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Model Inversion of a Two Degrees of Freedom
Linearized PUMA from Bicausal Bond Graphs

Gilberto Gonzalez-A, Ignacio Rodriguez- A., Duniafléz-P

Abstract—A bond graph model of a two degrees of freedom System inversion is of significant importance isteyns and

PUMA is described. System inversion gives the sgysteput
required to generate a given system output. Inrdalget the system
inversion of the PUMA manipulator, a linearizatiohthe nonlinear
bond graph is obtained. Hence, the bicausalitheflinearized bond
graph of the PUMA manipulator is applied. Thus, tieausal bond
graph provides a systematic way of generating theaons of the
system inversion. Simulation results to verify tiadculated input for
a given output are shown.

control theory as it appears explicitly or impligitn a variety
of problems such as, for example, decoupling,
matching, perfect output control or parametersgi#10].

Classical inversion methods based on mathematioalets
tend to obscure the structural features and thesigdily
interpretation of inverse systems. In recent yelaosid graph
model based inversion has attracted a lot of igtetae to the
bicausality concept that provides a convenient way

Keywords—Bond graph, system inversion, bicausality, PUMArgpresent inverse systems [11].

manipulator

|. INTRODUCTION

The main advantage for using bond graphs for stiadyss
the graphical representation of the physical stmectof the
system as well as the possible automated derivafiearious

ROBQT|C5 is a field of modern technology that cressegquations (or mathematical) models that can becizsd with
traditional engineering boundaries. Understandihg t 5 gpecific problem of interest through the caugalitsignment.

complexity of robots and their applications regsikeowledge This bond graph approach therefore enables a miysic

of electrical engineering, mechanical engineerimglustrial
engineering, computer science and mathematics [1].

interpretation of inverse dynamics based on strattu
considerations [12].

One well-known approach designed to deal with multi gection 1| describes the basic elements of the bgraghh

domain engineering problems is the bond graph mniethg,ogelling. Section Il summarizes the concept of th

elucidated by Henry Paynter. The application of rieays

bicausality applied to bond graphs. Bicausalityduse get

bond graph method began with the works of Karnopygiems inversion is proposed in section IV. Theewi

Rosenberg, Thoma and others. Over the last 40 yhars
have been numerous publications dealing with tleerthand
application of bond graphs in different branchesmjineering
[2].

The bond graph technics are useful and importauis tior
physical system modelling [3]. They are based omveso
representation and enables the description of ywem
through energy storage and dissipative element$g§]

The robotics modelling using bond graphs has ektelys
been developed. In [3] proposes a general methgyolo
model mechanical systems with bond graphs. In [@sgnts
an interesting procedure to construct bond graphs/@ and
three dimensional robotic manipulators. The thras-a
platform simulation using bond graph models andraage’s
equations is compared in [7].

Also, several papers have been published to cangtand
graphs from the manipulators. In [8] gives a lilgraf three-
dimensional joints using bond graph to obtain thétiAbody
system. Finally, [9] shows the multi-body approacshbond
graph to write the algebraic constraint equatiarslze used to
describe mechanical systems.
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methodology to a two degrees of freedom PUMA madaipu
modelled by a linearized bond graph to determimeddntrol
inputs for proposed outputs via bicausality is &gpin section
V. Finally, our conclusions are given in section VI

1. MODELING IN BOND GRAPH

The symbolic form of a Bond Graph in Integral cdixza
assignment (BGI) of a system is shown in Fig. 1 [4].

Source field

(MS,, MSy)
% u
S}f&i’f“ R4 Pa— I LI Dx:s;liepl;tion
D z |, 1, MTF,MGY) Do ®R)
£ y

Detector
D)

Fig. 1 Key vectors of a BGI

In Fig. 1, (MSE,MSf), (C,I) and R) denote the source, the

energy storage and
(0,1TF,GY) the junction structure with transformeng|TF,
and gyratorsMGY.

model

the energy dissipation fieldsd a
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The state x(t) 00" and x, (t) OO™ are composed of the bond or in other words a variable imposed patiimplies
its conjugate variable as output.

From a computational point of view, the above siteda
elements in integral and derivative causality, eesipely ‘“unicausal' stroke does not determine all formsssignment
u(t)DD" denotes the plant inputz(t)m]” the co-energy statements that can be derived from the constegjnations of
a bond.

The concept of “bicausal' bond introduced by GvegtHi 1]
overcomes these restrictions and then enlarggsabsbilities
of computation models that can be derived fromradbgraph.
The causal stroke in bicausal bond is seen astrakes each
associated to an effort and a flow variable thatloa imposed

energy variablesp(t) and g(t) associated withl and C

vector, z,(t)00" the derivative causality ane, (t)00"
and D, (t)00" are a mixture ofg(t) and f (t) showing the

energy exchanges between the dissipation field trel
junction structure.
The relations of the storage and dissipation féekzl

z(t)= Fx(t) (1) independently at each end of the bond. Causal diedkes
indicate the fixed or known variables of the bonud o
7, (t) =Fyxy (1) () determine the right hand side of the assignments.fo
D, (1) =LD, (t) (3) For an illustration, Table 1 [12] presents assigmme
The relations of the junction structure are, statements associated to unicausal and bicausdlestfor a

. ¢ bond for which the known acausal constraint equatiare:
X(t) S; S, S; Su Z( ) e-e=0; f-f,=0.
D, (t) - S; S, S, O Da (t)

y(t) Si S S 0 u(t)

~

4)
TABLE |
CAUSALITY AND ASSIGNMENTSTATEMENTS FOR ABOND

()] LS« 00 0l x(Y) Umew | gt Mo | Asimm
The entries ofS take values inside the A1+K +K e e2 = e e2 .=
L R T e e
where K, and K are transformer and gyrator modulés;
el e2 - el e2 e2:=el
and S,, are square skew-symmetric matrices Syand S,; n Py 0T 12:=f1
are matrices each other negative transpose. Theesjaation
is [4], [5], TABLE II
. SOURCE-SENSORCAUSALITY ASSIGNMENT
X(t) = A( X) X(t) + B(X) u t) (5) Unicausal Ss ]_«Irlemenl Bicausal SSs ]_«:rlemenl
Stroke ype Stroke ype
y(t) =C(x)x(t)+D(x)u(t) (6)
where —dss Cffort sensor L———ss | crort souree
_ 41 0S5,
EA(x) = [3” SMS,*+ S,y == |F O O I Al N PR
EB(X) = %3 +S,M Sze ®)
C(x) = (%1+ 832M821) F 9) System inversion is an interesting analysis to kiaomnput
~ 10 considering a given output, this is described mribxt section
D (X) =Sy + SMS, (10) by using bicausality property of the bond graphs.
being
M=(I- LSZZ)_l L (11) IV. THE USE OF THE BICAUSALITY CONCEPT FOR SYSTEM
a4 INVERSION
E=I _§4Fd 531F (12)

Next section describes bicausal bond graphs toyamal

system inversion.

Ill.  THE CONCEPT OF THE BICAUSAL BOND GRAPH

An inverse model of the system are obtained by yépl
differential and algebraic operations to the stqeations of
the original system.The computational capabilitiefs the
bicausality concept presented above make it bedaguate
tool for solving the problem of inverse systems tizared in

The acausal bond graph model of a dynamic systgmi]. The bicausality allows fixing or imposing Hte same

represents the energy transfer and the constrgimtiens in
the system independently of assignment statemieatsan be
derived from those equations.

The causality expresses in which way constituteations
of elements and relations among variables of thectian
structure should be written for model analysis psgs or
derivation of a simulation model. The causal stroked in
conventional bond graphs basically supposes thatagh
bond, if the effort (resp. flow) is imposed at thiher end of

time a variable and it s conjugate as bicausal bal®touple
the effort and flow causalities. In the contexttloé inversion
problem, imposing the output variable without mgiti§ the
energy structure (or constraint equations) of §fstesn can be
carried out with anSS element having a flow source/effort
source causality (Table Il). Then, the output toit@osed
plays the role of input variable of th&6 element while its
conjugate is set to a null value leading to a paiver flow on
that bond.
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Similarly, the input variable of the original systeto be
determined will be detected on anoti8Srelement with a flow
sensor/effort sensor causality. Table 11l shows hifoausality
propagation carried out throughtout junction stucetof the
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The second link, although moving in three dimensjon
rotates about a fixed point: joint 2. Its dynaméee therefore
determined by the Euler ring. The first link is isngle one-
dimensional rotating inertia coupled to the sectink by a

bond graph. joint [6]. The angular velocities of the secondklebout thex
andy axesw, and w, are entirely determined by that of the
TABLE Il _—_
CAUSALITY STROKE AND ASSIGNMENT STATEMENTS FOR BONIBRAPH first link w,
ELEMENT W, =w, e s]n(gz) (13)
Unicausal Assignment Bicausal Assignment
Stat t: Strok: Stat t _
Stroke atements roke atements Wy - \Nl. CO#BZ) (14)
—|R f:=e/R IR o . . . .
i e:=R*f Ri=e/l The corresponding bond graph with integral causalit
Fa— N — Li=p/t assignment of the PUMA manipulator is shown in Bigvith
| — p:=I* ) . .
—C notation in Table 4.
ﬂ :=C
—c Gmqc |7 Ci=a/e L2
n, 2:=el/ .n 1:=n*e2
I o e v 2
T2 (S | 4 e 2 | iIelm MSe:T2 11:wt21 1:w2t R:R2
1,02 fl:=e2/r 1 L 2 el:=r*f2 31 5
ASYF— | pizeinr |V f1:=e2/r cen
r. el:=r*f2 . e2:=r*f1 &
H—ev2— |i=rn | ——ey—2 2:=el/r hd ‘
ZT e2:=el ZT e2:=el Tiwz
e3:=el e3:=el
— o2 i | o £3:=1-2 ! 2 8
f2:=f1 12:=f1 i
1 2] . 2:=11 1 2] ] 12:=11 MGY, Itz 5 MGY
FH—=1F— |et:=e2+e3 | —F1 —— e3:=el-e2 10 3 11
.}\I:ix I:lyga\’
1:wx b 14 MGY 15 HA1:wy
Some concepts used to present the bond graph- bast 16
procedure for system inversion are introduced is $ection I:i1 L 17
through the following definitions [12]. 24{ —>TF:tx ” 19£ 20 TF:ty <
Definition 1. The lenghtL, of a causal path from a variable :2\ /
. . . MSe:T1 11:wt1 11:wW 1
V; to a variableV; of a bond graph is defined as the number 23'[ 211:
of integrators or storage elements in integral abtys c.c1 R:RA

encountered on the causal path when following ¢hesal path
fromV, to v, .
Proposition 1. (Structural invertibility condition) A linear

one causal path between the input variable andothput
variable of the system.

Fig. 3 Bond graph of the PUMA manipulator

Note that the bond graph contains four storage eh¢mm an
system modelled by bond graph is invertible if éhiar at least integral causality assignment, that is indepentieeéarly state

A

variables.

TABLE IV
BOND GRAPH LABELS

In the next section, a bond graph model of a PUM,

manipulator and system inversion are proposed.

V.ANALYSIS OF A TWO DEGREES OF FREEDORUMA WITH A
BOND GRAPHAPPROACH

A simple two-degrees of freedom (DOF) manipulatot b

Label Component type Associated physical variable

wti, wt2 Common velocity junctions | Joint angular velocities él, 02

wX, wy, wz | Common velocity junctions | Angular velocities wx, wy, wz

i1 Inertia component Inertia of link 1

ix, iy, iz Inertia components Principle angular momenta hx, hy, hz

gax, gy, gz Gyrators Coupling due to rotating coordinate system
T1, T2 Sources Torques T1, T2

tx, ty Transformers Transformations of the second link

(o3 Compliance component Provides the joint angle 62

three-dimensional appears in Fig. 2. This can garced as a
simplified PUMA with the elbow and wrist locked at
appropriate angles and zero joint offset.

Fig. 2 Scheme of 2 DOF PUMA
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The key vectors of the nonlinear bond graph are, [-R, -h -1 0 T
IZ il Cl
pZ ez f2 h _Rl O _l
X = P24 .;(: € 7= fa EA(x) = I T 61
q | f, | e, (x)= 1
Gl L] les p, 00
i N f o I o o
m| P2 =% g | -
Pis €3 fis 100 0 T
P & fio EB(x) {0 10 0}

Din :|: f6:|;Dout :{eﬁ}
f21 eZl
& fg}
u= ’y:
Mt

the constitutive relations of the fields are
111 1}

F=diag) > 2 =,
g{iz ,'C,'C,

and the junction structure matrices are

0 -h -1 0 1 0 c:c2 |
h 0 0 -1 0 -1 MGY:h3 l:wz
S, = 'S, = 2R
1 0 0 O 0 O M'FTF MGY:r Liz MGY:s
01 0 © 0 0 Pzuix viveag U
__1 0 0 0 MSf:J;Z-a(t) 1:wx\l//ﬂTMGY%\1:Wy
5= 0 -sin(g,) -cofa,) - i 1:F.& i I
= 24| y 19 TF:ty
0 0 0 0 [ @ [ 22
0 0 0 0 MsSe:T1 28 -:I[:WM ‘22\-1[:\01/
L 23 1
[1 00 Of cict / RiR1
513— 0100 Mst:fzn).ﬁMTF:ﬁyﬁMi

S,=5,;=0;S,,=-S;S,=-S',
whereh, = p,,sin(q,) - p,,coqd,)-
From

1+2 0 o0 0

It is an unfortunate fact that most physical system
encoutered in practice are not linear. It is almedgtays the
case that when one encounters a linear model fanyaical
system, it is an idealized or simplified version afmore
accurate but much more complicated nonlinear médelrder
to create a linear model of the PUMA manipulatg@resented
in bond graph from the nonlinear bond graph shawfigure
3, we introduce a linearized bond graph of the maator in
figure 4 [13].

1:i2
2
MSe:TZ%']:WtZ"‘ﬁ']:WZ’GﬁR:RZ

3 [5

Fig. 4 Linearized bond graph

In order to verify that linearized bond graph resarets the
linearization of the nonlinear manipulator, the gtion
structure matrix of the linearized bond graph arsea paths to
obtain the state variables description can be ufbd.space

E=| 0 1+h, 0 O state representation of a linearized system is
0 0 10 E, %o (1) = A (1) + By, (1)
0 0 1 Hence, the state variables matrices are

wheren, = 2[i, cog (q,) +1, sirf () +1]

1

E, = diag{1+!—z,l+ Ix.+| ,l,J}

Iy I
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R R0
|2 Il 2
h - = -1 1
™ iR Rof,, )
— 1 1 1|-B, =
A= 8=
= 0 0 0
iy 0
o 1 0 0
L I

where by =y hs =hy, andh, = p,,cos(q,) + p,, sir{a)

By obtaining the direct paths, i.e., causal patomfinput to
output, we have

U - ¥1:€p5~ €y~ fzz
u, - y,:e-e-f,
then these causal paths are of lenght land thetwtal
invertibility condition is verified.
Now, bicausality to the linearized bond graph & BIUMA

manipulator is applied to get a system inversiag. & shows
the bicausal bond graph of the PUMA manipulator.
1:i2

S8:y2
2 y

4 6
SS:u2|1ﬁ|1:wt2!—/1:w2|ﬁR:R2

3 Ts

c:ic2
_ I
MGY:h3 1:wz
7
F e
M-TF MGY:r Iz MGY:s
Hbs . 3
MSFT2a(t) 1:WX=/1: MGY v:‘,,\A‘twy
v 18 i 17

TF:tx = -
24[ W[ 20 TEY
5 22 ;

ss:u1 11:wt1 11:

2
231 1L X
- c:c1 R:p1 S8y
SEf2()—— MTF:Rh3 ———MG

Fig. 5 Bicausal bond graph of the manipulator

The generalized state equations of the inverse hustved
from the inverse bond graph in Fig. 5 can be writie a
descriptor form or alternatively in the followingegeralized
state equations form:

where
Z'(t)=[ac, ac,];F=0

s ]

and the causal paths are used ta-hahdJ(p). Then,

Causal pathy, - u, Gain
f,—f,—f,—e,—e,—e R
f,-f,—e;—g 1/C,

f

f,-f,-e,—¢

o~ fi-f—fi-e-e-e,—e I

Causal pathy, — u, Gain
f23 - fzz_ f21—e21—e22—e 2 R
fram =€y 1/C,
fa—fp—flo—e—eye, Iy
f23_ f2'3—e'23—eZE |1
Causal pathy, - u, Gain
fzs_fzz_fzo_f17_eg_es_e4_e. kZS
fzs_fzz_fls_fls_flo_e7_es_e4_e kll’
Causal patry2 ) Gain
f,-f,-fs—fy-ey —e, e, e, e, k,s
fz_ fg_ fs_ f7_elo_els_els_e22_ez kll’
Thus, the input of the system inversion is given by
Ci 0 a, a (t)
U(t)Z 1 Z(t)+|: 11 12}|:y1 }
0 l aZl a22 y2 (t)
C,
where
1 dl
a,,=| —+R+I, [+—
" (cl R Y] dt
a, =kr+k;s
a, =kr-k;s

1 di
a,, :[E+R2+ |Z]+CTt2

In order to verify the system inversion of the nparétor,
the 20-SIM sofware to simulate linearized bond brapth a
calculated control input is used. Figure 6 shows tond
graph diagram on 20-SIM platform.

Fig. 6 Bond graph of the manipulator on 20-SIM

1066



International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:9, 2012

The numerical
C,=0.Tad /N-m, C,=0.2rad /N-m; [,=0.IN-m-s?
I,=02N-m-s’>, |=1,=1 =1,=IN-m-s", R=4N-s/m
and R, =3N -s/m-

The first case is to determine the necessary infoutstep
outputs and Fig. 7 shows the simulation results.

15 - Input 2
—Output 2
~lInput 1
- Output 1

0.5

time (s}

Fig. 7 Simulation of the system inversion for stepputs

The second case is to prove the system inversiowdwes
square outputs, the effectiveness of the methogldbbghown
in Fig. 8.

Model

- Input 2
—Output 2
—Input 1

2 - Output 1

—

0 10 20 30 40 50 60 70
time {s}

Fig. 8 Simulation of the system inversion for wasgsare

Fig. 9 shows the final proof of the system invemsigsing
waves saw outputs and the necessary inputs armethta

Model

- Input 2

—Output 2

—Output 1

a ~lnputl |
® U Y U v U v

[ 10 20 30 40 50 60 70
time (s}

Fig. 9 Simulation of the system inversion

It is important to consider the bond graph bicassdbws to
determine system inversion state estimation andrpeter
estimation [11].

parameters of the bond graph are: VI.

CONCLUSIONS
The bond graph representation and the conceptatibality

are used to obtain the system inversion of a PUMA

manipulator. Hence, the nonlinear bond graph of tie
degrees of freedom PUMA is linearized. Then, thedrized
bond graph bicausal is obtained. Thus, the systgmt ito get
a given system output of the linearized PUMA isedeined in
a bond graph approach.
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