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Abstract—A bond graph model of a two degrees of freedom 

PUMA is described. System inversion gives the system input 
required to generate a given system output. In order to get the system 
inversion of the PUMA manipulator, a linearization of the nonlinear 
bond graph is obtained. Hence, the bicausality of the linearized bond 
graph of the PUMA manipulator is applied. Thus, the bicausal bond 
graph provides a systematic way of generating the equations of the 
system inversion. Simulation results to verify the calculated input for 
a given output are shown. 
 

Keywords—Bond graph, system inversion, bicausality, PUMA 
manipulator 

I. INTRODUCTION 

OBOTICS is a field of modern technology that crosses 
traditional engineering boundaries. Understanding the 

complexity of robots and their applications requires knowledge 
of electrical engineering, mechanical engineering, industrial 
engineering, computer science and mathematics [1]. 

One well-known approach designed to deal with multi-
domain engineering problems is the bond graph method 
elucidated by Henry Paynter. The application of Paynter´s 
bond graph method began with the works of Karnopp, 
Rosenberg, Thoma and others. Over the last 40 years there 
have been numerous publications dealing with the theory and 
application of bond graphs in different branches of engineering 
[2]. 

The bond graph technics are useful and important tools for 
physical system modelling [3]. They are based on power 
representation and enables the description of the system 
through energy storage and dissipative elements [4], [5]. 

The robotics modelling using bond graphs has extensively 
been developed. In [3] proposes a general methodology to 
model mechanical systems with bond graphs. In [6] presents 
an interesting procedure to construct bond graphs of two and 
three dimensional robotic manipulators. The three-axis 
platform simulation using bond graph models and Lagrange´s 
equations is compared in [7]. 

Also, several papers have been published to construct bond 
graphs from the manipulators. In [8] gives a library of three-
dimensional joints using bond graph to obtain the multi-body 
system. Finally, [9] shows the multi-body approach in bond 
graph to write the algebraic constraint equations can be used to 
describe mechanical systems. 
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System inversion is of significant importance in systems and 

control theory as it appears explicitly or implicitly in a variety 
of problems such as, for example, decoupling, model 
matching, perfect output control or parameters sizing [10]. 

Classical inversion methods based on mathematical models 
tend to obscure the structural features and the physical 
interpretation of inverse systems. In recent years, bond graph 
model based inversion has attracted a lot of interest due to the 
bicausality concept that provides a convenient way to 
represent inverse systems [11]. 

The main advantage for using bond graphs for such study is 
the graphical representation of the physical structure of the 
system as well as the possible automated derivation of various 
equations (or mathematical) models that can be associated with 
a specific problem of interest through the causality assignment. 
This bond graph approach therefore enables a physical 
interpretation of inverse dynamics based on structural 
considerations [12]. 

Section II describes the basic elements of the bond graph 
modelling. Section III summarizes the concept of the 
bicausality applied to bond graphs. Bicausality used to get 
systems inversion is proposed in section IV. The given 
methodology to a two degrees of freedom PUMA manipulator 
modelled by a linearized bond graph to determine the control 
inputs for proposed outputs via bicausality is applied in section 
V. Finally, our conclusions are given in section VI. 

II.  MODELING IN BOND GRAPH 

The symbolic form of a Bond Graph in Integral causality 
assignment (BGI) of a system is shown in Fig. 1 [4], [5]. 

 

 
Fig. 1 Key vectors of a BGI 

 
In Fig. 1, ( ),e fMS MS , (C,I) and (R) denote the source, the 

energy storage and the energy dissipation fields, and 
(0,1,TF,GY) the junction structure with transformers, MTF, 
and gyrators, MGY. 
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The state ( ) nx t ∈ℜ  and ( ) m
dx t ∈ℜ  are composed of 

energy variables ( )p t  and ( )q t  associated with I  and C  

elements in integral and derivative causality, respectively 

( ) pu t ∈ℜ  denotes the plant input, ( ) nz t ∈ℜ  the co-energy 

vector, ( ) m
dz t ∈ℜ  the derivative causality and ( ) r

inD t ∈ℜ  

and ( ) r
outD t ∈ℜ  are a mixture of ( )e t  and ( )f t  showing the 

energy exchanges between the dissipation field and the 
junction structure. 

The relations of the storage and dissipation field are, 
 ( ) ( )z t Fx t=  (1) 

 ( ) ( )d d dz t F x t=  (2) 

 ( ) ( )out inD t LD t=  (3) 

The relations of the junction structure are, 

 
( )
( )

( )
( )

( )
( )

( )
( )

11 12 13 14

21 22 23

31 32 33

41

0

0

0 0 0

out
in

dd

z tS S S Sx t
D tS S SD t
u tS S Sy t

Sz t x t

•

•

    
    
    =     
    
       

 (4) 

The entries of S  take values inside the set { }0, 1, ,t gK K± ± ±  

where 
tK  and 

gK  are transformer and gyrator modules; 11S  

and 
22S  are square skew-symmetric matrices and 

12S  and 21S  

are matrices each other negative transpose. The state equation 
is [4], [5], 

 ( ) ( ) ( ) ( ) ( )x t A x x t B x u t
•

= +  (5) 

 ( ) ( ) ( ) ( ) ( )y t C x x t D x u t= +  (6) 

where 

 ( ) 1 31
11 12 21 14 d

dS
EA x S S MS S F F

dt
− = + + 

 
 (7) 

 ( ) 13 12 23EB x S S MS= +  (8) 

 ( ) ( )31 32 21C x S S MS F= +  (9) 

 ( ) 33 32 23D x S S MS= +  (10) 

being 
 ( ) 1

22M I LS L
−= −  (11) 

 1
14 31dE I S F S F−= −  (12) 

Next section describes bicausal bond graphs to analyze 
system inversion. 

III.  THE CONCEPT OF THE BICAUSAL BOND GRAPH 

The acausal bond graph model of a dynamic system 
represents the energy transfer and the constraint equations in 
the system independently of assignment statements that can be 
derived from those equations. 

The causality expresses in which way constitutive relations 
of elements and relations among variables of the junction 
structure should be written for model analysis proposes or 
derivation of a simulation model. The causal stroke used in 
conventional bond graphs basically supposes that at each 
bond, if the effort (resp. flow) is imposed at the other end of 

the bond or in other words a variable imposed as input implies 
its conjugate variable as output. 

From a computational point of view, the above so-called 
`unicausal' stroke does not determine all forms of assignment 
statements that can be derived from the constraint equations of 
a bond. 

The concept of `bicausal' bond introduced by Gwathrop [11] 
overcomes these restrictions and then enlarges the possibilities 
of computation models that can be derived from a bond graph. 
The causal stroke in bicausal bond is seen as half strokes each 
associated to an effort and a flow variable that can be imposed 
independently at each end of the bond. Causal half strokes 
indicate the fixed or known variables of the bond and so 
determine the right hand side of the assignments form. 
For an illustration, Table 1 [12] presents assignment 
statements associated to unicausal and bicausal strokes for a 
bond for which the known acausal constraint equations are: 

1 2 0e e− = ; 
1 2 0f f− = . 

 
TABLE I 

CAUSALITY AND ASSIGNMENT STATEMENTS FOR A BOND 

 
 

TABLE II 
SOURCE-SENSOR CAUSALITY ASSIGNMENT 

 
 

System inversion is an interesting analysis to know an input 
considering a given output, this is described in the next section 
by using bicausality property of the bond graphs. 

IV.  THE USE OF THE BICAUSALITY CONCEPT FOR SYSTEM 

INVERSION 

An inverse model of the system are obtained by applying 
differential and algebraic operations to the state equations of 
the original system.The computational capabilities of the 
bicausality concept presented above make it be an adequate 
tool for solving the problem of inverse systems mentioned in 
[11]. The bicausality allows fixing or imposing at the same 
time a variable and it s conjugate as bicausal bonds decouple 
the effort and flow causalities. In the context of the inversion 
problem, imposing the output variable without modifying the 
energy structure (or constraint equations) of the system can be 
carried out with an SS element having a flow source/effort 
source causality (Table II). Then, the output to be imposed 
plays the role of input variable of that SS element while its 
conjugate is set to a null value leading to a null power flow on 
that bond.  
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Similarly, the input variable of the original system to be 
determined will be detected on another SS element with a flow 
sensor/effort sensor causality. Table III shows the bicausality 
propagation carried out throughtout junction structure of the 
bond graph. 
 

TABLE III 
CAUSALITY STROKE AND ASSIGNMENT STATEMENTS FOR BOND GRAPH 

ELEMENT 

 
 
Some concepts used to present the bond graph- based 

procedure for system inversion are introduced in this section 
through the following definitions [12]. 

Definition 1. The lenght kL  of a causal path from a variable 

iv  to a variable jv  of a bond graph is defined as the number 

of integrators or storage elements in integral causality 
encountered on the causal path when following the causal path 

from iv  to jv . 

Proposition 1. (Structural invertibility condition) A linear 
system modelled by bond graph is invertible if there is at least 
one causal path between the input variable and the output 
variable of the system. 

In the next section, a bond graph model of a PUMA 
manipulator and system inversion are proposed. 

V. ANALYSIS OF A TWO DEGREES OF FREEDOM PUMA WITH A 

BOND GRAPH APPROACH 

A simple two-degrees of freedom (DOF) manipulator but 
three-dimensional appears in Fig. 2. This can be regarded as a 
simplified PUMA with the elbow and wrist locked at 
appropriate angles and zero joint offset. 

 

 
Fig. 2 Scheme of 2 DOF PUMA 

The second link, although moving in three dimensions, 
rotates about a fixed point: joint 2. Its dynamics are therefore 
determined by the Euler ring. The first link is a simple one-
dimensional rotating inertia coupled to the second link by a 
joint [6]. The angular velocities of the second link about the x 
and y axes 

xw  and 
yw  are entirely determined by that of the 

first link 
1w , 

 ( )1 2sinxw w θ= •  (13) 

 ( )1 2cosyw w θ= •  (14) 

The corresponding bond graph with integral causality 
assignment of the PUMA manipulator is shown in Fig. 3 with 
notation in Table 4. 

 
Fig. 3 Bond graph of the PUMA manipulator 

 
Note that the bond graph contains four storage element in an 

integral causality assignment, that is independent linearly state 
variables. 

TABLE IV 
BOND GRAPH LABELS 
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The key vectors of the nonlinear bond graph are, 
 

2 2 2

24 24 24

3 3 3

23 23 23

8 8 8

12 12 12

13 13 13

19 19 19

6 6

21 21

1

25

; ;

; ;

;

dd d

in out

p e f

p e f
x x z

q f e

q f e

p e f

p e f
x x z

p e f

p e f

f e
D D

f e

e
u

e

•

•

     
     
     = = =
     
     
     

     
     
     = = =
     
     
     

   
= =   
   

 
= 
 

3

23

;
f

y
f

 
=  
 

 

 
the constitutive relations of the fields are 

2 1 2 1

1 1 1 1
, , ,

1 1 1 1
, , ,d

z x y

F diag
i i C C

F diag
i i i i

 
=  

 

  =  
  

 

 
and the junction structure matrices are 

( ) ( )

1

1
11 12

3 3
14

13

22 23 21 12 31 14

0 1 0 1 0

0 0 1 0 1
;

1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0

0 sin cos 1

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0; ;

T

T T

h

h
S S

q q
S

S

S S S S S S

− − −   
   − −   = =
   
   
   

− 
 − − − =
 
 
 

 
=  
 

= = = − = −

 

where ( ) ( )1 13 3 12 3sin cosh p q p q= − . 

From  

2

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

zi

i

hE

 + 
 

+=  
 
 
  

 

where ( ) ( )2 2
2 3 3

1

1
cos sinx yh i q i q i

i
 = + + 

 

( )

2 1

2 1 1

1 1

1 1 1

2

1

1
0

1
0

1
0 0 0

1
0 0 0

R h

i i C

h R

i i C
EA x

i

i

− − − 
 
 

− − 
 
 =
 
 
 
 
 
 

 

( ) 1 0 0 0

0 1 0 0

T

EB x
 

=  
 

 

 
It is an unfortunate fact that most physical systems 

encoutered in practice are not linear. It is almost always the 
case that when one encounters a linear model for a physical 
system, it is an idealized or simplified version of a more 
accurate but much more complicated nonlinear model. In order 
to create a linear model of the PUMA manipulator represented 
in bond graph from the nonlinear bond graph shown in figure 
3, we introduce a linearized bond graph of the manipulator in 
figure 4 [13]. 

 
Fig. 4 Linearized bond graph 

 
In order to verify that linearized bond graph represents the 

linearization of the nonlinear manipulator, the junction 
structure matrix of the linearized bond graph or causal paths to 
obtain the state variables description can be used. The space 
state representation of a linearized system is 

( ) ( ) ( )E x t A x t B u tδδ δ δ δ δ

•
= +  

Hence, the state variables matrices are 

2 1

1 ,1 ,1,1xz i ii
E diag

i iδ
 += + + 
 
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%
%

%
%

12
3 29

2 1 2

1 1
3 29

1 1 1

2

1

1
0

11
1

;
01

0 0 0
0

1
0 0 0

R h
h f

i i C

Rh
h f

i i C
A B

i

i

δ δ

 − − − − 
 
   − −
   
   = =
   
   
   
 
 
  

 

where %
%( )

%
%( )1 31 3,

x t x t
h h h h= =  and ( ) ( )3 13 3 12 3cos sinh p q p q= +  

By obtaining the direct paths, i.e., causal paths from input to 
output, we have 

1 1 25 24 24

2 2 1 2 2

:

:

u y e e f

u y e e f

→ − −
→ − −

 

then these causal paths are of lenght 1and the structural 
invertibility condition is verified. 

Now, bicausality to the linearized bond graph of the PUMA 
manipulator is applied to get a system inversion. Fig. 5 shows 
the bicausal bond graph of the PUMA manipulator. 

 
Fig. 5 Bicausal bond graph of the manipulator 

 
The generalized state equations of the inverse model derived 

from the inverse bond graph in Fig. 5 can be written in a 
descriptor form or alternatively in the following generalized 
state equations form: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

z t Fz t G p y t

u t Hz t J p y t

•
= +

= +
 

where 

( ) [ ]

( )

1 2 ; 0

1 0

0 1

Tz t qc qc F

G p

= =

 
=  
 

 

and the causal paths are used to get H and J(p). Then, 
Causal path 

2 2y u→  Gain 

2 4 6 6 4 1f f f e e e− − − − −  2R  

2 3 3 1f f e e− − −  21/C  

2 4 5 8 8 5 4 1f f f f e e e e− − − − − − −  zI  
, ,

2 2 2 1f f e e− − −  
2I  

 
Causal path 

1 1y u→  Gain 

23 22 21 21 22 25f f f e e e− − − − −  1R  

23 24 24 25f f e e− − −  
11/C  

23 22 19 19 22 25f f f e e e− − − − −  
yI  

, ,
23 23 23 25f f e e− − −  1I  

 
Causal path 1 2y u→  Gain 

23 22 20 17 9 5 4 1f f f f e e e e− − − − − − −  
2k s  

23 22 18 16 10 7 5 4 1f f f f f e e e e− − − − − − − −  
1k r  

 
Causal path 

2 1y u→  Gain 

2 4 5 9 11 17 20 22 25f f f f e e e e e− − − − − − − −  
2k s  

2 9 5 7 10 16 18 22 25f f f f e e e e e− − − − − − − −  
1k r  

Thus, the input of the system inversion is given by 
 

( ) ( ) ( )
( )

1 111 12

221 22

2

1
0

1
0

C y t
u t z t

y t

C

α α
α α

 
     = +        
 
 

 

where 

1
11 1

1

12 1 2

21 1 2

2
22 2

2

1

1

y

z

dI
R I

C dt

k r k s

k r k s

dI
R I

C dt

α

α
α

α

 
= + + + 
 

= +
= −

 
= + + + 
 

 

In order to verify the system inversion of the manipulator, 
the 20-SIM sofware to simulate linearized bond graph with a 
calculated control input is used. Figure 6 shows the bond 
graph diagram on 20-SIM platform. 
 

 
Fig. 6 Bond graph of the manipulator on 20-SIM 
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The numerical parameters of the bond graph are: 

1 0.1 /C rad N m= − , 
2 0.2 /C rad N m= − , 2

1 0.1I N m s= − − , 
2

2 0.2I N m s= − − , 21z x yI I I I N m s= = = = − − , 
1 4 /R N s m= −  

and 
2 3 /R N s m= − . 

The first case is to determine the necessary inputs for step 
outputs and Fig. 7 shows the simulation results. 
 

0 1 2 3 4 5 6 7 8 9 10
time {s}

0

0.5

1

1.5 Input 2
Output 2
Input 1
Output 1

 
Fig. 7 Simulation of the system inversion for step outputs 

 
The second case is to prove the system inversion for waves 

square outputs, the effectiveness of the methodology is shown 
in Fig. 8. 

 
Model

0 10 20 30 40 50 60 70
time {s}

-2

-1

0

1

2

3
Input 2
Output 2
Input 1
Output 1

 
Fig. 8 Simulation of the system inversion for waves square 

 
Fig. 9 shows the final proof of the system inversion using 

waves saw outputs and the necessary inputs are obtained 
 

Model

0 10 20 30 40 50 60 70
time {s}

-0.5

0

0.5

1

Input 2
Output 2
Output 1
Input 1

 
Fig. 9 Simulation of the system inversion 

 
It is important to consider the bond graph bicausals allows to 

determine system inversion state estimation and parameter 
estimation [11]. 

VI. CONCLUSIONS 

The bond graph representation and the concept of bicausality 
are used to obtain the system inversion of a PUMA 
manipulator. Hence, the nonlinear bond graph of the two 
degrees of freedom PUMA is linearized. Then, the linearized 
bond graph bicausal is obtained. Thus, the system input to get 
a given system output of the linearized PUMA is determined in 
a bond graph approach. 

REFERENCES 

[1] Mark W. Spong and M. Vidyasagar, "Robot Dynamics and Control", 
John Wiley & Sons, 1989. 

[2] V. Damic and J. Montgomery, "Mechatronics by Bond Graphs", 
Springer, 2003. 

[3] Dean C. Karnopp, Donald L. Margolis and Ronald C. Rosenberg, 
"System Dynamics Modeling and Simulation of Mechatronic Systems", 
John Wiley & Sons, 2000. 

[4] P. E. Wellstead, "Physical System Modelling", Academic Press, 
London, 1979. 

[5] C. Sueur and G. Dauphin-Tanguy, "Bond graph approach for structural 
analysis of MIMO linear systems", Journal of the Franklin Institute, Vol. 
328, No. 1, pp. 55-70, 1991. 

[6] Peter Gawthrop and L. Smith, "Metamodelling", Prentice-Hall, 1996. 
[7] M. J. L. Tiernego, J. J. Dixhoorn, "Three Axis Platform Simulation: 

Bond Graph and Lagrangian Approach", Journal of the Franklin 
Institute, Vol. 308, No. 1/2, pp. 157-171, 1985. 

[8] A. Zeid, Ch. H. Chung, "Bond Graph Modelling of Multibody System: a 
Library of Three dimensional Joints", Journal of the Franklin .Institute, 
Vol. 329, No. 4, pp. 605-636, 1992. 

[9] D. Karnopp, "Understanding Multibody Dynamics using Bond Graph 
Representations", Journal of the Franklin Institute, Vol. 334B, No. 4, 
pp. 631-642, 1997. 

[10] L. M. Silverman, "Inversion of multivariable linear systems", IEEE 
Trans. Automat. Contr., Vol. AC-14, No. 3, pp. 270-276, June, 1969. 

[11] P. J. Gawthrop, "Bicausal bond graphs", in Proceedings of the 1995 
International Conference on Bond Graph Modelling and Simulation: 
ICBGM'95, pp. 83-88, 1995. 

[12] R. Fotsu Ngwompo, S. Scavarda and D. Thomasset, "Inversion of 
Linear Time-invariant SISO Systems Modelled by Bond Graph", Journal 
of the Franklin Institute, Vol. 333(B), No. 2, pp. 157-174, 1996. 

[13] Gilberto Gonzalez-A and R. Galindo, "A Linearization Procedure for a 
Class of Nonlinear Systems Based on Bond Graph", Proceedings of the 
International Mediterranean Modeling Multiconference, pp. 77-82, 
2005. 

 
 


