
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

530

 

 

  
Abstract—Graph rewriting-based visual model processing is a 

widely used technique for model transformation. Visual model 
transformations often need to follow an algorithm that requires a 
strict control over the execution sequence of the transformation steps. 
Therefore, in Visual Model Processors (VMPs) the execution order 
of the transformation steps is crucial. This paper presents the visual 
control flow support of Visual Modeling and Transformation System 
(VMTS), which facilitates composing complex model 
transformations of simple transformation steps and executing them. 
The VMTS Visual Control Flow Language (VCFL) uses stereotyped 
activity diagrams to specify control flow structures and OCL 
constraints to choose between different control flow branches. This 
paper introduces VCFL, discusses its termination properties and 
provides an algorithm to support the termination analysis of VCFL 
transformations.  
 

Keywords—Control Flow, Metamodel-Based Visual Model 
Transformation, OCL, Termination Properties, UML. 

I. INTRODUCTION 
ISUAL Modeling and Transformation System (VMTS) [1] 
[2] is an n-layer metamodeling environment which 

supports editing models according to their metamodels, and 
allows specifying OCL constraints. Models and 
transformation steps are formalized as directed, labeled 
graphs. VMTS uses a simplified class diagram for its root 
metamodel (“visual vocabulary”). 

Also, VMTS is an UML-based [3] model transformation 
system, which transforms models using graph rewriting 
techniques. Moreover, the tool facilitates the verification of 
the constraints specified in the transformation step during the 
model transformation process. 

Graph rewriting [4] is a powerful technique for graph 
transformation with a formal background. The atoms of the 
graph transformation are rewriting rules, each rewriting rule 
consists of a left-hand side graph (LHS) and a right-hand side 
graph (RHS). Applying a graph rewriting rule means finding 
an isomorphic occurrence (match) of LHS in the graph to 
which the rule is applied (host graph), and replacing this 
subgraph with RHS. Replacing means removing the elements 
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that are in LHS but not in RHS, and gluing the elements that 
are in RHS but not in LHS.  

Model transformation means converting an input model 
available at the beginning of the transformation process to an 
output model. Several widely used approaches to model 
transformation uses graph rewriting as the underlying 
transformation technique. Previous work [1] has introduced an 
approach – metamodel-based rewriting rules –, where the left-
hand side (LHS) and right-hand side (RHS) graphs of the 
transformation steps are built from metamodel elements. This 
means that an instantiation of LHS must be found in the host 
graph instead of the subgraph isomorphic to LHS. This 
metamodel-based approach facilitates to assign OCL 
constraints to pattern rule nodes (PRNs) – nodes of the 
rewriting rules. 

The Object Constraint Language (OCL) [5] is a formal 
language for the analysis and design of software systems. It is 
a subset of the UML standard [3] that allows software 
developers to write constraints and queries over object 
models.  

The motivation of the work presented in this paper is to 
support the control flow in visual model transformation 
systems and to define the conditions exactly which guarantee 
that if a transformation fulfills them it terminates or not. An 
algorithm – VCFL Termination Algorithm (VTA) – is 
developed to support the termination analysis of VCFL 
transformations. The VTA is an offline algorithm, as an input 
it uses only the control flow model to make the decision. This 
means that the decision is independent from any host model. 

II. THE VMTS VISUAL CONTROL FLOW LANGUAGE 
One of the most important capabilities of a control flow 

language is the possibility to express a transformation as an 
ordered sequence of the transformation steps. Classical graph 
grammars apply any production that is feasible. This 
technique is appropriate for generating and matching 
languages but model-to-model transformations often need to 
follow an algorithm that requires a more strict control over the 
execution sequence of the steps, with the additional benefit of 
making the implementation more efficient.  

The VMTS approach is a visual approach and it also uses 
graphical notation for control flow: Stereotyped Activity 
Diagram, which is a technique to describe procedural logic, 
business process, and work flow. In many ways, it plays a role 
similar to flowcharts, but the principal difference between it 
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and flowchart notation is that activity diagrams support 
parallel behavior [6].  

In Fig. 1 the control flow model of the breadth-first search 
(BFS) algorithm is depicted which is a tree search algorithm 
used for traversing or searching a tree, tree structure, or graph. 
Intuitively, one starts at the root (start) node and explore all 
the neighboring nodes. Then for each of those nearest nodes, 
explore their unexplored neighbor nodes, and so on until it 
visits all nodes or finds the goal. In the current case our aim is 
to visit all the nodes and sign them, this means that there is no 
searched node.  

The pseudo code of the algorithm is as follows. 
 

BREADTHFIRSTSEARCH (Graph G, Node startNode) 
  1  SETVISITED (startNode) 
  2  ENQUEUE (queue, startNode) 
  3  while (queue in not empty) 
  4      node = DEQUEUE (queue) 
  5      foreach neighbor in GETNEIGHBORS (node) 
  6          if NOTVISITED (neighbor) 
  7              SETVISITED (neighbor) 
  8              ENQUEUE (queue, neighbor) 
  9          end if 
10     end foreach  
11  end while 
 

 
 

Fig. 1 The VCFL control flow model of the breadth-first search 
algorithm 

 
In Fig. 2 the metamodel of the VMTS control flow is 

depicted, which describes that the root element is the 
Transformation. A Transformation can contain optional 
number of FlowEdgeTarget type object, this is denoted by 
stereotype <<SystemContainment>>. The FlowEdgeTarget is 
an abstract type which could be Transaction, StartRule, Rule, 
HistoryRule, EndRule, FlowFinal, Decision, Merge, Fork or 
Join. FlowEdgeTargets can be connected to each other using 
directed edges (FlowEdge). Types Transaction and Rule can 
contain another FlowEdgeTargets.  

Moreover, the type Rule can contain RuleNodes. This is 
presented in the metamodel of the VMTS Rule Editor (Fig. 3). 
RuleNode is also an abstract type that can be LHSNode or 
RHSNode. A type RuleNode can contain or can be connected 
to another RuleNodes.  

In the case study an arbitrary vertex from G to start the tree 
from is given as a pivot node (startNode). A pivot node is an 
input parameter of the control flow specified by the user. In 
the graph each vertex has a property (IsVisited) which 
determines if a vertex has already been visited by the 
algorithm. The transformation steps of the BFS 
(SelectNeighbors and SetVisited) are presented in Fig. 4. 

The Internal Causality is a relation between LHS and RHS 
elements (Fig. 3), it makes possible to connect an LHS 
element to an RHS element and to assign an operation to this 
connection. In Fig. 4 internal causalities are denoted as dashed 
lines. An internal causality describes what we have to do 
during applying a transformation step (element creation, 
element deletion, attribute modification). The create and the 
modify operations are accomplished by XSL scripts. The XSL 
scripts can access the attributes of the objects matched to LHS 
elements, and they produce a set of attributes for RHS element 
to which the causality point. 

 

 
 

Fig. 2 The metamodel of the VMTS Visual Control Flow 
Language 

 

 
 

Fig. 3 The metamodel of the VMTS Rule Editor 
 

The first transformation step selects the neighbors of a tree 
vertex which has at least one not visited neighbor (see 1..* 
multiplicity in LHS of the step). The not visited property is 
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validated by the constraint Cosnt_Vis propagated to LHS 
vertex NeghborNode. 

 
context Node inv Const_Vis:  
not IsVisited 
 

While the graph contains at least one vertex which is not 
visited, then the step SelectNeighbors matches it and the step 
finishes successfully. The decision object based on the success 
of the first step selects the path to step SetVisited, otherwise to 
the rule end. 

The second step is passed the selected vertices as external 
causalities and using an XSL script modifies their IsVisited 
property to true (other, more technical, transformation steps 
can also be defined [2] [7]). As result of the transformation all 
the graph nodes will be visited. The presented transformation 
does not modify the topology of the model but updates the 
attribute values. 

 

 
 

Fig. 4 Transformation steps SelectNeighbors and SetVisited 
 

VCFL is a visual language for controlled graph rewriting 
and transformation, which supports the following constructs: 
sequencing transformation steps, branching with OCL 
constraints, hierarchical steps, parallel executions of the steps 
and iteration. 

A. Sequencing Transformation Steps 
Sequencing transformation steps results a transformation 

which contains the steps in an ordered sequence (S0, S1… Sn-1). 
Assume the case that the input model of the step i (Si) is the 
model Mi and the result of the Si is the Mi+1 (where 0 ≤  i ≤ n-
1). In this case the input model of the step i+1 (Si+1) is the 
model Mi+1. This means that during the execution of the step 
sequence, each step works on the result of the previous step. 
Obviously, except for the first step, which works on the input 
model. The result of the whole transformation is the result of 
the last step (Sn). 

The interface of the transformation steps allows the output 
of one step to be the input of another step, in a dataflow-like 
manner. This is used to sequence expression execution. In 
VCFL this construction is referred to as external causality. An 
external causality creates a linkage between a node contained 
by RHS of the step i and a node contained by LHS of the step 
i+1. This feature accelerates the matching and reduces the 
complexity, because the step i provides partial match to the 
step i+1. In our example we use external causalities to pass 
the selected vertices from step SelectNeighbors to step 

SetVisited. 

B. Branching with OCL Constraints 
Often, the transformation we would like to apply depends 

on a condition. Therefore, a branching construct is required. 
In VCFL OCL constraints assigned to the decision elements 
can choose between the paths of optional numbers, based on 
the properties of the actual host model and the success of the 
last transformation step (SystemLastRuleSucceed). If the last 
transformation step fails, then VCFL could use the values of 
the system variables SystemLHSFailure and 
SystemRHSFailure for the decision. These variables represent 
whether a failure has occurred, because there was no proper 
match (LHS failure: structurally not suitable host model or 
there is at least one constraint not satisfied in LHS of the 
transformation step), or the transformation result was not 
sufficient (RHS failure: there was at least one constraint not 
satisfied in RHS of the transformation step). 

In VCFL, each branch has an exact OCL guard condition 
which is evaluated by the execution engine during the 
execution.  

When a step is connected to more than one follow-up steps, 
then at most one of the branch conditions is allowed to be 
true. This means that the conditions must not have any 
common part. This restriction ensures that the control flow 
execution of the VCFL is deterministic. 

We applied VCFL in projects such as generating user 
interface from resource model and user interface handler code 
from statechart model for mobile platform [7]. These 
applications required control flow support, and all of them can 
be solved without non-determinism. However, VCFL provides 
an interface for non-deterministic control flow as well. 

C. Hierarchical Steps 
The VCFL supports hierarchical specification of the 

transformation steps. High-level steps can be created by 
composing a sequence of primitive steps and can be viewed as 
separate transformation modules. 

A high-level step can contain several simple steps, hiding 
the details which could be unimportant on a specific 
abstraction level and represents the contained steps as 
coherent units (Fig. 5). 

 

 
 

Fig. 5 A Hierarchical step 
 
Often, the OCL constraints assigned to a decision object do 

not cover all possible cases. It could result that in certain cases 
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none of the branch paths is selected, in this case the parent 
step of the actual transformation handles the control flow: 
breaks the execution of the transformation on the actual level 
and continues the transformation on the parent level. 

D. Iteration (Tail Recursion) and Parallel Executions of 
the Steps 
The iteration is achieved with the help of the decision 

objects and the OCL constraints contained by them. A 
decision object evaluates the assigned constraints, and based 
on the results selects a flow edge which could be a follow-up 
or a backward edge as well (Fig. 1).    

Recursion could be solved with the combination of the 
iteration and external causalities. A high-level step can call 
itself, where external causalities represent the actual 
parameters of the recursive call. 

Flattening the state machine is an example when we have to 
apply a recursive algorithm that first calls flattening on its 
children before flattening itself. 

The parallel execution of the independent transformation 
steps is supported by the Fork and Join elements. 

 
In VCFL, if a transformation step fails and the next element 

in the control flow is a decision object then it could provide 
the next branch based on the OCL statements and the value of 
the SystemLastRuleSucceed variable. If no decisions can be 
found, the control is transferred to the parent state, if there is 
no parent state, the transformation terminates with error. 

E. VCFL Algorithms 
VCFL provides algorithms to check whether a 

transformation contains isolated or illegal transformation steps 
and to validate that the OCL constraints assigned to a decision 
object are disjoint. 

The VCFL Isolated Transformation Steps algorithm checks 
whether the user-specified control flow contains isolated 
transformation steps. This means that starting from the start 
step we can not reach these steps. The algorithm checks the 
constraints contained by the decision objects whether all of 
the branches related to the actual decision object could be 
selected by the constraints. If a branch is found that can never 
be selected, the flow edge related to this branch is not taken 
into consideration by the algorithm. This means that not only 
the structure of the control flow model but the constraints 
contained by the decision objects are also taken into account. 

In first step, checking the decision objects, the algorithm 
signs the invalid flow edges, and in second identifies the 
isolated steps using a modified breadth-first search. 
Transformation steps which are not found by the search are 
the isolated steps. The pseudo code of the algorithm is as 
follows. 

 
VCFLISOLATEDSTEPS (Transformation T) : NodeCollection 
  1  foreach decision in T 
  2      foreach constraint in decision 
  3          if NOTSUITABLECONSTRAINT (constraint) 
  4              SIGNFLOWEDGEBYCONSTRAINT (constraint) 
  5          end if 

  6      end foreach  
  7  end foreach  
  8  SETVISITED (startNode of T) 
  9  ENQUEUE (queue, startNode of T) 
10  while (queue in not empty) 
11      node = DEQUEUE (queue) 
12      foreach neighbor in GETNEIGHBORS (node) 
13          if NOTVISITED (neighbor) 
14              SETVISITED (neighbor) 
15              ENQUEUE (queue, neighbor) 
16          end if 
17     end foreach  
18  end while 
19  return GETNOTSIGNEDNODES (T) 
 

The VCFL Illegal Transformation Steps algorithm detects 
steps in control flow models from which EndRules and 
FlowFinals are unreachable. The algorithm is similar to the 
VCFL Isolated Transformation Steps algorithm with the 
following difference. The modified breadth-first search is 
started from EndRules and FlowFinals, and uses the edges in 
reverse direction as they are in the control flow model. 
Transformation steps which are not found by the algorithm are 
the steps from which end steps are unreachable. 

The VCFL Disjoint OCL Constraint algorithm validates 
whether the OCL constraints assigned to a decision object are 
disjoint. This algorithm ensures that at the same time 
maximum one of the branch conditions of a decision is 
allowed to be true. Using this algorithm it is guaranteed that 
the control flow execution of the VCFL is deterministic. The 
algorithm utilizes that the OCL statements are boolean 
expressions. It does an AND operation for each couple of the 
OCL statements and if the result is false in each cases then 
only one of the OCL statement could be true at the same time. 
The pseudo code of the algorithm is as follows. 
 
VCFLDISJOINTCONSTRAINT (VCFLDecision D) : ConstraintPairList 
  1  foreach constraintA in D 
  2      foreach constraintB in D 
  3          if constraintA  != constraintB and DOANDONCONSTRAINTS 
(constraintA, constraintB) 
  4              ADDTOLIST (constraintPairList, constraintA, constraintB) 
  5          end if 
  6      end foreach  
  7  end foreach  
  8  return constraintPairList 
 

The most complex and maybe the most important VCFL 
algorithm is the VCFL Termination algorithm which is 
discussed in next section. 

III. TERMINATION PROPERTIES 
The termination properties of a transformation are really 

important for model transformation. We want to investigate 
under which conditions an arbitrary VCFL transformation can 
satisfy termination criteria. The difference between a 
transformation and a finite sequence of steps is that a finite 
sequence of steps always terminates, but a transformation, can 
contain infinite number of steps. Our aim is that VCFL 
transformations terminate, therefore an algorithm (VCFL 
Termination algorithm) has been developed to support the 
early detection of the infinite loop and the validation of the 
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control flow that from each step can reach an end step. 
In the VCFL a transformation step has two specific 

attributes: Exhaustive and MultipleMatch. Recall that applying 
a model transformation step means finding a match of LHS in 
the host model and replacing this subgraph with RHS. An 
exhaustive transformation step is executed continuously as 
long as LHS of the step could be matched to the host model. 
The MultipleMatch attribute of a step allows that the matching 
process finds not only one but all occurrence of LHS in the 
host model, and the replacing is executed on all the found 
places. 

Definition (VCFL Transformation). A VCFL transformation 
is a stereotyped UML activity diagram. A VCFL 
transformation T defines a strict order of the contained 
transformation steps TSTEPS...SS,S 1-n10 ∈∈ , where S0 is 
the start step of the T. Transformation T contains OCL 
constraints, assigned to decision objects to choose between 
different control flow branches and external causalities 
between transformation steps to support parameter passing. 

Definition (Termination of VCFL transformations). A 
VCFL transformation T for a finite input model G0 terminates, 
if there is no infinite derivation sequence from G0 via 
transformation steps TSTEPS ∈ , where starting from S0 

(start step of the T) steps STEPS  are applied as it is defined 
by the transformation T. 

 
For non-exhaustive and also for exhaustive transformation 

steps, the MultipleMatch attribute of the steps does not modify 
the termination property of the VCFL control flows for 
optional finite input model G0. 

The termination checker algorithm has to differentiate 
between certain cases. It needs to take into account whether 
the VCFL transformation contains loops with decision object 
or exhaustive transformation steps. 

A. VCFL Control Flows with Non-Exhaustive 
Transformation Steps 
Proposition. A VCFL transformation T, which contains 

only non-exhaustive transformation steps )( 1-n10 ...SS,S and 
does not contain loops for an optional finite input model G0 
always terminates. 

Proof. The transformation T contains finite number of 
transformation steps )( ∞<∧= nSTEPS#n . 1-ni 0 |i ≤≤∀  

STEPSSi ∈  is executed at the most once because it is a non-
exhaustive step. 

If the multiple match attribute of a step STEPSSi ∈  is 
true, all occurrence of the Si

LHS (LHS of the step Si) is 
searched and the replacement is executed for all found 
matches, but step Si is executed only once. The number of the 
found matches (mi) is also finite because of the finite input 
model G0. 1-ni 0 |m  n i ≤≤∞<∧∞< , therefore 

∞<= ∑
−

=

1n

0i
imk . The number of the steps executed by 

transformation T is finite and T terminates.  

B. VCFL Control Flows with Exhaustive Transformation 
Steps 
Definition ( ⊆ ). nm GG ⊆  if and only if Gn has a 

structurally isomorphic subgraph GI to Gm, and in the GI and 
in the Gm the corresponding nodes and edges have the same 
metatype, attributes, attribute values and OCL constraints. 

An exhaustively applied step using external causalities 
gives itself input model and parameters. For an exhaustive 
step the termination algorithm has to take into consideration 
the attribute modifications and the generated and deleted 
elements. An exhaustive transformation step must contain 
either attribute modification or element deletion to prevent 
that the same match be found again and again by the matching 
process. A solution can be also if there is a create type 
causality and an OCL constraint which holds before the 
creation and become false afterwards, therefore it prevents to 
find the same match again on the same place. For example an 
OCL constraint can validate the existence of a neighbor node. 
In Fig. 6b the presented transformation step connects a 
married and unemployed man to a company. The unemployed 
property is checked by the const_employer constraint. After 
the execution of the step, the matching process does not match 
the same pattern again in the next iteration, because of the not 
satisfied constraint. Thus it forbids the repeated application of 
the same step on the same place again. 

 
Definition (Create Termination Step – CT step). A create 

termination step S has only create type internal causalities, it 
contains an optional OCL constraint C1 in SLHS, which must to 
stand for the host models matched to the SLHS and as a result of 
the step execution the condition required by the constraint C1 
becomes false. 

Definition (Create Termination Step with constraint C2 – 
CT step with C2). A create termination step S has only create 
type internal causalities, it contains the OCL constraint C2 in 
SLHS, which must to stand for the host models matched to the 
SLHS and as a result of the step execution the condition 
required by the constraint C2 becomes false.  

The difference between a CT step and a CT step with C2 is 
that in first case an arbitrary one of LHS constraints has to 
fulfill the condition, while in the second case the given 
constraint (C2) has to comply it. 

Obviously, this transformation step property is important 
only for exhaustive steps or steps which are in loops, because 
the creation can prevent to find the same match again on the 
same place and it helps to avoid infinite loops. 

Following propositions contain statements about 
termination properties of the transformations with exhaustive 
transformation steps. 

 
Proposition. Let the transformation step Si be an exhaustive 

step. If RHS
i

LHS
i SS ⊆ and the step Si has a match M on an 

optional input model Gi the step Si never terminates for the 
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input model Gi. 
Proof. The step Si has a match M on the input model Gi it 

generates its output (Gi
1) with the Si

RHS. RHS
i

LHS
i SS ⊆ , 

therefore the Si
LHS has match in Gi

1. The step Si is an 
exhaustive step and it always has match on the result model of 
the previous iteration, therefore the Si never terminates for the 
input model Gi. 

 
 

Fig. 6 An example metamodel and a Create Termination Step 
 

Proposition. Let the transformation step Si be an exhaustive 
step which does not contain internal causalities of deletion and 
modification type, and Si is not a CT step. Assume that T is a 
transformation and TSi ∈ , the input model of the 
transformation T is the model G0, and the input model of the 
step Si is the model Gi. If the Si

LHS has a match M on model Gi, 
the transformation T never terminates for the input model G0. 

Proof. The step Si is an exhaustive transformation step, it is 
executed as long as the Si

LHS has match on model Gi. The Si 
has a match M, which is not modified by the step – there is no 
deletion, attribute modification, and Si is not a CT step –, 
therefore the matching process finds the match M in each 
iteration. The step Si never terminates for the input model Gi, 
and T never terminates for the input model G0. 

C. Combining VCFL Transformation Steps 
The intention of the transformation step combination is to 

create a single step SC from an optional number of 
transformation steps k1jj ...SS,S + . The combined step can 

equivalently replace the original steps, because it produces the 
same result. In the termination analysis we can use the 
combined step instead of the original transformation steps. It 
facilitates to replace the steps contained by a VCFL loop with 
their combined transformation step. The result of the 

replacement is similar to an exhaustive transformation step, 
with the difference that a combined step may have a decision 
object. 

The combination algorithm takes not only the structure of 
the steps into consideration but also their internal- and 
external causalities and the metatypes of the nodes and edges 
as well. The algorithm works based on the double pushout 
(DPO) approach concurrency theorem [8] [9]. 

An example for transformation step combination is depicted 
in Fig. 7.  

 

 
 

Fig. 7 An example for transformation step combination 
 

D. Termination Properties of VCFL Loops 
A loop contains n transformation steps (where n>0) and a 

decision object. A decision object evaluates the assigned 
constraints on the actual host model and based on the results 
selects a flow edge which could be a follow-up or a backward 
edge as well. 

The main difference between a loop with only non-
exhaustive steps and an exhaustive step is the exit condition. 
A transformation leaves an exhaustive step if there is no more 
match, while in the case of a loop the decision object 
determines about the exit. If a loop consists of non-exhaustive 
steps, the step combination algorithm combines them, and the 
decision about the termination is made based on the combined 
step and the OCL constraints of the decision object. 

An exhaustive step is itself a specific loop. Therefore, if a 
loop contains exhaustive steps then it is a loop of loops. The 
algorithm examines separately the exhaustive steps and if each 
of them terminates then analyses the whole loop. 

 
Proposition. Assume that the transformation T contains a 

loop L, let SC be the combination of the non-exhaustive 
transformation steps L...SS,S k1jj ∈+ . The input model of 

the transformation T is the model G0, and the input model of 
the step SC is the model GC. If RHS

C
LHS
C SS ⊆  and the step SC 

has a match M on input model GC the transformation T never 
terminates for the input model G0. 
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Proof. The transformation step SC has a match M on input 
model GC it generates its output model 1

C
RHS
C

1
C GSG ⊆| . 

RHS
C

LHS
C SS ⊆ , therefore the SC

LHS has match on model 1
CG . 

The step SC represents a loop and it always has match on the 
result model of the previous iteration, therefore the SC never 
terminates for the input model GC and the transformation T 
never terminates for the input model G0. 

E. VCFL Termination Algorithm 
For an optional VCFL transformation T the termination 

algorithm validates the following. 
1. If transformation T does not contain loop or exhaustive 

transformation step then T terminates. 
2. If TS ∈  is an exhaustive transformation step and 

RHSLHS SS ⊆  the transformation T does not 

terminate. 
3. If TS ∈  is an exhaustive transformation step, S does 

not contain delete and modify type internal causalities 
and S is not a CT step then the transformation T does 
not terminate. 

4. If TL ∈  is a loop and SC is the combination of the 
transformation steps L...SS,S k1hh ∈+  and 

RHS
C

LHS
C SS ⊆  the transformation T does not 

terminate. 
 
The pseudo code of the VCFL termination algorithm is the 

following. 
 
VCFLTERMINATIONALGORITHM(Transformation T): retValue 
  1 if T does not contain loop or exhaustive step then return retValue.true 
  2 foreach Transformation Step S in T 
  3    if S is exhaustive and RHS of the S contains LHS of the S then return 
retValue.false 
  4    if S is exhaustive and S does not contain modify or deletion  and S is not 
an ST step then return retValue.false 
  5 end foreach 
  6 foreach Loop L in T 
  7    combinedStep = COMBINETRANSFORMATIONSTEPS(transformation steps 
of the L) 
  8    if RHS of the combinedStep contains LHS of the combinedStep then 
return retValue.false 
  9 end foreach 
10 return retValue.undecided 

 
If the transformation step contains create type internal 

causality, the algorithm checks whether the host model with 
the newly added elements contains new possible match places. 
The algorithm takes into consideration the structure of the 
pattern, metatypes of the nodes and edges, their attributes and 
attribute values and also the propagated OCL constraints. 

During the combination of steps S1 and S2, the S1
RHS

 and the 
S2

LHS could have more than one matching variation. The 
algorithm checks all the possible variations in point of VCFL 
view (external causalities, metatypes). 

In the case of loops the exit conditions (structure, attribute 
value by modify internal causalities and 
SystemLastRuleSucceed) are also checked by the algorithm. 

VTA is an offline algorithm; the termination in many cases 
depends not only on the VCFL transformation model but also 
on the actual host model. A simple constraint could be itself a 
significant difference between two steps or an attribute value 
between two models. The problem is not trivial. There are 
certain cases when the algorithm can make a sure decision 
based on the VCFL transformation, and there are other cases 
when not. 

F. Summary of the Termination Properties 
Termination of transformations is not always guaranteed. If 

a control flow model contains an exhaustive step that can be 
applied indefinitely to the result models, the transformation 
does not terminate. 

All derivation sequences over transformation steps 
TSTEPS ∈  are terminating if each transformation step 

STEPSS ∈  terminate. Since the non-exhaustive 
termination steps terminate, therefore we can predicate the 
following proposition. 

 
Proposition. A VCFL transformation T terminates if all 

exhaustive transformation step STEPSSE ∈  and loop 

TL∈  terminate. 

IV. RELATED WORK 
Many approaches have been introduced in the field of graph 

grammars and transformations to capture graph domains; for 
instance, the GReAT [10] [11], the PROGRES [12], the 
FUJABA [13] [14], the VIATRA [15], the AToM3 [16] and 
the Attributed Graph Grammar (AGG) [17]. These approaches 
are specific to the particular system, and each of them has 
some features that others do not offer. 

The GReAT framework is a transformation system for 
domain specific languages (DSL) built on metamodeling and 
graph rewriting concepts. The control structure of the GReAT 
allows specifying an initial context for the matching to reduce 
the complexity of the general matching case. The pattern 
matcher returns all the possible matches to avoid the inherent 
non-determinism in the matching process. The attribute 
transformation is specified by a proprietary attribute mapping 
language, whose syntax is close to C. The LHS of the rules 
can contain OCL constraint to refine the pattern. 

PROGRES is a visual programming language in the sense 
that it has a graph-oriented data model and a graphical syntax 
for its most important language constructs. PROGRES 
provides constructs for rule firing and for sequencing the rules 
to form a controllable transformation process. PROGRES 
offers refined control structures; both imperative and 
declarative approaches can be used in either a deterministic or 
a non-deterministic manner. ACID transactions are also 
allowed in the control specifications. 

GReAT and the PROGRES have a test rules construction. 
A test rule is a special expression and it is used to change the 
control flow during execution. A test rule has only LHS. If a 
test rule is successful (the matching was successful), the rule 
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after the test node is executable. 
In FUJABA the combination of activity diagrams and 

collaboration diagrams (story-diagrams) are used to express 
control structures. Story-diagrams are a visual programming 
language that facilitates the specification of complex 
application-specific object structures. Moreover, FUJABA 
extended story-diagrams by statecharts to story-charts. Story-
charts use statecharts and activity diagrams to define complex 
control flows and collaboration diagrams to specify the entry, 
exit, do, and transition actions that deal with complex object-
structures [14]. 

VIATRA (Visual Automated Transformations) is a model 
transformation framework developed mainly for the formal 
dependability analysis of UML models. In VIATRA, 
metamodeling is conceived specially: the instantiation is based 
on mathematical formalisms and called Visual Precise 
Metamodeling. The attribute transformation is performed by 
abstract state machine statements, and there is built-in support 
for attributes of basic Java types. The model constraints can 
be expressed by graph patterns with arbitrary levels of 
negation. The rule constraints are also specified by graph 
patterns. VIATRA uses abstract state machines (ASM) to 
define the control flow of the system. 

The transformation and simulation tool AToM3 uses model 
transformation to simulation traces in order to simulate the 
operations. The rule constraints can contain generalized 
negative application conditions and can be pre- and 
postconditions to events. Constraints can be both semantic and 
graphical constraints. Similarly to AGG, the control flow 
consists of layers; the rules are sequenced by priority numbers 
within the layers. A rule is executed only once, but in case of 
non-overlapping matches, the rules are applied to all the 
matches. 

AGG is a visual tool environment consisting of editors, 
interpreter and debugger for attributed graph transformation; 
attribute computation by Java; supports a hybrid programming 
style based on graph transformation and Java. In AGG 
termination criteria are implemented for Layered Graph 
Transformation Systems (LGTS). The criteria they propose 
are based on assigning a layer to each rule, node and edge 
type. For termination, they define layered graph grammars 
with deletion and non-deletion layers. Termination criteria are 
expressed by deletion and non-deletion layer conditions. The 
layers fix the order how rules are applied. The interpretation 
process first has to apply all rules of layer 0 as long as 
possible, and then all rules of layer 1, etc. Rule layers allow 
specifying a simple control flow graph transformation. Once 
the highest layer has been finished the transformation stops, 
unless the option “loop over layers” is turned on.  

Table 1 gives a comparison of control flow, constraint, and 
attribute transformation support of the presented approaches. 

Contextual layered graph grammars (CLGGs) have been 
used in parsing, as they provide a natural way to steer the 
parsing process, thereby reducing its non-determinism and its 
complexity. A contextual layered graph grammar is a 
construct CLGG = (S, T, P, cl, dl, rl), where S is a labeled 

graph, called the initial graph, T is a set of node and edge 
types of labels and P is a set of rules. The layering functions 
cl, dl, and rl assign a creation and a deletion layer to elements 
of T and a unique layer to each rule p ∈  P, respectively. In 
[18], the following concrete termination criterion for CLGGs 
was discussed. 

 
TABLE I 

COMPARISON TABLE OF CONTROL FLOW, CONSTRAINTS AND ATTRIBUTE 
TRANSFORMATION SUPPORT FOR MODEL TRANSFORMATION TOOLS 

 Control Flow Constraints 
in the rule 

Attribute 
transformation 

VMTS Stereotyped activity 
diagrams 

Instantiation 
+ OCL 

XSL 

GReAT Deterministic, non-
deterministic, 
recursion 

OCL C-based attribute 
mapping language 

AGG Layers (exhaustive 
or once, loop) 

JAVA, NAC JAVA 

PROGRES Imperative and 
declarative, 
transactions 

Attribute 
constraints, 
cardinality, 
negative edge 

Built-in or host 
programming 
language (esp. C) 

VIATRA ASM Graph pattern ASM statements 
(built in support 
for basic JAVA 
types)   

AToM3 Layers with 
priorities, 
sequencing by 
priority. Parallel 
execution of non-
overlapping 
matches.  

Generalized 
NAC, 
application 
conditions. 

Python 

FUJABA Story diagrams Story 
diagrams, 
JAVA 

Story diagrams 

 
The layering condition above guarantees the termination of 

the process, by producing a parsing derivation, or proving that 
the sentence cannot be parsed. The existence of the layering 
function rl allows the partitioning of the set P into a collection 
of sets (P1, P2,…Pk). Rules in a set Pi can be used only after 
rules from the set Pi−1 have been used and are no longer 
applicable. Moreover, after using a rule from Pj , j ≥ i, no rule 
from Pi−1 can be applied any longer. 

This also provides a generalization to the following 
approach. In [19] a contribution towards solving the 
termination problem for rewriting systems with external 
control mechanisms is given. It extends the concept of 
transformation unit to high-level replacement systems. For 
high-level replacement units, several abstract properties based 
on termination criteria are stated and proved. However, 
terminating rules do not always satisfy the measure function 
required by this approach, since attribute transformations and 
other constraint can also influence the termination properties 
of a rule. 

The layering approach is not applicable for VCFL 
transformations. In CLGGs, there is no strict control flow, 
rules are created without any fixed order and assigned to 
different layers. In VCFL, we have a fixed control flow 
specified by stereotyped activity diagram. Therefore, we have 
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to examine the termination conditions of fixed control flows 
with given transformation steps and step structures (without 
any modification of the order of the steps). 

V. CONCLUSION 
This paper has provided a control flow technique for model 

transformations based on graph rewriting. The transformations 
are represented in the form of explicitly sequenced 
transformation steps. We have shown the fundamental 
concepts of the VCFL approach. 

As it was presented, a control structure language needs a 
sequence as well as a conditional branch mechanism, 
hierarchy, parallel executions and iteration constructs. VCFL 
has all these control structures in a deterministic 
implementation. 

Termination is an important issue for model 
transformations. Since model transformations can become 
very complex, we consider not only the application of single 
transformation steps, but also transformations where step 
applications are restricted according to a strict control flow. 

In this work, we discussed the properties of the VMTS 
Visual Control Flow Language. We stated and proved several 
termination criteria for transformation steps, loops and 
transformations. An algorithm to validate the termination is 
also provided. 

The introduced approach can be generalized to other 
control flow languages which facilitate to assign constraints to 
transformation steps and supports constraint evaluation. The 
presented concepts and algorithms can be reused with minor, 
approach related modifications. 

VCFL has successfully been applied in industrial projects, 
like generating user interface from resource model and user 
interface handler code from statechart model for Symbian [7] 
and .NET Compact Framework mobile platform [20]. 
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