
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1701

Model checking consistency of UML diagrams
using Alloy

Akie NIMIYA†, Tomoyuki YOKOGAWA†, Hisashi MIYAZAKI†‡,
Sousuke AMASAKI†, Yoichiro SATO†, and Michiyoshi HAYASE†

Abstract—In this paper, we proposed a method for detecting
consistency violation between UML state machine diagrams and
communication diagrams using Alloy. Using input language of Alloy,
the proposed method expresses system behaviors described by state
machine diagrams, message sequences described by communication
diagrams, and a consistency property. As a result of application for
an example system, we confirmed that consistency violation could be
detected using Alloy correctly.

Keywords—model checking, UML, state machine diagrams, com-
municatiuon diagram, Alloy.

I. INTRODUCTION

Unified Modeling Language (UML)[1] is a formal language
used to describe structure and behavior of a software system
and is widely used in software development. In software de-
velopment using UML, a design described by UML diagrams
may contain inconsistency even if each diagram has no error.
Because it is difficult to detect inconsistency with human
review, an automatic detection is expected. We have developed
a method for verifying consistency of UML diagrams using
symbolic model checker SMV[2], [3].

In the case of verifying large systems, however, size and
complexity of an input of SMV become increased. In addition,
when a requirement is not fulfilled, SMV could produces only
one counterexample which is a trace of a system execution
violating that requirement.

Alloy [4], [5] is a simple structural modelling language
supported by Alloy analyzer. The Alloy language is used
to express complex structural constraints and behaviour. It
is a constraint solver with full automatic simulation and
verification. The Alloy language is based on the first-order
logic that allows a user to model a system by abstracting key
characteristics of that system. The Alloy analyzer generates
all instances showing whether their properties are satisfied or
not.

Some methods were proposed for verifying UML diagrams
using Alloy [6], [7]. In [6], Simons et al. proposed a method
to convert a subset of UML used in the discovery method into
an abstract syntax input to Alloy. In [7], Zito et al. formalized
and analyzed package merge concept in UML 2.0 using Alloy.

†Graduate School of Systems Engineering, Okayama Prefectural
University, Kuboki 111, Soja-shi, Okayama, 719–1197 Japan (e-mail:
nimiya, miyazaki@circuit.cse.oka-pu.ac.jp, {t-yokoga, amasaki, sato,
hayase}@cse.oka-pu.ac.jp).

‡Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki-shi,
Okayama 701-0193, Japan (e-mail: miyazaki@me.kawasaki-m.ac.jp).

Manuscript received September, 2010; revised October 31, 2010.

These studies, however, do not focus on consistency of UML
diagrams.

In this paper, we proposed a method for verifying consis-
tency of UML diagrams using Alloy. The proposed method
converts state machine diagrams and a communication dia-
gram into a model for Alloy. It also provided a way for de-
tecting inconsistency of these diagrams using Alloy analyzer.

II. CONSISTENCY VERIFICATION WITH ALLOY

A. Representation of a state machine diagram

Figure 1 shows a state machine diagram with tree transitions
t1, t2 and t3. At the start of the execution,the state s1 is active.
t1 is executed in the case that the state s1 is active, the guard
condition ”g is true” evaluates true and the event e is activated,
and then the state s2 becomes active in place of s1 and the
action ”activate event a” is executed. t2 is executed in the case
that s2 is active and g is false, and then the action ”increment
the variable c” is executed. The state machine reaches to a
final state by t3 when s2 is active and e is activated. The initial
values of the variables g and c are true and 0, respetcively.

s1 s2
t1: e[g]/a

t2: [¬g]/c++
t3: e

Fig. 1. An example of a state machine diagram

The behaviour of a state machine diagram is defined as
a transition system with an ordered set of elements which
consists of states, events and variables. We call this element
step and define a type Step for it. Step of the state machine
diagram in Figure 1 is defined as follows:

enum States{s1,s2,fin}
enum Events{e,a}
open util/ordering[Step]
sig Step{
st:some States,
ev:set Events,
g:Int,
c:Int

}
{ 0<=g && g<=1 }

States is a set of state names and Events is a set of event
names. util/ordering[Step] provides order relation for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1702

Step. st, ev, g and c are members of Step. st and ev
represent active states and activated events, respectively. The
boolean variable g is defined as an integer variable g with a
condition 0≤g≤1.

Since the step changes by a transition, the order relation
of Step is represented by a disjunction of pre- and post-
conditions of all transitions. The transitions in Figure 1 are
represented as follows:

fact{
all s:Step, s’:s.next{

s1 in s.st && e in s.ev && s.g=1
&& s’.st=s.st-s1+s2 && s’.ev=s.ev-e+a
&& s’.g=s.g && s’.c=s.c
|| s2 in s.st && s.g=0
&& s’.st=s.st-s2+s1 && s’.ev=s.ev
&& s’.g=s.g && s’.c=s.c+1
|| s2 in s.st && e in s.ev
&& s’.st=s.st-s2+fin && s’.ev=s.ev
&& s’.g=s.g && s’.c=s.c

}
}

The order relation is defined by fact notation. s is a variable
of type Step and s’ represents the subsequent element of s.
The pre-condition of t1 is represented as a boolean formula
which means state s1 is active, event e is activated, and guard
condition g=1 evaluates true in s. The post-condition of t1
is represented as a boolean formula which means state s2
becomes active in place of s1, event e is disactivated and
event a is activated in step s’. Boolean formulas representing
t2 and t3 are obtained as in the case of t1. The order relation
of the state machine diagram is obtained as a disjunction of
the boolean formulas representing transitions.

Initial states of a state machine diagram is also defined by
fact notation. The initial states in Figure 1 is represented as
follows:

fact{
first.st=s1
#first.ev=0
first.g=1
first.c=0

}

first represents the first element of the ordered set Step
and # represents the number of elements in the set. This means
that state s1 is active, no event is activated, and values of g
and c are 1 and 0 in the initial state.

B. Representation of a communication diagram

Figure 2(a) shows a communication diagram which has
two message communications. First Obj1 sends message e to
Obj2, and then sends message a to Obj2. In this diagram, the
first message is a synchronous message (denoted by the solid
arrowhead) completed with an implicit return message and the
second message is an asynchronous message (denoted by line
arrowhead).

First, labels snd and rcv with sequence number are attached
at both ends of message communications as shown in Figure

1: m1

2: m2

Obj1 Obj2

(a) (b)

1: m1

2: m2

Obj1 Obj2

snd1 rcv1

rcv2snd2

Fig. 2. Examples of communication diagrams

2(b). The completed communication is defined as a set of
the labels. The behaviour of a communication diagram is
represented as changes of the set by the transition of state
machine diagrams. These labels are defined as the following
set Label:

enum Label{snd1,rcv1,snd2,rcv2}

Next, we add a variable cp of type Label to Step. cp
represents a set of completed communications.

sig Step{
st:some States,
ev:set Events,
g:Int,
c:Int,
cp:set Label;

}

In the initial state, cp is empty.

fact{
#first.cp=0

}

A label lbl is added to cp in the case that lbl is not in
cp, the precedent labels of lbl are in cp and the message
communication is executed. Since snd1 has no precedent label,
the condition to add snd1 to cp is that snd1 is not in cp
and m1 becomes active. The change of cp by sending the first
message m1 is represented as the following boolean formula:

!(snd1 in s.cp)
&& !(m1 in s.ev) && m1 in s’.ev
&& s’.cp=s.cp+snd1

The precedent label of rcv1 is snd1, which is the sender of
m1. The condition to add rcv1 to cp is that snd is in cp,
rcv1 is not in cp and m1 becomes inactive. The change of
cp by receiving m1 is represented as the following boolean
formula:

snd1 in s.cp && !(rcv1 in s.cp)
&& m1 in s.ev && !(m1 in s’.ev)
&& s’.cp=s.cp+rcv1

As in the case of the first message, the change of cp by
sending the second message m2 is represented as the following
boolean formula:

(snd1 + rcv1) in s.cp && !(snd2 in s.cp)
&& !(m2 in s.ev) && m2 in s’.ev
&& s’.cp=s.cp+snd2

Since the precedent message communication of m2 at Obj1
is synchronous, the precedent labels of snd2 are snd1 and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1703

rcv1. The change of cp by receiving m2 is represented as the
following boolean formula:

(snd2 + rcv1) in s.cp
&& m2 in s.ev && !(m2 in s’.ev)
&& s’.cp=s.cp+rcv2

The precedent labels of rcv2 are snd2, which is the sender
of the message, and rcv1, which is the precedent message
communication at Obj2.

In addition, cp does not change if all events are unchanged,
cp includes all labels or no condition to add labels is satisfied.
This is represented as the following formula:

s’.cp=s.cp
&& (s’.ev=s.ev

|| s’.cp=snd1+rcv1+snd2+rcv2
|| !((!(snd1 in s.cp)

&& !(m1 in s.ev) && m1 in s’.ev)
||(snd1 in s.cp && !(rcv1 in s.cp)

&& m1 in s.ev && !(m1 in s’.ev))
|| ...))

The behaviour of a communication diagram is a disjunction
of boolean formulas of all message communications. The mes-
sage communications in Figure 2 are represented as follows:

fact{
all a:Step, s’:s.next{
!(snd1 in s.cp)
&& !(m1 in s.ev) && m1 in s’.ev
&& s’.cp=s.cp+snd1
|| snd1 in s.cp && !(rcv1 in s.cp)
&& m1 in s.ev && !(m1 in s’.ev)
&& s’.cp=s.cp+rcv1
...
|| s’.cp=s.cp
&& (s’.ev=s.ev

|| s’.cp=snd1+rcv1+snd2+rcv2
|| ...)

}
}

C. Representation of consistency

We considered consistency as correspondence between be-
haviour of state machine diagrams and a communication
diagram. A model which satisfies these diagrams can be ob-
tained as a conjunction of boolean formulas representing these
diagrams. If cp will eventually include all of the labels, this
model is consistent. This property is represented as follows:

last.cp = snd1+rcv1+snd2+rcv2

last represents the last element of the ordered set Step.

D. Finding model

The Alloy analyzer has two types of executions: simulation
and checking. In simulation execution the Alloy analyzer finds
instances which satisfy the model and given specification. In
checking execution the analyzer finds counterexamples to an
assertion.

Our method first carries out a simulation execution to
verify whether the given UML diagrams can reach the final
states. The reachability to the final state is represented by the
following predicate stable:

pred stable(){
fin in last.st

}

If the reachability is satisfiable, the analyzer finds the model
instance which indicates the trace to the final state. Then a
checking execution is carried out to verify the consistency
of the diagrams. In order to generate counterexamples, an
assertion representing inconsistency is provided as follows:

assert inconsistent{
!(last.cp = snd1+rcv1+snd2+rcv2)

}

An assertion is defined by assert. If the assertion is violated
(that is, consistency is satisfied), the instance which shows the
consistency as a counterexample by the Alloy analyzer.

III. APPLICATION RESULT

We applied the proposed method to the ATM system[8]
described by state machine diagrams in Figure 3 and commu-
nication diagrams in Figure 4. In this verification, the number
of Step is set to 25.

Giving Money

CardEntry

PINEntry

Counting

Dispensing

ReturningCard

AmountEntryVerification
/ verifyPIN

reenterPIN

abort

PINVerified

/ done

Idle

Verifying

VerifyingCard CardValid

VerifyingPIN

PINIncorrect

PINCorrect
numIncorrect = 0

[cardValid]

done

verifyPIN()

[else] / abort

[numIncorrect < 4]
/ numIncorrect++; reenterPIN

[else] / cardValid=false; abort

/ PINVerified

(a) ATM

(b) Bank

Fig. 3. State machine diagrams

a : AT M b : B ank

1: verifyPIN()
3: verifyPIN()

2: reenterPIN
4: PINVerified

atm bank
a : AT M b : B ank

1: verifyPIN()
3: verifyPIN()

2: abort
4: PINVerified

atm bank

(a) (b)

Fig. 4. Communication diagrams

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:11, 2010

1704

We first carried out the simulation execution to the model
obtained from the state machine diagrams in Figure 3 as
follows.

pred stable(){
fin_ATM+fin_BANK in last.st

}
run stable for 25

The result of the simulation execution is shown in Figure
5(a). Figure 5(a) indicates that a model obtained from those
diagrams has an instance. Then the checking execution was
carried out to verify the consistency of the diagrams as follows.

assert inconsistent{
!(last.cp=S1+R1+S2+R2+S3+R3+S4+R4)

}
check inconsist for 25

The result of the checking execution is shown in Figure
5(b). Figure 5(b) indicates that this model had counterexample
which violated the assertion, that is, this model is consistent.
A counterexample generated by Alloy is shown in Figure 6.

Next we carried out the checking execution to the model
obtained from the state machine diagrams and the commu-
nication diagram in Figure 4(b). The result of the checking
execution is shown in Figure 5(c). Figure 5(c) shows that an
obtained model has no counterexample, that is, this model is
inconsistent. To make this counterexample more visible, we
added the following relations to the program.

fact {
trs = CardEntry->PINEntry

+ PINEntry->Verification
+ Verification->AmountEntry
+ Verification->ReturnCard
+ ...

sub = GivingMoney->Counting
+ GivingMoney->Dispensing
+ GivingMoney->fin_GivingMoney
+ ...

odr = S1->R1 + S2->R2 + S3->R3 + S4->R4
+ S1->R2 + R2->S3 + S3->R4 + R1->S2
+ S2->R3 + R3->S4

}

trs represents that there exists a transition between the states
and sub represents that the latter state is a substate of the
former. odr represents that there exists an order relation
between the labels.

IV. CONCLUSION

In this paper, we proposed the method for verifying con-
sistency of UML diagrams using Alloy. We provided repre-
sentations of state machine diagrams and a communication
diagram using the Alloy language. We also showed that our
method could detect inconsistency of state machine diagrams
and a communication diagram.

Executing "Run stable for 25"
 Solver=sat4j Bitwidth=4 MaxSeq=7 SkolemDepth=1 Symmetry=20
 21399 vars. 1693 primary vars. 72073 clauses. 1031ms.
 Instance found. Predicate is consistent. 1844ms.

(a) Simulation execution of Fig3(a),(b) and Fig4(a)

Executing "Check inconsistent for 25"
 Solver=sat4j Bitwidth=4 MaxSeq=7 SkolemDepth=1 Symmetry=20
 21399 vars. 1693 primary vars. 72079 clauses. 1094ms.
 Counterexample found. Assertion is invalid. 4156ms.

(b) Checking execution of Fig3(a),(b) and Fig4(b)

Executing "Check inconsistent for 25"
 Solver=sat4j Bitwidth=4 MaxSeq=7 SkolemDepth=1 Symmetry=20
 21399 vars. 1693 primary vars. 72079 clauses. 1141ms.
 No counterexample found. Assertion may be valid. 4188ms.

(c) Checking execution of Fig3(a),(b) and Fig4(b)

Fig. 5. Verification results

Fig. 6. A counterexample generated by Alloy

A future work is to develop the method for correcting
erroneous diagrams using counterexamples. In addition, it is
important to generate helpful counterexamples to detect errors
of diagrams efficiently.

REFERENCES

[1] O. M. Group, Unified Modeling Language. Object Management Group,
2001, http://www.uml.org.

[2] K. McMillan, Symbolic Model Checking. Kluwer Academic, 1993.
[3] S. Harada, T. Yokogawa, H. Miyazaki, Y. Sato, and M. Hayase, “A tool

support for verifying consistency between UML diagrams by SMV,” in
ITC-CSCC, 2009, pp. 897–900.

[4] Alloy, http://alloy.mit.edu/.
[5] D. Jackson, Software Abstractions: Logic, Language,and Analysis. The

MIT Press, 2006.
[6] A. J. H. Simons and C. A. F. y Fernández, “Using alloy to model-check

visual design notations,” in ENC. IEEE Computer Society, 2005, pp.
121–128.

[7] A. Zito and J. Dingel, “Modeling UML2 package merge with alloy,” in
1st Alloy Workshop (Alloy ’06), ser. Lecture Notes in Computer Science,
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, Eds., vol. 4199.
Springer, 2006, pp. 86–95.

[8] T. Schäfer, A. Knapp, and S. Merz, “Model checking UML state machines
and collaborations,” Electronic Notes in Theoretical Computer Science,
vol. 55, no. 3, pp. 357–369, 2001.

