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Abstract—System identification of an Unmanned Aerial Vehicle
(UAV), to acquire its mathematical model, is a significant step in the
process of aircraft flight automation. The need for reliable
mathematical model is an established requirement for autopilot
design, flight simulator development, aircraft performance appraisal,
analysis of aircraft modifications, preflight testing of prototype
aircraft and investigation of fatigue life and stress distribution etc.
This research is aimed at system identification of a fixed wing UAV
by means of specifically designed flight experiment. The purposely
designed flight maneuvers were performed on the UAV and aircraft
states were recorded during these flights. Acquired data were
preprocessed for noise filtering and bias removal followed by
parameter estimation of longitudinal dynamics transfer functions
using MATLAB system identification toolbox. Black box
identification based transfer function models, in response to elevator
and throttle inputs, were estimated using least square error
technique. The identification results show a high confidence level and
goodness of fit between the estimated model and actual aircraft
response.

Keywords—Black box modeling, fixed wing aircraft, least square
error, longitudinal dynamics, system identification.

1. INTRODUCTION

URING past decades aircraft system identification had

been a wide area of research. The need for aircraft
modeling arises keeping in view the expensive and precarious
nature of aviation industry. Utilization of a mathematical
model can be appreciated in many areas like aircraft
performance analysis, flight testing of modifications made in
the aircraft, autopilot and simulator design. Stress and fatigue
analysis can also be carried out using an aircraft model [1].

Aircraft modeling can be carried out using various
techniques like analytical modeling, water toe tank testing,
wind tunnel testing, and Computational Fluid Dynamics
(CFD) and system identification. A large number of
assumptions are made while working with these techniques
however these have been improved and established over the
years [2].

System identification technique is the most reliable and
accurate modeling technique which involves the operation of
real system under specific excitations thus eigen modes of
motion of a system under test are stimulated. Statistical
methods are usually applied by estimation algorithms on the
recorded input/output data of the actual system for estimation
of a model. The estimated model is then validated by
comparing its output to the actual system output for identical
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excitations. In system identification, very few assumptions
are followed as compared to other modeling techniques as the
actual system is operated during the process [3].

The field of aircraft system identification is satiate with
various estimation algorithms in time and frequency domains,
but relatively less amount of work has been done on small
sized UAVs for modeling through system identification.
Mathematical —programming, statistics and structural
mechanics were used to seek solution of system identification
problem in [1]. An adaptive technique to identify a
multivariable system is suggested in [2] that uses recently
developed methods for optimization and feasibility of these
techniques is practically analyzed by its application to the
adaptive control of helicopter dynamics in [3]. Research has
been carried out on the development of parameterized model
of unmanned helicopter and its identification using a
frequency domain technique. Model is validated by comparing
results from model with the response collected during flight.

Linear time invariant model for a hover is sought by using
time domain analysis techniques on the system response data
for designed inputs. This model was used for controller
designing [4]. System identification was done by analyzing
data from steady measurements. Model was formulated using
linear regression techniques which can be extended to
stepwise regression for model structure determination and to
data handling procedure. Second technique used was
maximum likelihood estimation [5]. Optimal input design
technique is presented for aircraft parameter estimation.
Concept is the combination of dynamic programming method
with a gradient algorithm for the optimal input synthesis [6].
Output error method was used to produce aerodynamic
coefficients, stability and control derivatives. Flight training
device was developed based on the parameters estimated [7].
Bayesian system identification of structural dynamic systems
was performed using experimentally obtained training data
[8].

Two recursive least square parameter estimation algorithms
are proposed by using the data filtering technique and the
auxiliary model identification idea. Input output data is filtered
[9]. Two new algorithms were derived to identify mixed
deterministic and stochastic systems. State sequence is
determined using input output data [10]. The importance and
relevance of direct continuous-time system identification and
how this relates to the solution for model identification
problems in practical applications has been discussed [11].
Identification and modeling of dynamics of highly
maneuverable fighter aircraft is carried out through aircraft
neural networks approach [12]. Online parameter

1518



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:11, No:8, 2017

identification algorithm is implemented to provide inflight
estimate of the aircraft dynamic parameters [13].

II. FIXED WING AIRCRAFT MODELING

A fixed wing aircraft, fundamentally being a nonlinear
system, is difficult to model accurately, however the aircraft
model based on nonlinear equations of motion can be
linearized around a stable equilibrium point, using small
perturbation theory [15]. The nonlinear aircraft model and its
linearization is discussed in [14].

The linearized longitudinal model of the UAV, as
deliberated in [16], can be represented in state space form as
given in (1):

X = AXx+ Bu (1)

where states and controls of longitudinal direction are X = [u q
0 h]™; u= [de St]"; and O = pitch angle in radians; ¢ = pitch
rate in rad/s; u = air speed in m/s; h= altitude in m; de =
elevator input in radians; ot = throttle input in percentage.

II. PLATFORM UAV

The indigenously built aerial platform named Taurus is a
conventional Remotely Controlled (RC) fixed wing UAV with
four control surfaces; aileron, elevator, throttle and rudder. A
snapshot of the platform is shown in Fig. 1. Significant
geometrical parameters for Taurus are shown in Table 1.

Fig. 1 Fixed wing UAV Taurus

IV. SENSORS AND DATA LOGGING

The results of system identification directly depend on the
quality of recorded input/output data [17]. The quality of flight
data in turn depends on the number of sensors used and their
degree of precision and sampling time etc. The data logger and
required sensors were selected keeping in view their weight,
volume, power requirement and low cost. For recording
aircraft states, the employed sensor suite comprised of a
digital compass (powered by Honeywell's HMC5883L-TR
chip), gyroscope/accelerometers (Invensense's 6 DOF
Accelerometer / Gyro MPU-6000) and barometric altitude
sensor. Ublox 3DR GPS was used for sensing aircraft
positions and velocities. A sampling frequency of 8§ Hz was

used to log flight data by the sensor suite. Real-time wireless
data telemetry kit was used for monitoring aircraft states and
data logging at the ground monitoring station. Avionics was
integrated on Taurus keeping in view the aircraft Centre of
Gravity (CG) for weight balancing.

TABLEI
DIMENSIONS OF TAURUS
Fuselage
Length 36 in
Width 2.51in
Height 8in
Wing
Area 435 in?
Span 50 in
Chord 11 in
Aspect ratio 6.7
Aileron length 7 in
Aileron chord 1in
Dihedral 3 deg
Sweep angle 0 deg
Horizontal tail
Span 7 in
Area 89 in?
Chord 2 in
Aspect ratio 1.23
Elevator chord 4in
Elevator deflection 12.5 deg
Vertical tail
Span Sin
Area 0.67 ft?
Sweep angle 27 deg
Rudder chord 1.5in

Rudder deflection 25 deg

V.EXPERIMENT DESIGN AND CONDUCT

The identification experiment flight was designed to include
conception of a detailed flight plan, arrangement of necessary
equipment and documentation of step by step preflight and
post flight checklists. In system identification, the accuracy of
estimated model is directly dependent upon the design of
experimental inputs [17].

These inputs are to excite aircraft modes of motion in
steady trim flight condition. There are a variety of inputs used
for identification but in-flight mechanics there are some most
common inputs like the step, frequency sweep, doublet and
3211-multistep [18]. Doublet and 3211 multistep inputs, as
shown in Fig. 2, are the most widely used inputs for aircraft
system identification, and we have used the same in our
experiment because of their large bandwidth.

The spectral characteristics of these inputs are shown in the
Fig. 3. For designing an input signal, the step duration is
calculated as a function of the natural frequency of aircraft
mode of motion. In our experiment the flight inputs were
designed keeping in view the historically established aircraft
inputs for system identification [18].

First few missions were flown for pilot orientation about the
aircraft behavior and to check if the aircraft CG is balanced. In
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two days total of 63 runs were made and doublets were given
at all the inputs separately keeping all other inputs constant;
37 runs were made for longitudinal direction and 26 runs were
for lateral direction. Doublets of time period 2 sec were given.
Applying doublet for less than 2 sec was not possible due
to pilot limitation and extending it more than 2 sec pulled
aircraft into a loop. Multiple doublets were given to each
control surface to get reliable data for analysis. Doublets given
to each control surface were noted against time for extracting
useful doublets data for further processing. Recorded flight
data was extracted from data logger and preprocessed for
noise filtering and bias removal in Matlab environment. Input
output data related to longitudinal modes of aircraft was
separated for estimation of longitudinal transfer functions.
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Fig. 2 Aircraft system identification inputs

Useful portion of doublet data was extracted from the
complete log for estimating multiple mathematical models so
that the best estimated model could be acquired.

VI. ESTIMATION ALGORITHM

System Identification tool box of computational software
MATLAB was used for estimating 3-DOF longitudinal model
of the UAV, employing least square error algorithm. The
working of least square error algorithm is as shown in Fig. 4;
u-axis is the input axis while y-axis is the output axis. The
black stars are actual data points, red line is the line that LSE
algorithm is going to find in such a way that it maximally fits
all the data points, by minimizing the square of distance
between data points and the straight line. To find the best fit
line, By and By are to be estimated as shown in Fig. 4. We
define a cost function ‘v ‘that minimizes modeling error ‘€’ as
shown in (2):
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Fig. 3 Spectral characteristics of identification inputs

While modeling error is shown in (3):

ei=Yyi—y" 3)

where Vi is the actual output and y;™ is the model output. This
inverse parabola is partially differentiated with respect to Bg
and B; to get minimum values of each; it gives two equations
which are solved simultaneously to get the values of both the
parameters as shown in (4) and (5):

Bozzyizuiz_zuizzuiyi 4)
X -(Xu)

B - Uy - yizzui )
S (Xu)

In the above equations, r is the number of data points and u;
is the actual input.

Fig. 4 Least square example

VII. MODEL ESTIMATION AND VALIDATION

Multiple iterations were performed in System Identification
toolbox to get the best estimated mathematical model by
changing combination of zeros in transfer function estimation.

Doublet data was segregated into 70 to 30 ratios, 70 percent
of the data points were used for estimation of the transfer
function of the system that gives relation between input and
each output separately. The remaining 30 percent of data was
used for model validation. Estimated transfer function for
elevator to pitch angle is given in (6):
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016, = L0l ©
s +1.0798° +3.1928> +1.731s + 1.772

Estimated transfer function for elevator to pitch rate is given
in (7):

7.885° —11.34s8* —2.67s+3.701
q/6,=— 5 5 (7
s* +1.0315° +4.3415* +3.0275 +1.624

Estimated transfer function for air speed to elevator is given in

®):

72365 +13.95" +0.30865-9.785 )
® 5" +0.44665 +4.5865 +0.032685 +0.3302

Estimated transfer function for elevator to altitude is given
in (9):

61.68 9
/3, =— < i (
s +0.8699s° +2.112s> +1.4425+0.2138

Out of the total, 30% of flight data was saved for validation
purpose and not utilized in the estimation process. This spare
data set was used for validation of the estimated longitudinal
model. Identical inputs were given to the estimated model and
its outputs were recorded which were compared with the
outputs in the actual flight data. The results were validated in
terms of percentage of fitness of the two outputs. Percentage
goodness of estimated model is shown in the validation results
in Figs. 5-8.

Elevator to pitch angle model validation
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Fig. 5 Validation result for pitch angle

VIII.CONCLUSION

In this paper, linearized longitudinal model of a
conventional fixed wing UAV has been estimated and
validated. Flight experiment was conducted to excite the
aircraft dynamic modes of motion, in response to specifically
designed input maneuvers. Appropriate type and number of
sensors and data loggers were used to sense and record aircraft
states and inputs. Data was preprocessed before subjection to
Matlab system identification toolbox. Least square error based
estimation technique was used to model longitudinal transfer
functions of Taurus, using the recorded flight data. Estimation

results showed high goodness of fit between the estimated
model and actual system responses. The transfer function
models can confidently be used for various applications
discussed above, such as designing altitude and air speed
controllers in an autopilot system.

Elevator to altitude model validation
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Elevator to airspeed model validation
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Elevator to pitch rate model validation
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Fig. 8 Validation for pitch rate
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