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Abstract—The upgrading of low quality crude natural gas (NG) 
is attracting interest due to high demand of pipeline-grade gas in 
recent years. Membrane processes are commercially proven 
technology for the removal of impurities like carbon dioxide from 
NG. In this work, cross flow mathematical model has been 
suggested to be incorporated with ASPEN HYSYS as a user 
defined unit operation in order to design the membrane system for 
CO2/CH4 separation. The effect of operating conditions (such as 
feed composition and pressure) and membrane selectivity on the 
design parameters (methane recovery and total membrane area 
required for the separation) has been studied for different design 
configurations. These configurations include single stage (with and 
without recycle) and double stage membrane systems (with and 
without permeate or retentate recycle). It is shown that methane 
recovery can be improved by recycling permeate or retentate stream 
as well as by using double stage membrane systems. The ASPEN 
HYSYS user defined unit operation proposed in the study has 
potential to be applied for complex membrane system design and 
optimization. 

Keywords—CO2/CH4 Separation, Membrane Process, 
Membrane modeling, Natural Gas Processing 

 

I. INTRODUCTION 

ETHANE is the major component (75%-90%) of 
natural gas but it may also contain significant amounts 

of ethane, propane, butane and traces of higher hydrocarbons 
depending upon the source [1]. In some deposits, it may have 
contaminants such as CO2, H2S, CO which constitutes 
environmental hazards and also causes hindrance in natural 
gas processing. The upgrading of low quality crude natural 
gas is attracting interest due to the high demand for pipeline-
grade gas in recent years. CO2 must be removed in order to 
serve the following purposes; increase the heating value of 
the gas, prevent corrosion of pipeline and process 
equipments and crystallization during liquefaction process 
[2, 3]. 

CO2 contents can vary from 4% to 50% in NG depending 
upon the gas source. It needs to be pre-processed before the 
transportation to meet the typical pipeline specification of 
2%-5% CO2 [4]. Most of the NG, produced in the lower 48 
states of USA, contains more than 5% CO2.As a result, many 
natural gas wells are unexploited due to their low production 
rate and low quality (i.e., high CO2 and/or H2S content) [5].  
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In Malaysia, NG from Tangga Barat Cluster fields of 
PETRONAS contains relatively high amount of CO2 [6]. 
Therefore, it is necessary to develop efficient processes for 
the removal of CO2 from NG [5, 6]. 

There are different processes for the removal of CO2 
considering the factors of; capital and operating costs, gas 
specifications and environmental concerns. The major 
processes can be grouped as absorption Processes (chemical 
and physical absorption), adsorption processes (solid 
surface), hybrid solution (mixed physical and chemical 
solvent) and Physical Separations (membrane and cryogenic 
Separation) [7, 8, 9]. 

For natural gas processing applications, membranes 
processes are commercially proven technology. For a gas to 
permeate through a membrane surface, the gas must first 
dissolve in the high-pressure side of the membrane, diffuse 
across the membrane wall, and evaporate from the low-
pressure side. The working principle of gas separation is 
therefore that some gases are more soluble in, and pass more 
easily through polymeric membrane than other gases [7, 10, 
11]. 

In membrane process, feed gas is pretreated before 
entering the membrane system in order to ensure efficient 
operation. It mainly controls the fouling, plasticization and 
condensation of hydrocarbons in the membranes [1, 11]. 
Moreover, the temperature control system is provided to 
maintain the gas at the desired operating temperature of the 
membrane fibers. Finally, the heated gas is entered into the 
membrane gas separators where it gets separated into two 
streams; the permeate, a low pressure CO2 stream and the 
non-permeate or residue, a high pressure hydrocarbon rich 
stream [7]. 

Gas separation by membrane technology has become a 
major industrial application only during the last few decades 
but the study of gas separation has a long history [10]. 
Graham measured the permeation rates of all the known 
gases of that time using different diaphragms [10, 12]. Barer, 
Amerongen and Stern played an important role in the 
development of solution diffusion model for the explanation 
of gas permeation [13, 14, 15]. The success of Monsanto, the 
first membrane company, encouraged other companies like 
Cvnaoi, Separex and Grace Membrane Systems to produce 
membrane  plants for removal of CO2 from natural gas [10, 
16]. 

Datta and Sen worked on the optimization of the gas 
processing cost for a membrane unit. It is shown that the 
optimum configuration might be unique within certain 
ranges of CO2 concentration and the minimum gas 
processing cost could only be achieved by adjusting the 
number of modules in each stage and the compressor power 
[4].  

M
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Lee et al. investigated the effects of the operating variables 
of pressure, feed flow rate, and the carbon dioxide 
concentration in the feed. Additionally, computer models 
were applied for the separation of gases under perfect mixing 
and cross flow conditions to the analysis of the field data [5]. 
Wang enhanced operational flexibility and adaptability of 
membrane process using an optimal method in which auto-
controlling of the permeate gas flux was applied for the first 
time [17]. 
Qi and Hensen presented the optimal design strategy for 
spiral membrane networks for gas separations [18] whereas 
Lababidi developed the mathematical model to optimize 
three configurations including single stage, two stages, and 
the continuous membrane column (CMC) [19].  

The permeability and selectivity variations of the CO2/CH4 
system have been studied by Safari, Ghanizadeh and Rehmat 
that included both temperature and pressure effects 
simultaneously [20]. Hau et al. studied process design, 
economics, and sensitivity of membrane stage with recycle 
streams [21]. 

There are limited studies on the design of membrane 
system using commercial process simulator. The advantages 
of using commercial simulator involve the accurate modeling 
of thermodynamics properties and auxiliary equipment in the 
membrane system. In this paper, different design parameters 
are analyzed for membrane gas separation under different 
configurations using ASPEN HYSYS. As membrane unit is 
not a pre-defined unit operation in ASPEN HYSYS, a cross 
flow model is proposed to predict the membrane 
performance in the removal of CO2 from natural gas. Finally, 
the proposed model is included in the process simulation as 
user defined unit operation along with other available unit 
operations to design the membrane system. 

 

II. METHODOLODY 

A. Governing equations 
The study is based on the cross flow model derived by 

Weller and Steiner [22] as shown in the detailed flow 
diagram (Fig. 1). The nomenclature of the flow sheet is as 
follows: 

dV= dL=Total flow rate permeating through the area  
xf = Feed mole fraction 
x0 = Retentate mole fraction 
yn = Permeate mole fraction 
Lf = Feed flow rate 
Lr = Retentate flow rate 
Vn = Permeate flow rate 
ph = Pressure on the high pressure side 
pl = Pressure on the low pressure side 
 
The model assumes no mixing in the permeate side as well 

as on the high pressure side. Thus the composition of 
permeate can be determined at any point along the 
membrane by the relative permeation rates of feed 
component at that point [23]. 

The assumptions that follow the suggested model are: 
1. It holds for the binary gas mixture 
2. Permeability is independent of pressure and 

temperature of the gas stream. 

3. It represents the whole membrane module and will 
not involve the details inside the module. 

4. Pressure drop on both sides of the membrane is 
negligible. 

5. The concentration polarization is assumed to be 
negligible. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Schematic diagram of cross flow membrane 
separation 

 
The local permeation rate at any point in the stage over a 
differential membrane area dAm is 
 
ydV ൌ PA

୲
ሾp୦x െ p୪yሿ                                                          (1) 

 
ydV ൌ PB

୲
ሾp୦ሺ1 െ xሻ െ p୪ሺ1 െ yሻሿ                                     (2) 

 
Dividing eq (i) by eq (ii), we get 
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Using ingenious transformations, an analytical solution to the 
three equations (eq. (i) - eq. (iii)) have been obtained [10]. 
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Where 
 
ԕכ ൌ 1 െ L/Lf  (L as flow rate permeated in the differential 
element)  
 
 i ൌ ୶

ሺଵି୶ሻ
 

 
u ൌ െDi ൅ ሺܦଶiଶ ൅ 2Ei ൅ Fଶሻ଴.ହ 
 

D ൌ 0.5
ሺ1 െ αሻ݌௟

௛݌
൅ α  

 
E = ሺα/2)-DF 
 

F ൌ െ0.5
ሺ1 െ αሻ

௛݌
௟݌ െ 1  

 
R = 1/ (2D െ 1) 
 

S ൌ
αሺD െ 1ሻ ൅ Fሻ

ሺ2D െ 1ሻ െ ቀα2 െ Fቁ
 

Xf

Lf Ph

Pl

Vp yp 

x-dx x

yn 

Lr 

X0 

dAm 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:4, No:12, 2010

759

 

T ൌ
1

1 െ D െ ሺE
Fሻ

  

 
The term uf is the value of u at i = if = xf / (1-xf). The value 

of ԕכ is the fraction permeated up to the value of x. At the 
outlet where x=x0, the value of ԕכ becomes equal to ߐ i.e., 
the total fraction permeated.  The composition of the 
permeate stream is yp and thus can be calculated from the 
overall material balance. 

 
௣ݕ ൌ ௫௙ି௫଴ሺ௜ି௾ሻ

௾
                                                                 (5) 

 
The total membrane area is then calculated using additional 
transformations of eqs. (i)-(v) in order to obtain 
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Where 
 
fi = (Di – F) + (D2i2 + 2Ei + F2)0.5 

 
The term if is the value of i at the feed and i0 is the value of i 
at the outlet. The integral is solved numerically to calculate 
the value of total membrane area required for the separation. 

B. Design Configurations 
The design of a membrane separation process involves (i) 

the configuration of permeators (ii) the operating parameters 
of the individual permeators [18]. Different configurations 
have been proposed for the membrane separation as shown 
in Fig. 2. For moderate purity and recovery requirement, 
single stage system (with and without recycle) is appropriate 
[24]. For more demanding separations, multiple stage system 
is required [25, 26]. It is a conventional approach to select 
different configurations and then optimize the operating 
permeation [19]. 

 

 
 

Fig. 2  Design configurations for CH4/CO2 separations: (a) single 
stage (b) Single stage with recycle (c) two stage (d) Two stage with 

permeate recycle (e) Two stage with retentate recycle. 
 

 

III. RESULTS AND DISCUSSIONS 

A. Model Validation 
A mathematical model is validated with the published 

experimental data for membrane separation process. The data 
by Pan et al. [27] is based on the experiments done on sour 
natural gas. The feed gas contains 48.5 % CO2 that is 
removed in the permeate stream, with the purpose to increase 
the recovery of methane in the retentate stream. The 
temperature and pressure of the gas are 10oC and 35.28 bar 
respectively whereas, on the other hand, the permeate 
pressure is 9.28 bar. The selectivity is assumed to be 25. 
Table 1 shows that the suggested model gives good 
approximation to the experimental data with maximum 
percentage error < 17.8%.  

The proposed model is further validated with the data from 
Liu et al [28] based on the study conducted on propylene 
enrichment using cross flow membrane. Table 2 show that 
the simulated data are in close agreement with the 
experimental data with maximum percentage error < 5 % . It 
can also be observed that the simulated model gives better 
approximation with experimental data from Liu et al. as 
compared to experimental data from Pan et al. [28]. The 
small error in the comparison can be attributed to the 
sensitivity of membrane permeability towards high pressure, 
which is assumed negligible in the suggested mathematical 
model. 

 
TABLE I  

VALIDATION OF MATHEMATICAL MODEL WITH EXPERIMENTAL 
DATA BY PAN et al 

Stage Cut 
(�) 

 

Permeate mole fraction, CO2 
Simulated Experimental % Error 

0.40 0.91 0.96 5.49 
0.42 0.88 0.95 7.95 
0.45 0.83 0.94 13.25 
0.47 0.81 0.93 14.8 
0.50 0.78 0.91 16.6 
0.52 0.75 0.89 18.6 
0.55 0.73 0.86 17.8 

 
TABLE I I 

VALIDATION OF MATHEMATICAL MODEL WITH EXPERIMENTAL 
DATA BY LIU et al. 

Stage Cut 
(�) 

 

Mole fraction of Species in permeate 
Simulated Experimental % Error 

0.01 0.80 0.76  5.00

0.02 0.78 0.76  2.56

0.03 0.77 0.76  1.29

0.04 0.78 0.75  3.8

 

B. Parametric analysis: 
The methane recovery and total membrane area are 

considered as the main parameters for membrane system 
design. The effects of feed composition, feed pressure and 
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