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Abstract—Honeycomb sandwich panels have been widely used 

as protective structural elements against blast loading. The main 
advantages of these panels include their light weight due to the 
presence of voids, as well as their energy absorption capability. 
Terrorist activities have imposed new challenges to structural 
engineers to design protective measures for vital structures. Since 
blast loading is not usually considered in the load combinations 
during the design process of a structure, researchers around the world 
have been motivated to study the behavior of potential elements 
capable of resisting sudden loads imposed by the detonation of 
explosive materials. One of the best candidates for this objective is 
the honeycomb sandwich panel. Studying the effects of explosive 
materials on the panels requires costly and time-consuming 
experiments. Moreover, these type of experiments need permission 
from defense organizations which can become a hurdle. As a result, 
modeling and simulation using an appropriate tool can be considered 
as a good alternative. In this research work, the finite element 
package ABAQUS® is used to study the behavior of hexagonal and 
squared honeycomb steel sandwich panels under the explosive effects 
of different amounts of trinitrotoluene (TNT). The results of finite 
element modeling of a specific honeycomb configuration are initially 
validated by comparing them with the experimental results from 
literature. Afterwards, several configurations including different 
geometrical properties of the honeycomb wall are investigated and 
the results are compared with the original model. Finally, the 
effectiveness of the core shape and wall thickness are discussed, and 
conclusions are made.   
 

Keywords—Blast loading, finite element modeling, steel 
honeycomb sandwich panel. 

I. INTRODUCTION 

ERRORIST attacks such as bombing of the marine 
barracks in Beirut (1983), the Khobar Towers in Saudi 

Arabia (1996), the governmental building in Oslo (2011) and 
bombings of U.S. embassies in Nairobi, Kenya and Dar El-
Salaam, Tanzania in the past years show increasing number of 
bombings worldwide toward important structures. Such 
incidents alarmed structural engineers to develop methods of 
design and analysis to protect citizens and properties against 
blast loads. In this work, honeycomb sandwich panels serve in 
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absorbing energy released by a bomb. Studying explosion 
effects on the panels require experimental work known to be 
costly and time consuming. Moreover, these kinds of 
explosive based experiments are not easy to implement, and 
permissions from the defense organizations are necessary. The 
other alternative is to use a simulation program which is 
preferable as compared to experimental works due to its lower 
cost and time consumption.  

Additionally, reduction of mass while maintaining same 
level of strength has always been considered a challenging 
optimization problem. Recently, honeycomb sandwich panels 
are replacing monolithic structures due to their lightweight, 
high stiffness and strength, and durability. Now, researchers 
are focusing on studying the effect of blast loading on 
sandwich panels that are known for absorbing energy and 
managing the impulse associated with blast loading. Zhu and 
Lu [1] studied the characteristics of blast loads and its 
corresponding structural response and concluded that 
structures affected by blast wave can undergo large inelastic 
deformation, tearing, or transverse shear failure at the support. 
Xue and Hutchinson [2] focused more on studying the effect 
of a square core sandwich plate in absorbing blast wave. 
Dynamic effects were studied and identified showing its 
contribution in strengthening the core using continuum model 
software. Square-core sandwich panels showed high energy 
absorption and crushing strength. Fleck and Deshpande [3] 
analyzed the blast resistance of clamped sandwich beams. 
Experimental tests were conducted by Dharmasena et al. [4] to 
study the dynamic mechanical response of square honeycomb 
core sandwich panels. They have shown that the square 
honeycomb panels are capable of withstanding air blast loads.  

In this paper, the finite element method (FEM) package 
ABAQUS® is adopted to model steel square and hexagonal 
honeycomb sandwich panels with different cell wall 
thicknesses. The dimensions of the sandwich panel are 
selected to be similar to the work done by Dharmasena et al. 
[4].  

II. THE BLAST LOAD 

An explosion by definition is a large-scale, rapid and 
sudden release of energy. Explosives can be classified on their 
basis of their sensitivity to ignition. They are classified as 
either primary or secondary explosives. Among these, primary 
explosives are the ones that can be easily detonated by a 
simple ignition from a spark, flame or any form of impact. 
Mercury fulminate and lead azide are such primary explosive 
materials. But secondary explosives are the ones that when 
detonated, create blast (shock waves), causing widespread 
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