitable in some special
conditions and the parameters of these models should be
determined by experience data.

Since all of p;, and ¢, in Fig.1-(b) are available, we can

model each blander with input/output data, then connect them
together, we call this method as distribute model. 1f the
mixing rule is given by a interaction model as (2), the total
blending is

Pr= f(pzt‘h + pbqb)+ 03X X,

= #p4Q4 + ﬁ[p3x3 + (Z_Z(pzch + p1%)+ a1x1x2)
(1= x,) + a,xy(1— x)I(1 - x,) + ayx, (1 - x,)

= (P4, + gy + Psts + Pids)

+ #[)%0(2 = DX X T DXy

T PaXop X3 T DXy Xy T PiXsXy

T X X0 — X3 Xy Oy + DX XX+ Py XX

- x1x2x3a1 — x1x2x4a1 + x1x2x3x40!1 — x32062
+X5X,Q, + X0 — X,

“)

where 9, =9 t49,+9;t49,-49,-q,, is mixing
rule coefficient for i -th blender.

We can also regard the it as multiple components blending
process as in Fig., we call it as integrated model. The model
can be expressed as

4
pP,= Zpixi +A 5
i=I

If the mixing rule is given by a interaction model as (2)

4 4
A= Z Z QXX (6)

i=1 k=i+1
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Fig.2 Integrated model

III. MODELING OF CRUDE OIL BLENDING VIA DISCRETE-TIME
NEURAL NETWORKS

The mathematical models discussed in Section 2 works only
in some special conditions. In real application we have only
input/output data, neural network can be applied to identify
crude oil blending. Static neural networks can be used to

identify the nonlinear parts A of the distribute model (1) or
the integrated model (5) , it can also identify the whole
blender (linear and nonlinear). This section will present a new
stable learning algorithm for static neuro modeling.

The mixing property can be written in following form

p/"(k): CD[ul (k)a"‘,ug(k)], or
y(k) = ®[X (k)] 7

where X(k) = [ul (k),- Uy (k)]T ,  Y(k) is the blended
API Gravity value at time k  y(k) =p, (k ), CD() is an
unknown nonlinear function representing the blending
operation, 1, (k ) are measurable scalar inputs, they are API

Gravity and flow rates, for example ul(k)zﬂ,

4,
— _4
uz(k)_pn ”7(k)_f7
multilayer neural network(or multilayer perceptrons) to model
the blending properties as in (7)

() =V, 0w, X (k)] ®)

ug(k)=p,. We consider

where the scalar output )A/(k ) and vector input

X(k) € R™" | the weights in output layer are V, e R"™
@ is m
dimension vector function. The typical presentation of the
element @(.) is sigmoid function. The identified blending

the weights in hidden layer are W, € R™",

system (7) can be represented as
(k)= gl x (i)} k)

where V" and W™ are set of unknown weights which may
minimize the modeling error ,u(k ) . The nonlinear plant (7)
can be also expressed as

) =gl x k)|~ 5(k) ©)

where V' is an known matrix chosen by users, in general,
"5 (k )" > " /l(k X' Using Taylor series around the point of

w.X (k ) , the modeling error can be represented as
elk) = (k) y(k)
= Vgl X ()] gl x ()] 5(k)
=Vl X W)=V g, X (k)
Vg X (0] gl X ()] + 5(k)
= Vgl X(0)]+V ¢ W, X (k) + ¢ (k)

(10)

where ¢ is the derivative of nonlinear activation function
#(-) at the point of W, X(k), W, =W, -Ww",
V.=V, —v°,  ¢(k)=Vs(k)+5(k), nhere &(k) is
second order approximation error of the Taylor series.

In this paper we are only interested in open-loop modeling, we
can assume that the plant (7) is bounded-input and bounded-

output stable, i.e., y(k) and u(k) in (7) are bounded.
Since X(0)= [l Lk~ Dl —2)-T . X(k) s
bounded. By the boundedness of the sigmoid function @, we
assume that 5(/() in (9) is bounded, also g(k) is

bounded. So (k) in (10) is bounded. The following

theorem gives a new robust learning algorithm and stable
analysis for the neural modeling.

Theorem 1: If we use the multilayer neural network (8) to
model the crude oil blending (7), the following dead-zone
backpropagation-like algorithm

Wea =W, =mpe(k)p v X7 (k)

(11
Via =V, —nke(k)¢T

Sy
o ) + ol

C_[n ey =2t
o ey <22

where 77, =

N

, 121>0,

= ﬁ >0, ¢ =max[c(k)}
K= m]?.X(H¢'VOTXT (er + ||¢||2 ) This updating law can

make the modelling error e(k ) and the weights of neural
networks bounded
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lek)|eL,, W,eL,, V,eL, (12)

Also the average of the modelling error satisfies

1 & n—
J =limsup— > e*(k)<L¢ (13)

T—o T k=1 VA

Proof: If (k) =L, the updating law is (11) with
_ n
2
g x " ()| + o

defined matrix L, as

. We selected a positive

2

Lol oo

we have
vaﬂ = Wk _Uke(k)¢’VOTXT(k)
I7k+1 = I7k —nke(k)¢T

Since ¢’ is diagonal matrix, and by using (10) we have

AL =7, ~ ) g X7 (k)
i e
<6 for e )
(k)

+ ”Vk —1e(. s

_277k| (
By (10) we know
el(k) =V, oW, X (k)]+V°p WX (k)+ ¢ (k)

Since 17 > 1, >0, the last term in (15) is

2.l k)||HV°¢'W X(k)+17k¢H
=277, Je(k) e )]
>2ne ( —277k||e k]|
2anez(k)—nkez(k)—nké'z(k)
> e’ (k)—n¢? (k)
So
AL, < —n,e* (k)
IS (uwwxf ol )|+ ne) o
< —me’ (k)+n¢* (k)

where 77 is defined in (13). Because e(k)2 2> %Z,

AL, £0, L, isbounded,so W, and V, are bounded.
By (10) e(k) is bounded. If e( ) ”é’ W.,=W,
and V,,, =V, so W, and V, are bounded,

”e(ka < %Z <o isalso bounded. Forall e(k), (12)is

correct.

If e(k)2 > %Z, (16) can be rewritten as

AL, < —ne*(k)+n¢? (k)< e (k) + né (7
Summarizing (17) from 1 up to T, and by using L, >0
and L1 is a constant, we obtain
L, —L <-z¥% e(k)+Tnl
ayh (k)<L —L,+Tnl <L +Tnl

Combing with e( )
established.

'7§ forall e(k) (13)is

Remark 1: V° does not effect the stability property of the
neuro modeling, but it influences the modeling accuracy, see
(13). We design an off-line method to find a better value for

VO Ifwelet V= V,, the algorithm (11) can make the

modeling error convergent, i.e.., ¥, will make the modeling

error smaller than that of V. V° may be selected by

following steps:

1) Start from any initial value for V° = Ve, k=0.
2) Update V, by the learning law (11), until &k =T},.

3) If the ||e(T, )|

V, as a new 40

V= VTD , go to 2 to repeat the modeling process.

4) If the ”e(T0 X' > ||e(0)|| , stop this off-line modeling, now
VT[, is the final value for V°

Remark 2: Since we assume neural networks cannot match
nonlinear systems exactly, we can not make the parameters
(weights) convergence, we would like only to force the output
of neural networks to follow the output of the plant, i.e. the
modeling error is stable. Although the weights cannot
converge to their optimal values, (13) shows that the modeling

error will convergence to the ball radius %Z Even if the

input is persistent exciting, the modeling error & (k ) will not
make the weights convergent to their optimal values. It is
possible that the output error is convergent, but the weight
errors are very high when the networks structure is not fine
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defined. The relations of the output error and the weight errors
are shown in (10). Simpler case is that we use line in the
weights and the neural networks can match the nonlinear plant
exactly

plant : y = W g[ X (k)]
neural networks : § = ,4[ X (k)]
output error : (y — ) = (W* -W, )¢[X(k)]

If ¢[X (k )] is large, small output error (y - )A/) does not

mean good convergence of the weight error (W* — VK)

Remark 3: Noise (or disturbance) is an important issue in the
system modeling. There are two types disturbances: external
and internal. Internal disturbance can be regarded as
unmodeled dynamic O (k ) in (9). A bounded internal
disturbance does not effect the theory results in this paper, but
can enlarge the modeling error if the internal disturbance
becomes bigger. External disturbance can be regarded as
measurement noise, input noise, etc. In the point of structure,
input noises are increased feedforward through each layer [2].
For example, a noise g(k) is multiple by V,ﬁ[VV,{g(k)]
and arrives the output. Measurement noise is enlarged due to
backpropagation of modeling error (11), therefore the weights
of neural networks are influenced by output noise. On the
other hand small external disturbance can accelerate
convergent rate according to the persistent exciting theory
[18], small disturbances in the input #(¢) or in output y(¢)

can enrich frequency of the signal X (¢) , this is good for
parameters convergence. In the following simulation we can

see this point. With this prior knowledge VO, we may start
the modeling (11).

IV. APPLICATION STUDY

In this section, we will use real data of PEMEX and the neural
networks proposed in Section 3 to model crude oil blending.
The TMDB crude oil blending process in PEMEX is shown in
Fig.1, where the analyzers of API and flow rates are installed
the input/output points of each block. The data is recorded in
the form of Microsoft Excel daily. Each day, we have input

A
data [91,P1,‘]zapza‘]3,173,f]4ap4]

[CI /oDy ]T . We use "a=xlsread(data)" command to transform

and output data

the data sheet into Matlab. The training data are two years'
records, 730 input/output pairs. The testing data, 28
input/output pairs, are one month's records which are in the
other year. In this way, we can assure the testing phase is
independent of the training phase. The outputs of each blender

(M, M,
different, Fig. gives one month's API Gravity of two blenders.

M, ) in Fig.l are changed daily and

T T i,
R Gty Herckr 1 AR Gaityintretak

28

26
318
24
316

314

312

. . . . .
0 5 10 5 2 D
Trre(c) @)

Fig.3 API gravity in one month

We see that the nonlinearity of the crude oil blending is
strong; it is not easy to identify it by a simple model. We use
three methods to compare the algorithm proposed in this
paper, see Fig.4

9., P,

> Blender
4., 1,
EE—— Linear part q,50P
95, P
Interaction art
q.. P, ;-;—J 4 (a)

<
Lease square

Blender

EE—— Linear part q 5D
s P
Giip Nonlinear part
S P
Emm—— T

Blender

2o P

I Linear part q4,-P
s P

» Nonlinear part

(c)

L.
Fig.4 Modeling crude oil blending

In Fig.4-(a) we regard the real data satisfy the interaction
model (6), i.e.,

4 4 4
pP,= Zpixi + Z Z @i, XX (18)
i=1 =l j=i+l

where X, =¢q,/q s» the parameters ¢, , are linear with
the data, we can use standard least square technique to

calculate the parameter - (18) can be written as

Z a; X (k)xj (k) (19)

Jj=i+l

pf(k)_zpi(k)xi(k):

4 4
i=I i=1

where kK =1---730. We define
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(19) can
be written in matrix form

Y=20

whereY = [y(l),. . .,y(730)]T,
4 (1) Zlo(l) !
Z = : : > ®:[‘91s---s‘910]r
z,(730) 2,,(730)
The least square solution is
o=(z"z)'z"y
After we obtain ® (or @; ;) » the other month's data are

used to check the model (18). We apply the input data
T A
[ql,pl,q29p2,q3’p3aq4ap4] to (18), the output p . of

the interaction model and the real data are shown in Fig..

T
Modelling via least square

Model output Real data

Time (day)

Modeling error ‘

0.8 1
0.6
0.4
0. ‘
5 10 15 20 25
Time (day)

Fig.5 Identification via interaction model and least square

In Fig.4-(b) we assume the crude oil blending can be
expressed as linear and nonlinear parts,

4
Py =D px +A (20)
i=1
It can be expressed as
4
Py =2 0% = AGy. P12 P22 P32 4ar i)
i=1

We use following neural network model to identify A,

)=V, 4w, x (k)] 1)

where k -th sample timer interval is one day - The input to
[Chap1anap2aQ3,p3aQ4ap4], the

neural network is
4
output of neural network corresponds to | p, — Z pix |,
=l
We choose
1x5
V.eR™,

the initial conditions for the elements of W, and V, are

T
§0 X(k):[‘hapl:Q2apza%ap3=CI4>p4] .
the 5 nodes in hidden layer, so W, € R,

random number in [0, 11 The modelling error is

e(k>=y(k)—[p,»(m—ipxk)xf(k)}

i=1

We use the learning algorithm (11) proposed in this paper,
ie.,

Wea =W, - Uke(k)¢’VOTXT(k)

(22)
Via =V, — nke(k)¢T
S
where n, = . ) n=1,
C e xt el + o
1£=02, #(-)=tanh(x) = &=,

¢'() =sech(x) = e*fe** . 730 pairs [X(k),y(k)] are
applied to train the neural networks (21), and other 28 pairs

data are used to test the training result, the modeling results
are shown in Fig.6

31
30.5
30

29 00 620 640 660 680 700 720 740
31

‘ Testing p‘hase ‘ ‘
30.5 7
301 - i

28. 5 10 15 20 25
0.04 T — T T

Modeling error
0.03 B
0.02 b
0.0‘b . ' '

5 10 15 20 25
Time (day)

Traininé has

Fig.6 Identification for nonlinear part

In Fig.4-(c) we consider the crude oil blending is a black-box
nonlinear process, we use neural network to model the whole
system. The plant is

P, =109, P05 P340, 0,) (23
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neural network is

[ql’pl’qZ’pZ’q3?p3aq4np4]a

network corresponds to  p r The modelling error is

elk)=3(k)-p, (k)

We use the same neural networks and the same algorithm as in
(22). We use 1500 data (four and half year’s data) to training

it, after k& >1300, the weights are converged. Then we use

another one year's flow rates of the feed stocks to test our
neural model, the modeling results are shown in Fig.7.

The input to
the output of neural

3 ! !
[Training phase
33r 7
32 7
3 é | 1 | 1 .
00 620 640 660 680 700 720 740
33 . . .
oTesting w
32 1
310 5 10 15 20 25
05 ‘ Mddeling error ‘
of i
-0.5 7
_1 L L L L
0 5 10 15 20 25

Time (day)

Fig.7 Black-box identification

Three different methods in Fig.4 give different modelling
errors. We define the average modeling errors as

J, = %kzn:,h?f(k)_ﬁf(kj

where p Y (k ) is the output of the models. For least square

method, nonlinear part modeling and black-box modeling,
J, is 0.6, 0.0, 0.1

. respectively. We have the following

conclusions:

1) It is reasonable to divide the blending process into linear
and nonlinear parts

2) The interaction model (18) for the nonlinear part is not
suitable in crude oil blending.

3) Neural networks and the robust learning algorithm
proposed in this paper are effective for modelling of
crude oil blending.

Now we compare the dead-zone learning algorithm proposed
in this paper (22) with normal backpropagation algorithm [16]
in the training phase. We use the same multilayer neural
networks as [16], it is Hs,s,l (The numbers of input layer,

hidden layer and output layer are 8,5,1 , respectively.). We

n=0.05. We found after

the normal backpropagation algorithm become

use a fixed learning rate
n>0.1

unstable. The performance comparison can be realized by
mean squared errors

J(N)z%kiez(k)

The comparison results are shown in Fig.8. We can see that
the stable algorithm proposed in this paper has a fast

convergence rate, J (73 0) =0.005 . The modeling error of
normal backpropagation

J(730)=0.078.

algorithm is bigger,

0.7
s(v)

0.6 1

04 | Backpropagation

03 [ Stable learning B

800

Time (day)

Fig.8 Comparison

V. CONCLUSION

In this paper a new dead-zone learning algorithm for discrete-
time neural network is proposed. The theoretical analysis of
stability and convergence of the neural networks are given. A
real application for modelling of crude oil blending is
provided. This method has great benefit for realizing model-
based optimal control.
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