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Model Updating-Based Approach for Damage
Prognosis in Frames via Modal Residual Force
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Abstract—This paper presents an effective model updating
strategy for damage localization and quantification in frames by
defining damage detection problem as an optimization issue. A
generalized version of the Modal Residual Force (MRF) is employed
for presenting a new damage-sensitive cost function. Then, Grey
Wolf Optimization (GWO) algorithm is utilized for solving
suggested inverse problem and the global extremums are reported as
damage detection results. The applicability of the presented method is
investigated by studying different damage patterns on the benchmark
problem of the IASC-ASCE, as well as a planar shear frame
structure. The obtained results emphasize good performance of the
method not only in free-noise cases, but also when the input data are
contaminated with different levels of noises.

Keywords—Frame, grey wolf optimization algorithm, modal
residual force, structural damage detection.

1. INTRODUCTION

N the past few years, the problems on damage detection and

health monitoring of structures have received considerable
attention. Once the structural damage has been accurately
detected, the rehabilitation procedures should be conducted in
order to prevent catastrophic events. Therefore, in the field of
maintenance of structures, structural damage identification
consists of basic steps which not only reasonably decreases the
costs of structural repairing, but also can accelerate the
rehabilitation procedures by concentrating only on the
damaged sections of the structure. Although different kinds of
input structural feedbacks may be used for damage prognosis,
vibration-based approaches are more preferred. The
fundamental purpose of the vibration-based damage detection
is that the damage-induced changes in physical properties
(mass, damping, and stiffness) will result in detectable
changes in modal properties (natural frequencies, and mode
shapes). Therefore, it seems that by employing an inverse
strategy, damage features can be identified from changes in
the modal properties. A complete review of vibrational-based
damage identification methods can be found in [1], [2]. Some
of these methods are based on natural frequencies [3], [4],
while the other methods employ mode shapes or their
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derivatives  [5]-[10].  Subsequently, optimization-based
methods have been proposed in order to find a proper solution
for the damage identification problem [11]-[18]. In fact,
optimization-based damage detection methods are aimed at
detecting damage location as well as damage severity by
updating numerical finite element model (FEM) of the intact
structure in a way that the numerical model can behave close
to the monitored structure. Evaluating amount of correlation
between monitored structure and updated numerical model,
and deciding about approaching of the two models is done via
optimization algorithms. For instance, Ghodrati Amiri et al.
[13] employed the free vibration equilibrium of the plate-like
structures for introducing a damage-sensitive cost function.
They utilized pattern search and genetic algorithms for finding
optimal solution of the problem. Vincenzi et al. [15] proposed
an optimization-based damage detection method based on
coupled local minimizers and differential evolution algorithm.
Mohan et al. [16] employed particle swarm optimization and
genetic algorithms for solving damage identification problem
by considering a modal data-based cost function. Recently,
Zare Hosseinzadeh et al. [18] formulated the damage
identification problem by presenting a cost function based on
calculated static displacements and reached to global
extremums of the problem by means of cuckoo optimization
algorithm.

In this paper, an effective optimization-based model
updating method is presented for damage localization and
quantification in structural frames. First, a damage-sensitive
cost function is defined based on a generalized version of
MRF. Then, GWO algorithm is utilized for solving the
optimization problem to find global extremums as the damage
detection results. The efficiency of the presented method is
demonstrated by applying it for detecting simulated damages
on the first phase of the benchmark problem provided by the
International Association for Structural Control (IASC)-
American Society of Civil Engineers (ASCE) Task Group on
Structural Health Monitoring. Moreover, some other studies
are carried out on a planar four-story shear frame. The
acquired results clearly indicate that the proposed method can
precisely locate and quantify damage of frames not only in
free noise state, but also when the noisy input data are fed.

II. GWO ALGORITHM

GWO is an evolutionary optimization algorithm that is
inspired by the particular lifestyle of a wolf family, called grey
wolf community [19]. The grey wolves have a social dominant
hierarchy, and they mostly prefer to live in a pack. The top of
hierarchy pyramid are leaders namely alphas. The alphas («)
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arc a male and a female, and their decision has the most
priority in the pack. The betas (f) are in the second level of
social hierarchy, and they help the alpha in making decisions
and other fundamental activities. If one of alpha wolves passes
away or becomes very old, the best candidates for substitution
are beta wolves. Omega (@) wolves are the lowest level of
hierarchy, and they are supposed to submit to all the other
dominant wolves. Therefore, omegas are the last wolves that
are allowed to eat in the pack. If a wolf is not alpha, beta or
omega, he/she is called subordinate or delta (d). Delta wolves
have to submit to alphas and betas, but they dominate the
omegas [19]. The social hierarchy of grey wolves is shown in
Fig. 1.

Fig. 1 Social dominant hierarchy of grey wolves is shown as a
pyramid

Another social behavior of grey wolves is group hunting.
Their hunt involves three phases. The first phase is related to
tracking, chasing, and approaching the prey. The wolves
pursue, encircle, and harass the prey until it stops running
away in the second phase, and in the last phase they attack
towards the prey [19].

Their behavior and lifestyle can be suggested through a
mathematical model. In this model the first, second, and third
best solutions are assumed to be alpha, beta, and delta wolves,
respectively. The rest of solutions are supposed to be omega
wolves. In GWO framework, the hunting is leaded by be
alpha, beta, and delta wolves, and the omega wolves follow
these three wolves. The following framework is presented to
model encircling behavior of grey wolves [19]:

D, =[C,.Y; - Y]] M
Y"=Y -A,D, @
A;=2a,Ra —a, 3)

C, =2R,, 4

where Aj and Cj are coefficient vectors, Yp' is the prey
in iteration t, Yj' is the jth grey wolf in iteration t, Ry;
and Ry are random vectors between [0,1] which is
generated by MATLAB software, and aj is a vector that
its components are linearly decreased from 2 to 0 during
incremental iterations.

For simulation of grey wolves’ hunting, it is presumed that
the alpha, beta, delta have better knowledge of the potential
location of prey. As a consequence, the three best solutions
should be saved. Afterwards, omegas will update their
positions based on the best solution of the wolves located
around the prey. The following equations represents this
position updating:

D, =[C,.Y} - Y| Q)
D, =|C,.Y} - Y} (6)
D, =|C,.Y; - Y| (7
Y=Y -A,.D, (®)
Y;"=Y,-A,D, 9)
Y=Y -A,D, (10)
Y :%(Y; +Y,+YD an

In Fig. 2, the searching procedure is depicted which is
leaded through updating the position based on alpha, beta, and
delta in a planar search space. It is obvious that the final
location would be a random position within a circle which is
determined by the position of alpha, beta, and delta wolves.
Hence, the position will be estimated based on alpha, beta, and
delta wolves’ orders, and omega wolves will update their
positions randomly around the prey.

[

Fig. 2 Position updating of wolves based on GWO algorithm

As mentioned before, the final phase in the grey wolves’
hunt is attacking towards the prey as soon as it stops running
away. In the mathematical model, approaching the prey is
modelled by decreasing the values of entries of aj from 2 to 0
during incremental iterations. Since, Aj is a value between [-a;
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, aj], the fluctuation range of Aj is decreased, and it provides
the exploitation ability of the algorithm. Also, when |Aj| is
greater than 1, it provides the exploration ability of the GWO.

III. DAMAGE DETECTION METHOD

The free vibration problem for a structure with N degrees of
freedoms (DOFs) can be expressed as:

(K-Mo)e, =0,i=12,.,N (12)

where K and M are the stiffness and mass matrices,
respectively. i and @; are the natural frequency and the mode
shape vector of the ith mode, respectively. If superscripts u
and d are utilized for undamaged and damaged states, (12) can
be rewritten for undamaged and damaged structures:

(K“ -M* (o )Z)qﬁ —0,i=12,.,N (13

(K“ -M¢ (o )Z)qf: -0,i=12,.,N (13b)

As mentioned at Section I, damage is defined as some
changes in the physical properties of the structures. So, K and
M¢ can be defined as below:

K’ =K' + AK*® (14)
M? =M" + AM* (15)

where AK¢ and AM¢ are the changes in stiffness and mass
matrices of the structure as a consequence of damage. Since
the damage has negligible effect on the system’s mass, the
change of mass is ignored (AM%=0). By substituting (14) and
(15) into (13b) and doing some mathematical simplifications,
(16) can be yielded:

AK® ¢! +(K” -M (of )z)q)? -0 (16

or:
(ke =M (of ) Jot =-ak'ei  O7)

From the left side of (17), it can be concluded that because
of damage occurrence, the free vibration equilibrium results in
some non-zero values if this equation is formed via mass and
stiffness matrices of the intact structure, and those modal data
related to the ith mode of the monitored (or damaged)
structure. These non-zero values, which are interpreted as non-
absorbed forces, can be physically justified by considering
presented strategy via (14) and (15) for damage simulation.
The non-absorbed forces are defined as MRF:

R, = (K -M' (of )2)([)? (18a)

or:

R, = -AK‘¢’ (18b)

in which R; is the MRF for the ith mode. Without considering
noise effect, the kth entry of R; will be zero if none of the
elements related to the kth DOF is damaged. On the other
hand, a non-zero value will be assumed for the kth entry of R;
if any elements that are related to this DOF have been
damaged. As a result, by detecting non-zero entries in R;, the
damage locations can be identified. It is worth noting that this
method will work properly with one mode and free-noise
state. However, in practice, more than one mode is usually
needed considering noise effects. It is possible that some
entries in the modal residual vector will be regarded as non-
zero elements because of measurement or numerical errors.
Hence, a generalized version of the residual force vector
proposed as [20]:

RO={r, r, .. r} (19)

where Iy is obtained from (20):

o= ()% ()< (i) @

in which |ri is the absolute value of the kth entry of R; from
(18), and p is the number of measured frequencies and mode
shapes of the damaged structure. This paper uses generalized
version of the MRF for formulating damage detection problem
as an optimization problem. The objective is minimizing the
cost function which is suggested by means of data-fitting
strategy as:

Cost = HR?J -R¢ H (21)

where RY% is the generalized MRF for the monitored structure
which can be calculated via the measured first p modes’ data
using (18a). Moreover, R% is the generalized MRF for the
numerical model of the damaged structure which is calculated
by the first p modes’ data via (18b). It should be mentioned
that in the numerical model of the damaged structure,
unknown damage severities are considered for all elements as:

KS=(1-x,)K! ,0<x,<I (22)

where K% and K", are stiffness matrices of the nth element in
damaged and undamaged states, respectively; and X, is
unknown damage severity for the nth element. Also, related
modal data for the numerical model may be extracted via
classic modal analysis. In the next step, the GWO algorithm is
employed to find unknown damage severities (i.e. Xns). The
flowchart of GWO algorithm can be depicted as Fig. 3.
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Fig. 3 Flowchart of GWO algorithm

IV. NUMERICAL STUDIES

In order to validate the effectiveness of the proposed
method, it is applied to the first phase of IASC-ASCE
benchmark structure. This is followed by studying a planar
four-story plane frame.

A.IASC-ASCE Benchmark Structure

The benchmark structure is a four-story steel frame, two-
bay by two-bay and quarter-scale model structure, constructed
in the Earthquake Research Laboratory at the University of
British Columbia. The geometry of the benchmark structure is
shown in Fig. 4. Details of the benchmark problem are
described by Johnson et al. [21].

0.9m 0.9m

0.9m

0.9m

/

Fig. 4 Geometry of the IASC-ASCE benchmark structure constructed
in the Earthquake Research Laboratory at the University of British
Columbia

In this study, a FEM of the benchmark structure with 12
DOFs (as a three dimensional shear frame structure with three
DOFs at each floor) is considered. The following two damage
patterns were simulated:

e Damage Pattern 1: All the braces of the first and third
stories are broken,

e Damage Pattern 2: One brace at the first and third stories
is broken.

The mass and horizontal story stiffnesses for healthy and
damaged structure based on each damage pattern are listed in
Table L.

TABLEI
MASS AND HORIZONTAL STIFFNESS OF UNDAMAGED AND DAMAGED 12
DOFS MODEL OF THE BENCHMARK STRUCTURE

Stiffness (MN/m)
Damage pattern
Story DOF Mass (kg) Undamaged 1 2
1 X 3452.4 106.60 58.37 106.60
2 X 2652.4 106.60 106.60 106.60
3 X 2652.4 106.60 58.37 94.54
4 X 1809.9 106.60 106.60 106.60
1 y 3452.4 67.90 19.67 55.84
2 y 2652.4 67.90 67.90 67.90
3 y 2652.4 67.90 19.67 67.90
4 y 1809.9 67.90 67.90 67.90
1 0, 38194 232.00 81.32 213.12
2 0, 2986.1 232.00 232.00 232.00
3 6, 2986.1 232.00 81.32 213.12
4 6, 2056.9 232.00 232.00 232.00
TABLE 1T
INPUT PARAMETERS FOR GWO ALGORITHM
Number of initial population of wolves 30
Upper bound 0
Lower bound 1
Maximum number of iterations 500
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Fig. 5 Convergence curve of GWO for Damage Pattern 2 of
benchmark structure

The damage severity is determined for each damage case by
applying the proposed method. The values of parameters of
the GWO algorithm are listed in Table II. These parameters
were selected based on trial and error, which depend on the
number of variables and the complexity of the cost function.

In Fig. 5, the convergence curve of the GWO algorithm is
shown for Damage Pattern 2. In addition, this figure shows the
search space for the first two unknown parameters in terms of
cost function value.

The results of the damage identification method are
summarized in Table III and IV, for Damage Pattern 1 and
Damage Pattern 2, respectively. Parameter ¢ in these tables
indicates the number of modal data which were utilized for
solving the damage identification problem. Moreover, €
represents the noise levels used in order to contaminate the
natural frequencies. The effects of noise on the natural
frequencies are simulated using random noise as follows [17]:

o =o,(1+eg;) (23)
where wj is the ith natural frequency without noise, wi" is the
ith natural frequency that is polluted by noise. As mentioned
before, e is the noise level, and ¢; is a random value between (-
1) and (1).

TABLEIII
OBTAINED RESULTS (%) FOR THE FIRST DAMAGE PATTERN OF THE BENCHMARK PROBLEM
Estimated
q=3 q=6
Story DOF Actual e=0% e=3% e=5% e=0% e=3% e=5%
1 X 45.24 45.243 43.322 45.699 45.243 46.250 44.195
2 X 0 0.000 0.037 0.030 0 0.013 0.047
3 X 45.24 45.243 43.460 45.658 45.243 46.260 43.767
4 X 0 0.000 0.023 0.023 0 0.061 0.039
1 y 71.03 71.022 71.037 71.071 71.022 71.011 71.064
2 y 0 0.000 0.018 0.050 0 0.024 0.001
3 y 71.03 71.022 71.037 71.045 71.022 70.993 71.025
4 y 0 0.000 0.038 0.018 0 0.036 0.037
1 0, 64.95 64.946 65.098 65.265 64.946 64.990 64.951
2 0, 0 0.000 0.038 0.010 0 0.031 0.025
3 6, 64.95 64.946 65.098 65.109 64.946 64.986 64.978
4 0, 0 0.000 0.013 0.002 0 0.014 0.004
DOF = degrees of freedom; g = number of utilized modal data for damage detection procedure; € = noise level.
TABLE IV
OBTAINED RESULTS (%) FOR THE SECOND DAMAGE PATTERN OF THE BENCHMARK PROBLEM
Estimated
q=3 q=6
Story DOF Actual e=0% e=3% e=5% e=0% e=3% e=5%
1 X 0 0.000 0.003 0.278 0.000 0.233 0.303
2 X 0 0.000 0.011 0.011 0.000 0.144 0.343
3 X 11.31 11.319 11.492 11.508 11.319 11.443 11.722
4 X 0 0.000 0.010 0.492 0.000 0.445 0.491
1 y 17.76 17.767 17.931 18.143 17.767 17.877 18.059
2 y 0 0.000 0.032 0.010 0.000 0.010 0.024
3 y 0 0.000 0.050 0.035 0.000 0.006 0.014
4 y 0 0.000 0.020 0.007 0.000 0.049 0.044
1 0, 8.14 8.145 8.154 8.186 8.145 8.353 8.437
2 0, 0 0.000 0.005 0.032 0.000 0.017 0.018
3 0, 8.14 8.145 8.160 8.178 8.145 0.017 8.380
4 0, 0 0.000 0.047 0.036 0.000 0.017 0.010

DOF = degrees of freedom; g = number of utilized modal data for damage detection procedure; € = noise level.
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It is obvious that localizing of damage in noisy state may be
faced with some uncertainty; however, the results indicate that
the proposed method has outstanding capability of identifying
and quantifying simulated damages in noisy states. For this
example, the structure was considered as a three dimensional
model. In section B, a planar four-story shear frame structure
is utilized for evaluating the performance of the suggested
method.

B. Planar Four-Story Shear Frame

In the second example, the proposed method is employed
for damage localization and quantification in a planar four-
story shear frame. Table V presents the physical properties of
this structure. In this Section, two damage patterns are
considered as listed in Table VI. It is assumed that two
different sets of modal data are available for damage
identification (q=1 and 3). In addition, the optimization
parameters are selected similar to those which utilized in the
previous example (Table II).

The obtained damage detection results are shown in Figs. 6
and 7 for damage patterns I and II, respectively. It is clear that
the presented method has robust capability to detect and
quantify damage extent. The effect of noise existence in the
input data has been considered in the simulated damage
patterns, by means of presented strategy via (23). Based on the
obtained results, it is obvious that the noise effects are
negligible. Therefore, the proposed method can be considered
as a viable method for damage detection.
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TABLE V
PHYSICAL PROPERTIES OF PLANAR FOUR-STORY SHEAR FRAME
Story No. Mass (ton) Stiffness (MN/m)
1,2 80 7.5
3,4 65 7.5
TABLE VI

SIMULATED DAMAGE PATTERNS IN THE PLANAR FOUR-STORY SHEAR FRAME

Damage pattern I Damage pattern 11

Story Damage (%) Story Damage (%)
3 10 1 5
3 10

V.CONCLUSION REMARKS

This paper has presented a novel method for damage
identification in frames by defining a cost function based on
the generalized version of MRF and an optimization
framework. The proposed cost function was solved by GWO
algorithm. The GWO is a novel algorithm inspired by the
particular lifestyle of a pack of grey wolves. The applicability
of the suggested method was investigated by studying
different damage patterns on two numerical examples.
Furthermore, the effects of noise appearance in the input data
and the number of utilized modal data were considered. The
outcomes indicate good performance of the presented
procedure for damage localization and quantification in
frames.

12
10} -ssmmmmmeeemme o

Damage (%)
i,

Story Mumber

Fig. 6 Damage detection results for the first damage pattern of the planar four-story shear frame
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Fig. 7 Damage detection results for the second damage pattern of the planar four-story shear frame
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