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Abstract— Recently, a great amount of interest has been shown 

in the field of modeling and controlling hybrid systems. One of the 

efficient and common methods in this area utilizes the mixed logical-

dynamical (MLD) systems in the modeling. In this method, the 

system constraints are transformed into mixed-integer inequalities by 

defining some logic statements. In this paper, a system containing 

three tanks is modeled as a nonlinear switched system by using the 

MLD framework. Comparing the model size of the three-tank system 

with that of a two-tank system, it is deduced that the number of 

binary variables, the size of the system and its complexity 

tremendously increases with the number of tanks, which makes the 

control of the system more difficult. Therefore, methods should be 

found which result in fewer mixed-integer inequalities.                   

Keywords—Hybrid systems, mixed-integer inequalities, mixed 

logical dynamical systems, multi-tank system. 

I. INTRODUCTION

YBRID systems are referred to those systems having 

different parts or different processes with different 

characteristics. In the area of control and modelling, hybrid 

systems are referred to systems which are comprised of 

discrete and continuous parts. Hybrid systems may also be 

defined as a combination of time-driven and event-driven 

components. In past, dynamics of these systems were studied 

separately. Models like automata or Petri net were used for the 

event-driven part, and for the time-driven part, differential or 

difference equations were used. In processes where the 

discrete and continuous parts work together and a significant 

interaction is observed between them, a thorough analysis of 

the system performance and achieving high efficiency requires 

that all the dynamic parts and their interactions be studied 

completely. In this way, the exact analysis and optimization of 

a system becomes possible. As a result, many researchers have 

concentrated on modelling and controlling hybrid systems. So 

far, no general method has been presented for the analysis and 

design of hybrid systems. Therefore, the researchers have 

concentrated on specific classes of such systems and have 
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presented analysis and design methods for them. Mixed 

logical-dynamical systems (MLD), piecewise-affine systems 

(PWA), linear complementary systems (LC), max-min-plus-

scaling systems (MMPS), and extended linear complementary 

systems (ELC) are some important classes which have been 

considered before [1]-[5]. The aforementioned classes are 

equivalent in some conditions. This equivalence is important 

in the sense that it allows the invented methods for a specific 

class to be used for other classes in some conditions [6].  

In this paper, the MLD method is used to model a system 

containing multiple tanks. A detailed model is presented for a 

three-tank system and the size and complexity of the system is 

compared with those of a two-tank one. It is observed that by 

adding one tank to the system, its size and complexity 

increases significantly.  

II. MIXED LOGICAL DYNAMICAL MODELING

Mixed logical dynamical is one of the powerful methods of 

modeling in the theory of hybrid systems, which was first 

presented in [1]. The principles of MLD modeling are 

discussed in this section.  

In this modeling method, a binary variable is assigned to 

each logic statement. If and only if the logic statement is true, 

the value of the binary variable is one: 

1TrueX ii                                                     (1)                   

Combination of the logic statements may be described with 

the combination of binary variables. For example the term 

21 XX  is equivalent to 121 . Indeed, the 

mentioned logic term is true when at least one of the logic 

statements 1X  and 2X  is true. Equivalently, the inequality 

121  is true when at least one of the binary variables 

equals one. The inequalities like 121 , which contain 

a linear combination of binary variables, are called linear 

integer inequalities. If some continuous variables are also 

included, the inequality is called mixed-integer. Another basic 

principle of MLD modeling is the relationship between 

dynamic and binary variables. In fact, it can be shown that the 

logic statement ]1)([]0)([ tty  is true if and only 

if the following inequalities are true: 

)()()( tytM                                

mtytm )()(                                                       (2) 

where M and m are the maximum and minimum of y(t) 
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respectively, and  is a small positive number (typically the 

machine precision). Sometimes terms like )(xf  are 

encountered in MLD modeling method, which are in fact the 

product of a binary variable and a continuous function. In 

these cases y is defined as )(xfy  and it can be shown 

that it is equivalent to four mixed-integer inequalities: 

)1()( mxfy          My

)1()( Mxfy         my                 (3)                                                      

where M and m are the maximum and minimum of )(xf

respectively. 

In fact, with these principles, the problem constraints and 

the auxiliary variables (which are usually products of binary 

and continuous variables) are transformed into mixed integer 

inequalities. Therefore, the system is modeled as an MLD in 

the following way: 

1 2 3 0[ 1] [ ] [ ] [ ] [ ]x k Ax k B u k B k B z k B

1 2 3 0[ ] [ ] [ ] [ ] [ ]y k Cx k D u k D k D z k D

2 3 1 4 5[ ] [ ] [ ] [ ]E k E z k E u k E x k E               (4) 

where x  is a state vector of the system and contains 

continuous and binary variables. y  and u  are respectively 

output and input vectors of the system, which consist of 

continuous and discrete parts. The vectors lr}1,0{  and 

crRz  are auxiliary binary and continuous variables, 

respectively.  

III. HYBRID MODELING OF A THREE-TANK SYSTEM WITH 

MLD APPROACH

In this section, the dynamics of a three-tank system and the 

constraints of the problem are described with MLD approach. 

This system is suitable to our needs, because the number of 

tanks may be changed easily and the resulting systems can be 

modeled. In this paper, the variation of system size and its 

complexity is studied by changing the number of tanks. 

The system contains three tanks which are connected to 

each other. The tanks are filled by gas flows and these flows 

are controlled by four control valves. The control task is to fill 

three tanks up to predefined pressures while preventing the 

state trajectory to enter the forbidden regions in the state 

space.

W1 W2 W3 W4

P2 P3

x2

x1

P4P0

L1 L2 L3

P1

x3

l1

l2

l3

Fig. 1 Three-tank system 

The flow passing through the control valves is proportional 

to the difference between the pressures of the two sides of the 

valve: 

1 1 1( ) ( 0,1, 2,3)i i i i iq k w P P i              (5) 

Where ki is the valve constant and wi is the control signal of 

the Vi valve. The equations of gas volume and its variations in 

each tank are as the following: 

( )i i i i i i iV A L x V A x                                     (7) 

1 ( 1, 2,3)i i iV q q i                                    (8) 

where Ai is the cross-section area of the i’th tank, Li is the 

height of the i’th tank and xi is the distance between the 

moving plane and the ceiling of the i’th tank. The equations 

regarding the gas pressure and its variations in each tank are 

as the following: 
*

*

( )

( ) ( )

i i i i i i

i

i i i i i i i i i

P c L x x l
P

P c L x c l x x l
  (9) 

Therefore, 

( 1, 2,3)
( )

i i i i

i

i i i i i

c x x l
P i

c c x x l
 (10) 

where Pi
* is a constant pressure, and ii cc ,  are stiffness 

factors of the tank springs. It is supposed that the control 

signals and state variables are continuous variables in the 

intervals ],[ maxmin ww  and min max[ , ]P P . Since there are 

three tanks in the system and each tank has two operation 

regions, the nonlinear dynamics of the system can be 

explicitly defined in eight different regions. For example, 

regarding the equations (9) and (10), the dynamics of the 

system in region 1 1x l , 2 2x l   and 3 3x l  is as the 

following: 

1
1 0 1 1 1 2 2 1 2 2 2

1
1

2 2
2 2 1 2 2 2 3 3 2 3 3 3

2

3

3
3 2 3 3 3 4 4 3 4 4 4

3

( ( ) )

( )
( ( ) )

( ( ) )

c
k p w k w k w p k p w

A
p

c c
P p k p w k w k w p k p w

A
p

c
k p w k w k w p k p w

A

                                                                                         (11) 

 By linearizing the eight nonlinear state equations around 

the equilibrium point ),( eqeq ux , the nonlinear dynamics of 

the system can be transformed into an approximate piecewise 

linear model. In this way, the following affine models are 

derived for the eight operation regions: 

1 1 1P F P G u H   for 1 1x l , 2 2x l , 3 3x l

(12) 

2 2 2P F P G u H for 1 1x l , 2 2x l , 3 3x l

(13) 

3 3 3P F P G u H  for 1 1x l ,

2 2x l , 3 3x l (14) 

4 4 4P F P G u H  for 1 1x l , 2 2x l

, 3 3x l (15) 
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5 5 5P F P G u H  for 1 1x l ,

2 2x l , 3 3x l (16) 

6 6 6P F P G u H  for 1 1x l ,

2 2x l , 3 3x l (17) 

7 7 7P F P G u H  for 1 1x l ,

2 2x l , 3 3x l (18) 

8 8 8P F P G u H for 1 1x l , 2 2x l , 3 3x l

(19) 

where 
Twwwwu ][ 4321 .

By defining 1 2  ... 10  as 10 binary variables and 

defining the following logic statements: 

1 1 1[ 1] [ ]x l                                                       (20) 

2 2 2[ 1] [ ]x l                                                    (21) 

3 3 3[ 1] [ ]x l                                                    (22) 

4 1 2 3[ 1] [ 0] [ 0] [ 1]                    (23) 

5 1 2 3[ 1] [ 0] [ 1] [ 0]                    (24) 

6 1 2 3[ 1] [ 0] [ 1] [ 1]                     (25) 

7 1 2 3[ 1] [ 1] [ 0] [ 0]                    (26) 

8 1 2 3[ 1] [ 1] [ 0] [ 1]                     (27) 

9 1 2 3[ 1] [ 1] [ 1] [ 0]                     (28) 

10 1 2 3[ 1] [ 1] [ 1] [ 1]                     (29) 

the system can be modeled in the following way: 

1 1 1

8

2 1 1 1

2

[( ) ( ) ( )]i i i i

i

P F P G u H

F F P G G u H H

            (30)           

Using the relationships derived from the linearization, the 

matrices 1FFi , 1GGi  and 1HHi )8,...,3,2(i  can 

be calculated. As an example: 

6
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The logic statement (20) is equivalent to the following 

mixed-integer inequalities: 

1111

11111

)( lxm

MlxM
                                        (31) 

where 111 )min( lxm  and 111 )max( lxM .

Similarly each of the logic statements (21) and (22) are  

equivalent to two mixed-integer inequalities. 

The logic statements (23-29) are also equivalent to the 

inequality sets (32): 

3 4

1 4

2 4

1 2 3 4

0

1

1

0
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3 5
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1 2 3 10

0

0
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                                                (32) 

By replacing the values of 
1FFi
, 1GGi  and 

1HHi

for ( 2,3,...,8)i  in equation (30), equations are derived in the 

form of products of a binary variable and a continuous value. 

Consequently, the auxiliary variables iz ( 1,2,...,12)i

may be defined as shown below: 

2 2 2 2

1 4 32 2 33 3 33 3 34 4z f p f p g w g w                (33) 

3 3 3 3 3

2 5 21 1 22 2 23 3 22 2 23 3z f p f p f p g w g w (34)         

4 4 4 4 4

3 6 21 1 22 2 23 3 22 2 23 3z f p f p f p g w g w
(35)

   

4 4 4 4

4 6 32 2 33 3 33 3 34 4z f p f p g w g w                (36) 

5 5 5 5

5 7 11 1 12 2 11 1 12 2z f p f p g w g w                  (37) 

6 6 6 6

6 8 11 1 12 2 11 1 12 2z f p f p g w g w                  (38) 

6 6 6 6

7 8 32 2 33 3 33 3 34 4z f p f p g w g w                (39) 

7 7 7 7

8 9 11 1 12 2 11 1 12 2z f p f p g w g w                  (40) 

7 7 7 7 7

9 9 21 1 22 2 23 3 22 2 23 3z f p f p f p g w g w (41) 

8 8 8 8

10 10 11 1 12 2 11 1 12 2z f p f p g w g w                (42) 

8 8 8 8 8

11 10 21 1 22 2 23 3 22 2 23 3z f p f p f p g w g w
(43)

8 8 8 8

12 10 32 2 33 3 33 3 34 4z f p f p g w g w             (44) 
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Each of the equations (33-44) is equivalent to four mixed-

integer inequalities. For example equation (33) is equivalent 

to the following inequalities: 

1

1

1

1

1 4

1 4

2 2 2 2

1 32 2 33 3 33 3 34 4 4

2 2 2 2

1 32 2 33 3 33 3 34 4 4

(1 )

(1 )

z

z

z

z

z M

z m

z f p f p g w g w M

z f p f p g w g w m

   (45) 

where  

1

2 2 2 2

32 2 33 3 33 3 34 4max{ }zM f p f p g w g w

1

2 2 2 2

32 2 33 3 33 3 34 4min{ }zm f p f p g w g w

As mentioned earlier in this paper, the state space has 

forbidden regions where the state trajectory is not allowed to 

enter. Suppose that the forbidden regions are defined as 

shown below: 

1 11

2 21

3 31

f

f

f

p p

p p

p p

,

1 12

2 22

3 32

f

f

f

p p

p p

p p

 and 

1 13

2 23

3 33

f

f

f

p p

p p

p p

             (46) 

In order to express the constraints resulting from the 

forbidden regions in the form of mixed-integer inequalities, 

the binary variables 19 18 12 11, ,..., ,  and the following 

logic statements are defined: 

1 11 11[ ] [ 1]fp p      
2 21 12[ ] [ 1]fp p

3 31 13[ ] [ 1]fp p      1 12 14[ ] [ 1]fp p      

2 22 15[ ] [ 1]fp p    
3 32 16[ ] [ 1]fp p

1 13 17[ ] [ 1]fp p 2 23 18[ ] [ 1]fp p

3 33 19[ ] [ 1]fp p                                             (47) 

The state trajectory does not pass the forbidden regions, if 

and only if the following logic statements are true: 

11 12 13[ 1] [ 1] [ 1]                                 (48) 

15 14 16[ 1] [ 1] [ 1]                                 (49) 

19 17 18[ 1] [ 1] [ 1]                                 (50) 

The above logic statements are equivalent to the following 

inequalities: 

11 12 13 0                                                         (51) 

15 14 16 0                                                         (52) 

19 17 18 0                                                         (53) 

Each of the logic statements in relationship (47) is 

equivalent to two mixed-integer inequalities. For example  

the statement 
1 11 11[ ] [ 1]fp p  is equivalent to the 

following inequalities: 

3 11 1 11 3

3 11 1 11( )

f

f

m p p m

M p p
                              (54) 

where 
3 1 11min( ) fm p p  and 

3 1 11max( ) fM p p .

The higher and lower limits on input and state variables 

result in the following 14 inequalities: 

min max ( 1,2,3,4)iw w w i                        (55) 

min max ( 1, 2,3)ip p p i                          (56) 

Now, all the required inequalities and matrices are available 

to describe the three-tank system with an MLD model 

(Equation 4). Using the auxiliary variables, the matrices A

and ( 0,1, 2,3)iB i  will be as the following: 

1 0 1 1 1A F B H B G                             (57) 

5 6 7 8

1 1 1 1

3 4 7 8

2 2 2 2 2

2 4 6 8

3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h h h h

B h h h h

h h h h

                                                                                         (58) 

3

0 0 0 0 1 1 0 1 0 1 0 0

0 1 1 0 0 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0 0 0 1

B

                       (59) 

The vectors  and z  are as the following: 

1 2 18 19[ ... ]T
              (60)            

1 2 11 12[ ... ]Tz z z z z
                                             (61)              

As mentioned before, each of the statements (20)-(22) are 

equivalent to two inequalities and each of the statements (23)-

(29) are equivalent to four inequalities. Each of the equations 

(33)-(44) is also equivalent to four inequalities and each of the 

nine logic statements in (47) is equivalent to two inequalities. 

The equations (48)-(50) are also equivalent to inequalities 

(51)-(53). Finally, according to (55) and (56), the higher and 

lower limits on input and state variables result in 14 

inequalities. Therefore, there are totally 

(3 2) (7 4) (12 4) (9 2) 3 14 117

inequalities. In other words, the iE  matrices (in Equation 4) 

have 117 rows. These matrices are easily derived from the 

mentioned relations, but due to their large sizes, they are not 

shown here. 

IV. SIZE AND COMPLEXITY COMPARISON BETWEEN        

MULTI-TANK SYSTEMS

In the previous section, the three tank system was described 

in MLD framework and it was observed that the number of 

mixed-integer inequalities and therefore the number of rows in 

iE  matrices are equal to 117. In this section, the two-tank 

system is modeled and compared with other multi-tank 

systems. Since the procedure of modeling is quite the same as 

that of the three-tank system, the details of modeling are not 

mentioned here. In two-tank system, there are four operation 

regions. By writing the system equations and linearizing them 
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around the equilibrium points and introducing 5 binary 

variables 1 , 2 , 3 , 4  and 5  and defining the following 

logic statements: 

1 1 1[ 1] [ ]x l                                                       (62) 

2 2 2[ 1] [ ]x l                                                     (63)

]1[]0[]1[ 213
                                   (64)

]0[]1[]1[ 214
                                    (65)

]1[]1[]1[ 215
                                      (66) 

the system can be modelled as follows: 

1 1 1

4

1 1 1 1

2

[( ) ( ) ( )]i i i i

i

P F P G u H

F F P G G u H H
     (67)  

Replacing 1iF F , 1iG G  and 1iH H ( 2,3,4)i  in 

(67) results in definition of the following four auxiliary 

continuous variables: 
2 2 2 2

1 3 21 1 22 2 22 2 23 3{ }z f p f p g w g w          (68) 

3 3 3 3

2 4 11 1 12 2 11 1 12 2{ }z f p f p g w g w           (69)

4 4 4 4

3 5 11 1 12 2 11 1 12 2{ }z f p f p g w g w           (70) 

4 4 4 4

4 5 21 1 22 2 22 2 23 3{ }z f p f p g w g w         (71) 

If the forbidden regions are 
2 21 1 11,f fp p p p  and 

2 22 1 12,f fp p p p , the binary variables 9 8 7 6, , ,

and the following logic statements are defined to express the 

constraints resulting from the forbidden regions: 

11 1 6[ ] [ 1]fp p 21 2 7[ ] [ 1]fp p

1 12 8[ ] [ 1]fp p

2 22 9[ ] [ 1]fp p (72) 

the state trajectory does not enter the forbidden regions if 

and only if the following logic statements are true: 

6 7[ 1] [ 1]          8 9[ 1] [ 1]        

(73) 

the above logic statements are equivalent to the following 

inequalities: 

6 7 0               8 9 0                            

(74) 

the logic statements (64)-(66) are equivalent to inequality 

sets (75) respectively: 

1 3

2 3

1 2 3

1

0

0

       

1 4

2 4

1 2 4

0

1

0

1 5

2 5

1 2 5

0

0

1

                                                          (75) 

the higher and lower limits on input and state variables 

result in the following 10 inequalities: 

min max ( 1, 2,3)iw w w i                            (76) 

min max ( 1, 2)ix x x i                               (77) 

Therefore, the matrices A  and ( 0,1,2,3)iB i  in the 

two-tank system are derived as below: 

1 0 1 1 1, ,A F B H B G                                     (78) 

3

0 1 1

1 0 1
B                   

(79)     

3 4

1 1

2 2 4

2 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

h h
B

h h
                  

(80) 

In fact, each of the statements (62) and (63) is equivalent to 

two inequalities and the statements (64)-(66) are each 

equivalent to three inequalities. Each of the equations (68)-

(71) is equivalent to four inequalities and each of the 

statements in (72) is equivalent to two inequalities. There are 

two inequalities in (74) and ten inequalities in (76) and (77). 

Therefore, to describe the two-tank system in MLD 

framework, there are totally 

(2 2) (3 3) (4 4) (4 2) 2 10 49

inequalities. Consequently, each iE  matrix has 49 rows. 

In order to have a more precise analysis, the 4, 5, 6, 7, and 8 

tank systems are also modeled by MLD approach. The results 

are shown in the following table: 

TABLE  I

NUMBER OF BINARY VARIABLES, AUXILIARY CONTINUOUS VARIABLES AND 

MIXED-INTEGER INEQUALITIES IN TERMS OF THE NUMBER OF TANKS

Number of 

tanks

Number of 

binary variables 

Number of 

auxiliary 

continuous 

variables 

Number of 

mixed-integer 

inequalities

2 9 4 49 

3 19 12 117 

4 35 32 265 

5 61 80 593 

6 105 192 1325 

7 183 448 2957 

8 327 1024 6577 

By plotting the number of binary variables, auxiliary 

continuous variables and mixed-integer inequalities in terms 

of the number of tanks, approximate relationships can be 

derived for them. 
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Fig.2 The number of binary variables in terms of the number of 

tanks 
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Fig. 3 The number of auxiliary continuous variables in terms of 

the number of tanks 
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Fig. 4 The number of mixed-integer inequalities in terms of the 

number of tanks 

If the number of tanks, the number of binary variables, the 

number of auxiliary continuous variables, and the number of 

mixed-integer inequalities are shown respectively by N, Y, Z, 

and W, the following approximate equations are derived: 

   
NeY 586.01146.3                                                  (81)

NeZ 9167.07439.0                                            (82)                   

NeW 8131.002.10                                             (83)               

It is observed that the number of binary variables, the 

number of auxiliary continuous variables and the number of 

mixed-integer inequalities increase exponentially with the 

number of tanks. Consequently the system size and its 

complexity grow exponentially with the number of tanks. 

Since the control methods presented in MLD systems like 

predictive control, use numerical methods to solve the control 

problems, the increase in the number of mixed-integer 

inequalities and therefore the system dimension is considered 

a critical limitation. For example, ILOG AMPL CPLEX 

software can be used for predictive control of a two-tank 

system in MLD framework, with control horizon of 4T ,

while it is not possible to use this software for the predictive 

control of a three-tank system (since the number of 

inequalities rises to 117) [11],[12]. As a result, recently many 

researchers have concentrated on finding solutions to decrease 

the number of mixed-integer inequalities in MLD method. 

V. CONCLUSION

In this paper, the details of modeling a three-tank system in 

MLD framework are discussed. By comparing the results with 

the MLD models of 2, 4, 5, 6, 7, and 8-tank systems, it is 

observed that the number of binary variables, auxiliary 

continuous variables and generated mixed-integer inequalities 

increase exponentially with the number of tanks. Therefore, 

by increasing the number of tanks, the size of the system and 

consequently its complexity increases exponentially. Since in 

the MLD systems (like predictive control and optimal control) 

the numerical methods are used to solve control problems, the 

increase in the system dimension is considered a critical 

limitation. Therefore, procedures should be found to decrease 

the number of mixed-integer inequalities in MLD framework. 

This subject has recently attracted many researchers and a 

significant amount of interest has been shown in this field. 
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