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Abstract—In the paper we submit the modification of kinetic 

Smoluchowski equation for binary aggregation applying to systems 

with chemical reactions of first and second orders in which the main 

product is insoluble. The goal of this work is to create theoretical 

foundation and engineering procedures for calculating the chemical 

apparatuses in the conditions of joint course of chemical reactions 

and processes of aggregation of insoluble dispersed phases which are 

formed in working zones of the reactor.  

 

Keywords—Binary aggregation, Clusters, Chemical reactions, 

Insoluble phases.  

I. INTRODUCTION 

N many cases processes of chemical technologies are 

accompanied by formation of the new solid disperse phase. 

It can be phase transition, as in cases of crystallization or 

desublimation, or it can be formation of low soluble 

substances during chemical reactions [1]-[12].  

As a whole it is possible to allocate a lot of directions of a 

modern science dealing with processes and apparatuses of 

chemical technologies in which the problems of calculating 

the kinetic and dynamical characteristics of reactors with 

formation of a polydisperse solid phase in a working zone are 

relevant.  

1. Production of nano-dispersed powders of oxides of 

precious metals for constructional and functional 

bioceramics.  

2. Creation of sorbents, catalysts and molecular grids with 

given structure.  

3. Creation of methods for calculating and optimal 

engineering of technological processes dealing with the 

method of chemical sedimentation.  

4. Elaboration of polymeric films for molecular covering of 

products of chemical mechanical engineering and electro 

technical industry.  

5. Elaboration of ways of producing nano-disperse 

rheological additives for suspensions with given 

characteristics. 

Methods for calculating apparatuses in which there are 

phase transitions of types “liquid-solid” or “vapor-solid” are 

developed more or less in detail [12]-[14].    

However engineering methods of calculation and designing 

of processes in chemical reactors with formation of low 

soluble products of chemical reaction in working zones of the 

apparatuses are developed to a lesser degree [15], [16]. 

The area of researches in this work is limited to working out 

methods for calculating and designing processes and chemical 

 
Arnold Brener is with State University of South Kazakhstan, Kazakhstan 

(e-mail: amb_52@mail.ru). 

apparatuses in which there exist formation and aggregation of 

suspensions of low soluble products of chemical reactions.  

Therefore, the goal is to create theoretical foundation and 

engineering procedures for calculating the chemical 

apparatuses in the conditions of joint course of chemical 

reactions and processes of aggregation of an insoluble 

dispersed phase formed in working zones of the reactor.  

II. MATHEMATICAL MODEL 

The primary nucleation is the first stage of aggregation 

process. During this process microscopic amorphous particles 

or partially crystalline particles-monomers have been 

generated in a solution.  

Let us consider the first order reaction occurring in a 

solution under the conventional scheme BA →  with the rate 

constant k . Further we will use capital Roman letters for 

denoting reactants and their concentrations. Then the 

concentration of a product of reaction reads:  
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where  0A  is the initial concentration of  reactant A . 

 

kc 1=τ .                                     (2) 

 

Further we consider primary nucleation of the product of 

reaction B  with formation of clusters of an insoluble phase: 

CB → .  

The primary nucleation kinetics will be described by means 

of time of delay of the insoluble phase C  formation relatively 

the time of the reaction product formation during the certain 

period of nucleation nτ .  

The time that is imperative for reaching the equilibrium 

concentration of the product B  in solution will not be taken 

into account. This approach is acceptable, probably, for low 

soluble substances. 

Then 
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The analysis of known data allows asserting that as a result 

of primary nucleation there are mainly monomers of the 

insoluble phase. Then Smoluchowski equation expanded by 

the chemical source looks as follows [6], [7], [15], [16].  
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where factor  χ  considers the monomer mass, and iC  is the 

concentration of  i -mer of the product .C   

Let us introduce a generating function of the type [15]:  
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In the case of constant aggregation cores 

constN agji ==η,  the kinetic equation in the terms of 

generating function reads  
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The method of generating functions can be effectively used 

for deriving the equation for the total concentration of clusters 

of insoluble phase: 
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Then the sought-for equation follows from (7) under 0=z  

reads 

 

( )








−+−=

cc

cn tA
M

dt

dM

ττ
ττ

exp
exp

2

1 02
0

0 .       (9)                  

 

Let us introduce parameters which are convenient for 

analytical decision of (9). 
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After minimal rearrangements (9) will look as follows 
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The following substitution is suitable to solving the 

obtained Riccati equation  
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As a result we get  
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The analytical decision of the given equation expressed by 

Bessel’s functions 0I  and 0K reads: 
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Finally we obtain the sought-for solution in the form 
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Let us consider now the second order reaction occurring in 

a solution under the conventional scheme CBA →+ . 

The solution for the concentration of reaction product C
reads 
 

( )( )( )
))(exp(

exp1

002

00200

tBAkAB

tBAkBA
Ñ

−−
−−

= .                  (17) 

 

At the singular case, i.e. when 00 BA =  the above relation 

transforms to  
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The Smoluchowski equation for aggregation kinetics of the 

monomers of insoluble product 1Ñ  now reads 
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where  

21 kc =τ .                                       (21) 

 

In this case the method of generating functions is also 

applicable. And after the analogous transformations we get the 

following equation for the total concentrations of insoluble 

clusters.   
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The obtained equation can be also solved with the help of 

Bessel’s functions. However, we do not give here the 

appropriate expression as it has an unwieldy form.  

III. NUMERICAL EXPERIMENT 

Fig. 1 depicts some results of calculating the evolution of 

the total concentration of solid clusters of different orders in 

the system with the first-order chemical reaction, and Fig. 2 

depicts the mentioned evolution in the system with the second-

order reaction.   

 

 

Fig. 1 The evolution of the total concentration of solid clusters in the 

system with the first-order reaction at small-time 

 

The numerical experiments did not show a principal 

difference in qualitative behavior of the time-dependences of 

the total clusters concentration in the cases of first or second-

order reactions. The differences observed reduce to 

quantitative peculiarities.   

 

Fig. 2 The evolution of the total concentration of solid clusters in the 

system with the second-order reaction at small-time 

 

As a result of numerical experiments we obtain the 

following approximations for describing the time when the 

maximum of total clusters concentration can be observed in 

the systems with the first (24) and the second-order (25) 

reactions. 
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The form of relations (24), (25) shows that the parameter   

0E  can be used as control parameter for engineering 

calculations.  

IV. DISCUSSION AND CONCLUSION 

However, the greatest interest, from the point of view of the 

process kinetics in the reactor, represents comparison between 

the rate of evolution of total clusters concentration and 

concentration of the clusters, formed as a result of primary 

nucleation of the reaction product. 

The moment when the speed of aggregation of monomers 

starts to prevail over the speed of primary nucleation is clearly 

observed from the Fig. 3. It is a so-called threshold of slow 

aggregation.  

Other important phenomenon is the time shift between the 

maximums of the concentration of monomers and the 

maximums of total concentration of clusters. This shift 

diagnoses the second stage of aggregation that is the so-called 

fast aggregation. 
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Fig. 3 The time evolution of cluster concentration of different orders 

 

Aggregation is characterized by fast increase in the 

concentration of monomers in the initial time, and then the 

total concentration of clusters of higher orders begins to 

dominate. The extremes of concentration of higher orders 

clusters are clearly displaced over time. 

At any given time there is a certain average order of 

clusters. From this it follows that for the batch reactor for 

which the main characteristic time is the duration of the 

reaction [17], [18], it is necessary to know the average order of 

clusters, besides the total concentration of clusters of insoluble 

phase, since the average cluster size determines the time of 

solid phase deposition. 

In really the situation with calculation becomes complicated 

by the fact that chemical reactions, physical processes and 

purely hydrodynamic processes occur in volume of one 

apparatus [18]. However, the systematic approach allows to 

make decomposition of this difficult problem and to offer 

mathematical models for its various stages.  

Certainly, such division is conventional. However, it can be 

explained by that most intensive chemical transformations are 

carried out in the field of not constrained movement of 

streams of phases, i.e. in the field of the maximum effective 

factors of diffusion. 
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