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     Abstract— Crude oil blending is an important unit operation in 
petroleum refining industry. A good model for the blending system is 
beneficial for supervision operation, prediction of the export 
petroleum quality and realizing model-based optimal control. Since 
the blending cannot follow the ideal mixing rule in practice, we 
propose a static neural network to approximate the blending 
properties. By the dead-zone approach, we propose a new robust 
learning algorithm and give theoretical analysis. Real data of crude 
oil blending is applied to illustrate the neuro modeling approach. 

Keywords—Neural networks, modeling, stability, crude oil.  

I. INTRODUCTION 
RUDE oil blending is an attractive solution for those 
refiners who have the ability to blend different crude 

types to provide a consistent and optimal feedstock to refinery 
operations. Optimal crude purchasing is an effective method 
to improve refinery profits. In general the blending rule is 
nonlinear, it can be regarded as a linear mixing rule adding a 
nonlinear term. Crude oil blending is an optimization 
operations based upon real-time analyzers and process 
knowledge [6]. A mathematical model for crude oil blending 
is needed to address uncertainties in blending operation; real-
time optimization (RTO) has been proposed [20]. The main 
drawback of RTO is that it cannot provide optimal set-points 
from large amounts of history data. 

The exact mathematical model for crude oil blending is too 
complex to be handled analytically. Many attempts were made 
to introduce simplified models to construct model-based 
controller [9]. A common method to approximate the blending 
operation is to use linear (ideal) model [20] or to regard 
blending operation has a sufficient small nonlinear uncertainty 
[1]. 

Neuro modeling approach uses the nice features of neural 
networks, but the lack of mathematical model for the plant 
makes it hard to obtain theoretical results on stable learning. It 
is very important to assure the stability of neuro modeling in 
theory before we use them in some real applications.  
Lyapunov approach can be used directly to obtain robust 

 
 
Manuscript received March 8, 2005. This work was supported in part by 

CONACyT under Grant 38505A 
Xiaoou Li is with Sección de Computación, Departamento de Ingeniería 

Eléctrica, CINVESTAV-IPN, Av.IPN 2508, México D.F., 07360, México 
(lixo@cs.cinvestav.mx). 

Wen Yu is with the Departamento de Control Automatico, CINVESTAV-
IPN, Av.IPN 2508, México D.F., 07360, México (yuw@ctrl.cinvestav.mx ). 

 

training algorithms for continuous-time [23] [24] and discrete-
time [13] [18] neural networks. It is well known that normal 
modeling algorithms are stable for ideal plants [11]. In the 
presence of disturbances or unmodeled dynamics, these 
adaptive procedures can go to instability easily. Generally, 
some modifications to the normal gradient algorithm or 
backpropagation should be applied, such that the learning 
process is stable. For example, in [13] some hard restrictions 
were added in the learning law, in [22] the dynamic 
backpropagation was modified with NLq stability constraints. 
Another generalized method is to use robust modification 
techniques of robust adaptive control [11]. [15] applied  −σ  
modification, [12] used modified  −δ  rule. 

In this paper, we propose a novel learning algorithm for 
discrete-time feedforward neural network. By combining 
Lyapunov and dead-zone techniques, we analyze the stability 
of modeling error and the parameters. This learning law can 
guarantee both modelling error and weights bounded. The 
neuro modeling approach is successfully used to model crude 
oil blending via real data. 

II.  CRUDE OIL BLINDING 

Crude oils are often blended to increase the sale price or 
process-ability of a lower grade crude oil by blending it with a 
higher grade, higher price crude. The objective is to produce 
blended crude oil to a target specification at the lowest cost 
using the minimum higher cost crude oil. The crude oil feed-
stocks used for blending often vary in quality and for this 
reason crude oil blenders normally use viscosity or density 
trim control systems. API (American Petroleum Institute) 
Gravity is the most used indication of density of crude oil. The 
lower the API Gravity, the heavier the compound. When the 
blender is started the required flow rate and component ratio is 
set by the control system based on the ratio in the recipe. A 
density or viscosity analyzer, installed at a homogeneous point 
in the blender header, generates a control signal, which is used 
to continually optimize the blended product by adjusting the 
component ratio. This ensures that the blended product 
remains as specified at all times during the batch. So normal 
modeling for crude oil blending is on-line. In this paper we 
will discuss an off-line modeling method. 

We discuss a typical crude oil blending process in PEMEX 
(Mexican Petroleum Company), it is called Terminal Marítima 
de Dos Bocas Tabasco (TMDB). The flow-sheet is shown in 
Fig.1-(a). It has three blenders ( ,1M    2M   and  3M  ), one 
dehydration equipment and one tank. We use Fig.2-(b) to 

Modeling of Crude Oil Blending via Discrete-
Time Neural Networks 

Xiaoou Li, and Wen Yu  

C 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:6, 2008

804

 

 

describe the static process of the crude oil blending,  iq   is 

flow rate,  ip   is the property of  i  th feed stock, it can be 

API Gravity. There are four feed-stocks,  ( ),, 113 pqL   Puerto 

Ceiba  ( ),, 22 pq   Maya  ( )33, pq   and El Golpe  ( )., 44 pq   

The blended product for national use  ( )nn pq ,   needs 2 

blenders, the product for export  ( )ff pq ,   needs 3 blenders 

and is stored in a tank. 

 

Dehydration tank1M3L

Puerto Ceiba

aQ

OH2

bQ
2M

Maya

cQ

National

3M

El Golpe International

Blender 111, pq
Blender 2aa pq ,

Blender 3bb pq ,

22, pq 33, pq 44, pq

ff pq ,

ww pq , nn pq ,

(b)

(a)

 
Fig.1 TMDB crude oil blending process 

 

For each blender the static properties can be analyzed by 
thermodynamic. If the partial molar volume of a component in 
a solution is nearly the same as the molar volume of the pure 
component, the molar volume is simply the average of the 
molar volumes of the pure components at the same 
temperature and pressure. The thermodynamic property is 
ideal 
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 where  ,ix    iq   and  ip   are the volume fraction, flow rate 

and API Gravity of  i  th feed-stock,   ap   and  aq   are the 
flow rate and the API Gravity of the blended product of 
Blender 1 ( )1M  . Unfortunately, this equation is correct only 
in the ideal condition, in order to make it universally valid a 
correction term  ∆   is added  

∆+= ∑
=

ii
i

a xpp
2

1

      (1) 

 where  ∆   is called the property change of mixing. Several 
approaches can approximate  ,∆   for examples 

• Interaction model [20][1] 

21xxα=∆         (2) 
 

 where  α   is the interaction coefficient between the two 
components 

• Zahed model [27]  

( )k
iii
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=∆
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1

       (3) 

 

 where  iM   and  k   are constants. 

All of above models are only suitable in some special 
conditions and the parameters of these models should be 
determined by experience data. 

Since all of  ip   and  iq   in Fig.1-(b) are available, we can 
model each blander with input/output data, then connect them 
together, we call this method as distribute model. If the 
mixing rule is given by a interaction model as (2), the total 
blending is  
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where  ,4321 nwf qqqqqqq −−+++=    iα   is mixing 

rule coefficient for  i  -th blender. 

We can also regard the it as multiple components blending 
process as in Fig., we call it as integrated model. The model 
can be expressed as 

∆+= ∑
=

ii
i

f xpp
4

1

       (5) 

 

 If the mixing rule is given by a interaction model as (2)  
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Fig.2 Integrated model 

 

III. MODELING OF CRUDE OIL BLENDING VIA DISCRETE-TIME 
NEURAL NETWORKS 

 The mathematical models discussed in Section 2 works only 
in some special conditions. In real application we have only 
input/output data, neural network can be applied to identify 
crude oil blending. Static neural networks can be used to 
identify the nonlinear parts  ∆   of the distribute model (1) or 
the integrated model (5) , it can also identify the whole 
blender (linear and nonlinear). This section will present a new 
stable learning algorithm for static neuro modeling. 

The mixing property can be written in following form  
( ) ( ) ( )[ ],,, 81 kukukp f LΦ=   or 

( )[ ]kXky Φ=)(        (7) 
 

where  ( ) ( ) ( )[ ] ,,, 81
TkukukX L=    )(ky   is the blended 

API Gravity value at time  k   ( ),)( kpky f=    ( )⋅Φ   is an 

unknown nonlinear function representing the blending 
operation,  ( )kui   are measurable scalar inputs, they are API 

Gravity and flow rates, for example  ( ) ,1
1 oq

qku =    

( ) ,12 pku =    ( ) ,4
7 oq

qku =    ( ) .48 pku =   We consider 

multilayer neural network(or multilayer perceptrons) to model 
the blending properties as in (7) 

( ) ( )[ ]kXWVky kkφ=ˆ      (8) 
 

where the scalar output  ( )kŷ   and vector input  

( ) 1×∈ nRkX  , the weights in output layer are  m
k RV ×∈ 1  , 

the weights in hidden layer are  ,nm
k RW ×∈    φ   is  m 

dimension vector function. The typical presentation of the 
element  (.)iφ   is sigmoid function. The identified blending 
system (7) can be represented as  

( ) ( )[ ] ( )kkXWVky µφ −= ∗∗  

where  ∗V   and  ∗W   are set of unknown weights which may 
minimize the modeling error  ( )kµ  . The nonlinear plant (7) 
can be also expressed as  

     ( ) ( )[ ] ( )kkXWVky δφ −= ∗0      (9) 
 

where  0V   is an known matrix chosen by users, in general,  
( ) ( ) .kk µδ ≥   Using Taylor series around the point of  

( )kXWk  , the modeling error can be represented as 

( ) ( ) ( )
( )[ ] ( )[ ] ( )
( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )
( )[ ] ( ) ( )kkXWVkXWV
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  (10) 

where  
′

φ   is the derivative of nonlinear activation function  

( )⋅φ   at the point of  ( ),kXWk    ,~ ∗−= WWW kk    

,~ 0VVV kk −=    ( ) ( ) ( ),0 kkVk δεζ +=   here  ( )kε   is 
second order approximation error of the Taylor series. 

In this paper we are only interested in open-loop modeling, we 
can assume that the plant (7) is bounded-input and bounded-
output stable, i.e.,  )(ky   and  )(ku   in (7) are bounded. 

Since  ( ) ( ) ( ) ( )[ ] ,,2,1, TkukukukX L−−=    ( )kX   is 
bounded. By the boundedness of the sigmoid function  ,φ   we 

assume that  ( )kδ   in (9) is bounded, also  ( )kε   is 

bounded. So  ( )kζ   in (10) is bounded. The following 
theorem gives a new robust learning algorithm and stable 
analysis for the neural modeling. 

 Theorem 1: If we use the multilayer neural network (8) to 
model the crude oil blending (7), the following dead-zone 
backpropagation-like algorithm  
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k
  This updating law can 

make the modelling error  ( )ke   and the weights of neural 
networks bounded 
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∞∞∞ ∈∈∈ LVLWLke kk ,,)(      (12) 
 

Also the average of the modelling error satisfies  

( ) ζ
π
η

≤= ∑
=∞→
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 Proof: If  ( ) ,2 ζπ
η≥ke   the updating law is (11) with  

( )
.

1 220 φφ
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defined matrix  kL   as  

22 ~~
kkk VWL +=            (14) 

where  ,~ ∗−= WWW kk    ,~ 0VVV kk −=    
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Since  φ′   is diagonal matrix, and by using (10) we have  
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By (10) we know 

( ) ( )[ ] ( ) ( )kkXWVkXWVke kkk ζφφ ++=
′ ~~ 0  

Since  ,0>> kηη   the last term in (15) is 
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So 
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where  π   is defined in (13).  Because  ( ) ,2 ζπ
η≥ke    

,0≤∆ kL    kL   is bounded, so  kW   and  kV   are bounded. 

By (10)  ( )ke   is bounded. If  ( ) ,2 ζπ
η<ke    kk WW =+1   

and  ,1 kk VV =+   so  kW   and  kV   are bounded,  

( ) ∞<< ζπ
η2ke   is also bounded. For all  ( ),ke   (12) is 

correct. 

If  ( ) ,2 ζπ
η≥ke   (16) can be rewritten as  

( ) ( ) ( ) ζηπηζπ +≤+−≤∆ kekkeLk
222   (17) 

 Summarizing (17) from  1  up to  T , and by using  0>TL   

and  1L   is a constant, we obtain  
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 Combing with  ( ) ,2 ζπ
η<ke   for all  )(ke   (13) is 

established. 

 Remark 1:  0V   does not effect the stability property of the 
neuro modeling, but it influences the modeling accuracy, see 
(13). We design an off-line method to find a better value for  

0V  . If we let  ,0
0 VV =   the algorithm (11) can make the 

modeling error convergent, i.e..,  kV   will make the modeling 

error smaller than that of  .0V    0V   may be selected by 
following steps: 

1) Start from any initial value for  ,0
0 VV =    .0=k   

2) Update  tV   by the learning law (11), until  .0Tk =   

3) If the  ( ) ( ) ,00 eTe <   let  TV   as a new  0V  ,  

,
0

0
TVV =   go to 2 to repeat the modeling process. 

4) If the  ( ) ( )00 eTe ≥  , stop this off-line modeling, now  

0TV   is the final value for  0V  . 

 Remark 2: Since we assume neural networks cannot match 
nonlinear systems exactly, we can not make the parameters 
(weights) convergence, we would like only to force the output 
of neural networks to follow the output of the plant, i.e. the 
modeling error is stable. Although the weights cannot 
converge to their optimal values, (13) shows that the modeling 
error will convergence to the ball radius  .ζπ

η   Even if the 

input is persistent exciting, the modeling error  ( )kζ   will not 
make the weights convergent to their optimal values. It is 
possible that the output error is convergent, but the weight 
errors are very high when the networks structure is not fine 
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defined. The relations of the output error and the weight errors 
are shown in (10). Simpler case is that we use line in the 
weights and the neural networks can match the nonlinear plant 
exactly 

( )[ ]
( )[ ]

( ) ( ) ( )[ ]kXWWyy
kXWy

kXWy

t

t

φ
φ

φ

−=−
=

=

∗

∗

ˆ :erroroutput 
ˆ :networks neural

 :plant
 

If  ( )[ ]kXφ   is large, small output error  ( )yy ˆ−   does not 

mean good convergence of the weight error  ( ).tWW −∗   

 Remark 3: Noise (or disturbance) is an important issue in the 
system modeling. There are two types disturbances: external 
and internal. Internal disturbance can be regarded as 
unmodeled dynamic  ( )kδ   in (9). A bounded internal 
disturbance does not effect the theory results in this paper, but 
can enlarge the modeling error if the internal disturbance 
becomes bigger. External disturbance can be regarded as 
measurement noise, input noise, etc. In the point of structure, 
input noises are increased feedforward through each layer [2]. 
For example, a noise  ( )kς   is multiple by  ( )[ ]kWV kk ςφ   
and arrives the output. Measurement noise is enlarged due to 
backpropagation of modeling error (11), therefore the weights 
of neural networks are influenced by output noise. On the 
other hand small external disturbance can accelerate 
convergent rate according to the persistent exciting theory 
[18], small disturbances in the input  )(tu   or in output  )(ty   
can enrich frequency of the signal  )(tX  , this is good for 
parameters convergence. In the following simulation we can 
see this point. With this prior knowledge  ,0V   we may start 
the modeling (11). 

IV. APPLICATION STUDY 
 

In this section, we will use real data of PEMEX and the neural 
networks proposed in Section 3 to model crude oil blending. 
The TMDB crude oil blending process in PEMEX is shown in 
Fig.1, where the analyzers of API and flow rates are installed 
the input/output points of each block. The data is recorded in 
the form of Microsoft Excel daily. Each day, we have input 
data  [ ]Tpqpqpqpq 44332211 ,,,,,,,   and output data  

[ ]Tff pq ,  . We use "a=xlsread(data)" command to transform 
the data sheet into Matlab. The training data are two years' 
records, 730 input/output pairs. The testing data, 28  
input/output pairs, are one month's records which are in the 
other year. In this way, we can assure the testing phase is 
independent of the training phase. The outputs of each blender 
( ,1M    ,2M    3M  ) in Fig.1 are changed daily and 
different, Fig. gives one month's API Gravity of two blenders. 
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Fig.3 API gravity in one month 

We see that the nonlinearity of the crude oil blending is 
strong; it is not easy to identify it by a simple model. We use 
three methods to compare the algorithm proposed in this 
paper, see Fig.4 
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Fig.4 Modeling crude oil blending 

In Fig.4-(a) we regard the real data satisfy the interaction 
model (6), i.e.,  

jiji
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ii
i

f xxxpp ,

4

1

4

1

4

1

α∑∑∑
+===

+=          (18) 

 where  ,/ fii qqx =   the parameters  ji ,α   are linear with 

the data, we can use standard least square technique to 
calculate the parameter .   (18) can be written as 

( ) ( ) ( ) ( ) ( )kxkxkxkpkp jiji
iji

ii
i

f ,

4

1

4

1

4

1

α∑∑∑
+===

=− (19) 

where  .7301L=k   We define  
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where  ,41L=i    ( ) ,41 L+= ij    .101L=l   (19) can 
be written in matrix form 

Θ= ZY  
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The least square solution is 

( ) YZZZ TT 1−
=Θ  

After we obtain  Θ   (or  ji,α  ) ,   the other month's data are 
used to check the model (18). We apply the input data  
[ ]Tpqpqpqpq 44332211 ,,,,,,,   to (18), the output  fp̂   of 
the interaction model and the real data are shown in Fig.. 
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Fig.5 Identification via interaction model and least square 

 

In Fig.4-(b) we assume the crude oil blending can be 
expressed as linear and nonlinear parts, 

∆+= ∑
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f xpp
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                         (20) 

It can be expressed as  

( )44332211
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,,,,,,, pqpqpqpqxpp ii
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=

 

We use following neural network model to identify  ,∆   

( ) ( )[ ]kXWVky kkφ=ˆ                           (21) 

where  k -th sample timer interval is one day .  The input to 
neural network is  [ ],,,,,,,, 44332211 pqpqpqpq   the 

output of neural network corresponds to  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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=
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i
f xpp

4
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 , 

so  ( ) [ ] .,,,,,,, 44332211
TpqpqpqpqkX =   We choose 

the 5  nodes in hidden layer, so  ,85×∈ RWk    ,51×∈ RVk   

the initial conditions for the elements of  kW   and  kV   are 

random number in  [ ].1,0   The modelling error is  
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We use the learning algorithm (11) proposed in this paper, 
i.e., 
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where  
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,
1 220 φφ
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kXV
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,2.0=ζπ
η    ( ) ,)tanh( xx

xx

ee
eex −

−

+
−==⋅φ    

( ) .)(sec 2
xx ee

xh −+
==⋅′φ    730  pairs  ( ) ( )[ ]kykX ,   are 

applied to train the neural networks (21), and other 28  pairs 
data are used to test the training result, the modeling results 
are shown in Fig.6                 
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Fig.6 Identification for nonlinear part 

 

In Fig.4-(c) we consider the crude oil blending is a black-box 
nonlinear process, we use neural network to model the whole 
system. The plant is  

( )44332211 ,,,,,,, pqpqpqpqfp f =         (23) 
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The input to neural network is  
[ ],,,,,,,, 44332211 pqpqpqpq   the output of neural 

network corresponds to  .fp   The modelling error is  

( ) ( ) ( )kpkyke f−= ˆ  

We use the same neural networks and the same algorithm as in 
(22). We use 1500  data (four and half year´s data) to training 
it, after  ,1300>k   the weights are converged. Then we use 
another one year's flow rates of the feed stocks to test our 
neural model, the modeling results are shown in Fig.7. 

600 620 640 660 680 700 720 74031 

32 

33 

34 

0 5 10 15 20 25
31 

32 

33 

0 5 10 15 20 25
-1 

-0.5 

0 

0.5 Modeling error

Testing phase 

Training phase 

Time (day) 
 

Fig.7 Black-box identification 
 

Three different methods in Fig.4 give different modelling 
errors. We define the average modeling errors as 

( ) ( )∑
=

−=
n

k
ffe kpkp

n
J

1

1 )
 

 where  ( )kp fˆ   is the output of the models. For least square 
method, nonlinear part modeling and black-box modeling,  

eJ   is  0.6, 0.0, 0.1  respectively. We have the following 
conclusions: 

1) It is reasonable to divide the blending process into linear 
and nonlinear parts 

2) The interaction model (18) for the nonlinear part is not 
suitable in crude oil blending. 

3) Neural networks and the robust learning algorithm 
proposed in this paper are effective for modelling of 
crude oil blending. 

Now we compare the dead-zone learning algorithm proposed 
in this paper (22) with normal backpropagation algorithm [16] 
in the training phase. We use the same multilayer neural 
networks as [16], it is  1,5,8Π   (The numbers of input layer, 
hidden layer and output layer are  8,5,1 , respectively.). We 

use a fixed learning rate  .05.0=η   We found after  
1.0>η   the normal backpropagation algorithm become 

unstable. The performance comparison can be realized by 
mean squared errors  

( ) ( )ke
N

NJ
N

k

2

12
1 ∑

=

=  

 The comparison results are shown in Fig.8 .   We can see that 
the stable algorithm proposed in this paper has a fast 
convergence rate,  ( ) 005.0730 =J  . The modeling error of 
normal backpropagation algorithm is bigger,  

( ) .078.0730 =J   
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Fig.8 Comparison 

 

V. CONCLUSION 
 

In this paper a new dead-zone learning algorithm for discrete-
time neural network is proposed. The theoretical analysis of 
stability and convergence of the neural networks are given. A 
real application for modelling of crude oil blending is 
provided. This method has great benefit for realizing model-
based optimal control. 
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